Verifying the vertices of a Hyperbola
$begingroup$
In this exercise it is required to verify that the points O & A(4,0)
are the vertices of the Hyperbola H , as you can see in the marked part.
Can someone help verify that ?
conic-sections hyperbolic-geometry
$endgroup$
add a comment |
$begingroup$
In this exercise it is required to verify that the points O & A(4,0)
are the vertices of the Hyperbola H , as you can see in the marked part.
Can someone help verify that ?
conic-sections hyperbolic-geometry
$endgroup$
add a comment |
$begingroup$
In this exercise it is required to verify that the points O & A(4,0)
are the vertices of the Hyperbola H , as you can see in the marked part.
Can someone help verify that ?
conic-sections hyperbolic-geometry
$endgroup$
In this exercise it is required to verify that the points O & A(4,0)
are the vertices of the Hyperbola H , as you can see in the marked part.
Can someone help verify that ?
conic-sections hyperbolic-geometry
conic-sections hyperbolic-geometry
edited Jan 19 at 9:24


Glorfindel
3,41981830
3,41981830
asked Jun 22 '13 at 14:46
A.JouniA.Jouni
1249
1249
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Some ideas:
If $,M=(h,k);$ , then it must be that $,MM'=|h-1|=r;,;r=$ the circle's radius.
We also have, since the triangle $,Delta TFM;$ is a $,30^circ-60^circ-90^circ;$ triangle, that
$$MF=2r;,;FT=sqrt 3,r$$
and the above already proves $;(1);$ . Now doing a little analytic geometry:
$$4=frac{MF^2}{MM'^2}=frac{(h+2)^2+k^2}{r^2}implies (h+2)^2+k^2=4(h-1)^2implies$$
$$h^2+k^2+4h+4=4h^2-8h+4implies 3(h^2-4h)-k^2=0implies$$
$$3left(h-2right)^2-k^2=12implies frac{(h-2)^2}{2^2}-frac{k^2}{(2sqrt3)^2}=1$$
and we have the standard equation of a hyperbola.
Try now to complete your question's answer.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f426935%2fverifying-the-vertices-of-a-hyperbola%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Some ideas:
If $,M=(h,k);$ , then it must be that $,MM'=|h-1|=r;,;r=$ the circle's radius.
We also have, since the triangle $,Delta TFM;$ is a $,30^circ-60^circ-90^circ;$ triangle, that
$$MF=2r;,;FT=sqrt 3,r$$
and the above already proves $;(1);$ . Now doing a little analytic geometry:
$$4=frac{MF^2}{MM'^2}=frac{(h+2)^2+k^2}{r^2}implies (h+2)^2+k^2=4(h-1)^2implies$$
$$h^2+k^2+4h+4=4h^2-8h+4implies 3(h^2-4h)-k^2=0implies$$
$$3left(h-2right)^2-k^2=12implies frac{(h-2)^2}{2^2}-frac{k^2}{(2sqrt3)^2}=1$$
and we have the standard equation of a hyperbola.
Try now to complete your question's answer.
$endgroup$
add a comment |
$begingroup$
Some ideas:
If $,M=(h,k);$ , then it must be that $,MM'=|h-1|=r;,;r=$ the circle's radius.
We also have, since the triangle $,Delta TFM;$ is a $,30^circ-60^circ-90^circ;$ triangle, that
$$MF=2r;,;FT=sqrt 3,r$$
and the above already proves $;(1);$ . Now doing a little analytic geometry:
$$4=frac{MF^2}{MM'^2}=frac{(h+2)^2+k^2}{r^2}implies (h+2)^2+k^2=4(h-1)^2implies$$
$$h^2+k^2+4h+4=4h^2-8h+4implies 3(h^2-4h)-k^2=0implies$$
$$3left(h-2right)^2-k^2=12implies frac{(h-2)^2}{2^2}-frac{k^2}{(2sqrt3)^2}=1$$
and we have the standard equation of a hyperbola.
Try now to complete your question's answer.
$endgroup$
add a comment |
$begingroup$
Some ideas:
If $,M=(h,k);$ , then it must be that $,MM'=|h-1|=r;,;r=$ the circle's radius.
We also have, since the triangle $,Delta TFM;$ is a $,30^circ-60^circ-90^circ;$ triangle, that
$$MF=2r;,;FT=sqrt 3,r$$
and the above already proves $;(1);$ . Now doing a little analytic geometry:
$$4=frac{MF^2}{MM'^2}=frac{(h+2)^2+k^2}{r^2}implies (h+2)^2+k^2=4(h-1)^2implies$$
$$h^2+k^2+4h+4=4h^2-8h+4implies 3(h^2-4h)-k^2=0implies$$
$$3left(h-2right)^2-k^2=12implies frac{(h-2)^2}{2^2}-frac{k^2}{(2sqrt3)^2}=1$$
and we have the standard equation of a hyperbola.
Try now to complete your question's answer.
$endgroup$
Some ideas:
If $,M=(h,k);$ , then it must be that $,MM'=|h-1|=r;,;r=$ the circle's radius.
We also have, since the triangle $,Delta TFM;$ is a $,30^circ-60^circ-90^circ;$ triangle, that
$$MF=2r;,;FT=sqrt 3,r$$
and the above already proves $;(1);$ . Now doing a little analytic geometry:
$$4=frac{MF^2}{MM'^2}=frac{(h+2)^2+k^2}{r^2}implies (h+2)^2+k^2=4(h-1)^2implies$$
$$h^2+k^2+4h+4=4h^2-8h+4implies 3(h^2-4h)-k^2=0implies$$
$$3left(h-2right)^2-k^2=12implies frac{(h-2)^2}{2^2}-frac{k^2}{(2sqrt3)^2}=1$$
and we have the standard equation of a hyperbola.
Try now to complete your question's answer.
answered Jun 22 '13 at 19:01
DonAntonioDonAntonio
179k1494230
179k1494230
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f426935%2fverifying-the-vertices-of-a-hyperbola%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown