Zero linear transformation in limits with Euclidean norm












0












$begingroup$


This does not seem too difficult, but I've been stuck here for a while. Could someone give me a hint?



Question: Let $A$ be a linear transformation on $R^n$. $v$ is a vector in $R^n$. Prove that if $frac{||Av||}{||v||}rightarrow0$ as $vrightarrow 0$, then $A=0$. $||cdot||$ denotes Euclidean norm.



My try: proof by contradiction. Suppose at least one element in $A$, namely $A_{pq}$, is nonzero. Ideally, the contradiction would be the limit of the above fraction is nonzero. The problem is the numerator always approaches zero as $vrightarrow 0$. Is there any other approach?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    This does not seem too difficult, but I've been stuck here for a while. Could someone give me a hint?



    Question: Let $A$ be a linear transformation on $R^n$. $v$ is a vector in $R^n$. Prove that if $frac{||Av||}{||v||}rightarrow0$ as $vrightarrow 0$, then $A=0$. $||cdot||$ denotes Euclidean norm.



    My try: proof by contradiction. Suppose at least one element in $A$, namely $A_{pq}$, is nonzero. Ideally, the contradiction would be the limit of the above fraction is nonzero. The problem is the numerator always approaches zero as $vrightarrow 0$. Is there any other approach?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      This does not seem too difficult, but I've been stuck here for a while. Could someone give me a hint?



      Question: Let $A$ be a linear transformation on $R^n$. $v$ is a vector in $R^n$. Prove that if $frac{||Av||}{||v||}rightarrow0$ as $vrightarrow 0$, then $A=0$. $||cdot||$ denotes Euclidean norm.



      My try: proof by contradiction. Suppose at least one element in $A$, namely $A_{pq}$, is nonzero. Ideally, the contradiction would be the limit of the above fraction is nonzero. The problem is the numerator always approaches zero as $vrightarrow 0$. Is there any other approach?










      share|cite|improve this question









      $endgroup$




      This does not seem too difficult, but I've been stuck here for a while. Could someone give me a hint?



      Question: Let $A$ be a linear transformation on $R^n$. $v$ is a vector in $R^n$. Prove that if $frac{||Av||}{||v||}rightarrow0$ as $vrightarrow 0$, then $A=0$. $||cdot||$ denotes Euclidean norm.



      My try: proof by contradiction. Suppose at least one element in $A$, namely $A_{pq}$, is nonzero. Ideally, the contradiction would be the limit of the above fraction is nonzero. The problem is the numerator always approaches zero as $vrightarrow 0$. Is there any other approach?







      limits multivariable-calculus linear-transformations norm






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 28 at 16:49









      James WangJames Wang

      50228




      50228






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          For any $v$ with $||v||ne0$,
          $$
          ||Av||=||v||,frac{||Av||}{||v||}=||v||,frac{||lambda Av||}{||lambda v||}=||v||,frac{||A(lambda v)||}{||lambda v||}
          to 0
          $$

          as $lambdato0$. Hence $Av=0$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            How did you take care of $||lambda v||$ in the denominator when $vrightarrow 0$?
            $endgroup$
            – James Wang
            Jan 28 at 19:02






          • 1




            $begingroup$
            $v$ is constant. Instead, $lambdato0$ and hence $lambda vto0$ and hence $||A(lambda v)||/||lambda v||to 0$ and hence $||Av||=||v||,||A(lambda v)||/||lambda v||to 0$ as $lambdato0$. But $Av$ is independent of $lambda$, so this can only happen if $||Av||=0$,
            $endgroup$
            – Vladimir
            Jan 28 at 20:14












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091103%2fzero-linear-transformation-in-limits-with-euclidean-norm%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          For any $v$ with $||v||ne0$,
          $$
          ||Av||=||v||,frac{||Av||}{||v||}=||v||,frac{||lambda Av||}{||lambda v||}=||v||,frac{||A(lambda v)||}{||lambda v||}
          to 0
          $$

          as $lambdato0$. Hence $Av=0$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            How did you take care of $||lambda v||$ in the denominator when $vrightarrow 0$?
            $endgroup$
            – James Wang
            Jan 28 at 19:02






          • 1




            $begingroup$
            $v$ is constant. Instead, $lambdato0$ and hence $lambda vto0$ and hence $||A(lambda v)||/||lambda v||to 0$ and hence $||Av||=||v||,||A(lambda v)||/||lambda v||to 0$ as $lambdato0$. But $Av$ is independent of $lambda$, so this can only happen if $||Av||=0$,
            $endgroup$
            – Vladimir
            Jan 28 at 20:14
















          1












          $begingroup$

          For any $v$ with $||v||ne0$,
          $$
          ||Av||=||v||,frac{||Av||}{||v||}=||v||,frac{||lambda Av||}{||lambda v||}=||v||,frac{||A(lambda v)||}{||lambda v||}
          to 0
          $$

          as $lambdato0$. Hence $Av=0$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            How did you take care of $||lambda v||$ in the denominator when $vrightarrow 0$?
            $endgroup$
            – James Wang
            Jan 28 at 19:02






          • 1




            $begingroup$
            $v$ is constant. Instead, $lambdato0$ and hence $lambda vto0$ and hence $||A(lambda v)||/||lambda v||to 0$ and hence $||Av||=||v||,||A(lambda v)||/||lambda v||to 0$ as $lambdato0$. But $Av$ is independent of $lambda$, so this can only happen if $||Av||=0$,
            $endgroup$
            – Vladimir
            Jan 28 at 20:14














          1












          1








          1





          $begingroup$

          For any $v$ with $||v||ne0$,
          $$
          ||Av||=||v||,frac{||Av||}{||v||}=||v||,frac{||lambda Av||}{||lambda v||}=||v||,frac{||A(lambda v)||}{||lambda v||}
          to 0
          $$

          as $lambdato0$. Hence $Av=0$.






          share|cite|improve this answer









          $endgroup$



          For any $v$ with $||v||ne0$,
          $$
          ||Av||=||v||,frac{||Av||}{||v||}=||v||,frac{||lambda Av||}{||lambda v||}=||v||,frac{||A(lambda v)||}{||lambda v||}
          to 0
          $$

          as $lambdato0$. Hence $Av=0$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 28 at 17:11









          VladimirVladimir

          5,413618




          5,413618












          • $begingroup$
            How did you take care of $||lambda v||$ in the denominator when $vrightarrow 0$?
            $endgroup$
            – James Wang
            Jan 28 at 19:02






          • 1




            $begingroup$
            $v$ is constant. Instead, $lambdato0$ and hence $lambda vto0$ and hence $||A(lambda v)||/||lambda v||to 0$ and hence $||Av||=||v||,||A(lambda v)||/||lambda v||to 0$ as $lambdato0$. But $Av$ is independent of $lambda$, so this can only happen if $||Av||=0$,
            $endgroup$
            – Vladimir
            Jan 28 at 20:14


















          • $begingroup$
            How did you take care of $||lambda v||$ in the denominator when $vrightarrow 0$?
            $endgroup$
            – James Wang
            Jan 28 at 19:02






          • 1




            $begingroup$
            $v$ is constant. Instead, $lambdato0$ and hence $lambda vto0$ and hence $||A(lambda v)||/||lambda v||to 0$ and hence $||Av||=||v||,||A(lambda v)||/||lambda v||to 0$ as $lambdato0$. But $Av$ is independent of $lambda$, so this can only happen if $||Av||=0$,
            $endgroup$
            – Vladimir
            Jan 28 at 20:14
















          $begingroup$
          How did you take care of $||lambda v||$ in the denominator when $vrightarrow 0$?
          $endgroup$
          – James Wang
          Jan 28 at 19:02




          $begingroup$
          How did you take care of $||lambda v||$ in the denominator when $vrightarrow 0$?
          $endgroup$
          – James Wang
          Jan 28 at 19:02




          1




          1




          $begingroup$
          $v$ is constant. Instead, $lambdato0$ and hence $lambda vto0$ and hence $||A(lambda v)||/||lambda v||to 0$ and hence $||Av||=||v||,||A(lambda v)||/||lambda v||to 0$ as $lambdato0$. But $Av$ is independent of $lambda$, so this can only happen if $||Av||=0$,
          $endgroup$
          – Vladimir
          Jan 28 at 20:14




          $begingroup$
          $v$ is constant. Instead, $lambdato0$ and hence $lambda vto0$ and hence $||A(lambda v)||/||lambda v||to 0$ and hence $||Av||=||v||,||A(lambda v)||/||lambda v||to 0$ as $lambdato0$. But $Av$ is independent of $lambda$, so this can only happen if $||Av||=0$,
          $endgroup$
          – Vladimir
          Jan 28 at 20:14


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091103%2fzero-linear-transformation-in-limits-with-euclidean-norm%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          Npm cannot find a required file even through it is in the searched directory