Zero linear transformation in limits with Euclidean norm
$begingroup$
This does not seem too difficult, but I've been stuck here for a while. Could someone give me a hint?
Question: Let $A$ be a linear transformation on $R^n$. $v$ is a vector in $R^n$. Prove that if $frac{||Av||}{||v||}rightarrow0$ as $vrightarrow 0$, then $A=0$. $||cdot||$ denotes Euclidean norm.
My try: proof by contradiction. Suppose at least one element in $A$, namely $A_{pq}$, is nonzero. Ideally, the contradiction would be the limit of the above fraction is nonzero. The problem is the numerator always approaches zero as $vrightarrow 0$. Is there any other approach?
limits multivariable-calculus linear-transformations norm
$endgroup$
add a comment |
$begingroup$
This does not seem too difficult, but I've been stuck here for a while. Could someone give me a hint?
Question: Let $A$ be a linear transformation on $R^n$. $v$ is a vector in $R^n$. Prove that if $frac{||Av||}{||v||}rightarrow0$ as $vrightarrow 0$, then $A=0$. $||cdot||$ denotes Euclidean norm.
My try: proof by contradiction. Suppose at least one element in $A$, namely $A_{pq}$, is nonzero. Ideally, the contradiction would be the limit of the above fraction is nonzero. The problem is the numerator always approaches zero as $vrightarrow 0$. Is there any other approach?
limits multivariable-calculus linear-transformations norm
$endgroup$
add a comment |
$begingroup$
This does not seem too difficult, but I've been stuck here for a while. Could someone give me a hint?
Question: Let $A$ be a linear transformation on $R^n$. $v$ is a vector in $R^n$. Prove that if $frac{||Av||}{||v||}rightarrow0$ as $vrightarrow 0$, then $A=0$. $||cdot||$ denotes Euclidean norm.
My try: proof by contradiction. Suppose at least one element in $A$, namely $A_{pq}$, is nonzero. Ideally, the contradiction would be the limit of the above fraction is nonzero. The problem is the numerator always approaches zero as $vrightarrow 0$. Is there any other approach?
limits multivariable-calculus linear-transformations norm
$endgroup$
This does not seem too difficult, but I've been stuck here for a while. Could someone give me a hint?
Question: Let $A$ be a linear transformation on $R^n$. $v$ is a vector in $R^n$. Prove that if $frac{||Av||}{||v||}rightarrow0$ as $vrightarrow 0$, then $A=0$. $||cdot||$ denotes Euclidean norm.
My try: proof by contradiction. Suppose at least one element in $A$, namely $A_{pq}$, is nonzero. Ideally, the contradiction would be the limit of the above fraction is nonzero. The problem is the numerator always approaches zero as $vrightarrow 0$. Is there any other approach?
limits multivariable-calculus linear-transformations norm
limits multivariable-calculus linear-transformations norm
asked Jan 28 at 16:49
James WangJames Wang
50228
50228
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
For any $v$ with $||v||ne0$,
$$
||Av||=||v||,frac{||Av||}{||v||}=||v||,frac{||lambda Av||}{||lambda v||}=||v||,frac{||A(lambda v)||}{||lambda v||}
to 0
$$
as $lambdato0$. Hence $Av=0$.
$endgroup$
$begingroup$
How did you take care of $||lambda v||$ in the denominator when $vrightarrow 0$?
$endgroup$
– James Wang
Jan 28 at 19:02
1
$begingroup$
$v$ is constant. Instead, $lambdato0$ and hence $lambda vto0$ and hence $||A(lambda v)||/||lambda v||to 0$ and hence $||Av||=||v||,||A(lambda v)||/||lambda v||to 0$ as $lambdato0$. But $Av$ is independent of $lambda$, so this can only happen if $||Av||=0$,
$endgroup$
– Vladimir
Jan 28 at 20:14
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091103%2fzero-linear-transformation-in-limits-with-euclidean-norm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For any $v$ with $||v||ne0$,
$$
||Av||=||v||,frac{||Av||}{||v||}=||v||,frac{||lambda Av||}{||lambda v||}=||v||,frac{||A(lambda v)||}{||lambda v||}
to 0
$$
as $lambdato0$. Hence $Av=0$.
$endgroup$
$begingroup$
How did you take care of $||lambda v||$ in the denominator when $vrightarrow 0$?
$endgroup$
– James Wang
Jan 28 at 19:02
1
$begingroup$
$v$ is constant. Instead, $lambdato0$ and hence $lambda vto0$ and hence $||A(lambda v)||/||lambda v||to 0$ and hence $||Av||=||v||,||A(lambda v)||/||lambda v||to 0$ as $lambdato0$. But $Av$ is independent of $lambda$, so this can only happen if $||Av||=0$,
$endgroup$
– Vladimir
Jan 28 at 20:14
add a comment |
$begingroup$
For any $v$ with $||v||ne0$,
$$
||Av||=||v||,frac{||Av||}{||v||}=||v||,frac{||lambda Av||}{||lambda v||}=||v||,frac{||A(lambda v)||}{||lambda v||}
to 0
$$
as $lambdato0$. Hence $Av=0$.
$endgroup$
$begingroup$
How did you take care of $||lambda v||$ in the denominator when $vrightarrow 0$?
$endgroup$
– James Wang
Jan 28 at 19:02
1
$begingroup$
$v$ is constant. Instead, $lambdato0$ and hence $lambda vto0$ and hence $||A(lambda v)||/||lambda v||to 0$ and hence $||Av||=||v||,||A(lambda v)||/||lambda v||to 0$ as $lambdato0$. But $Av$ is independent of $lambda$, so this can only happen if $||Av||=0$,
$endgroup$
– Vladimir
Jan 28 at 20:14
add a comment |
$begingroup$
For any $v$ with $||v||ne0$,
$$
||Av||=||v||,frac{||Av||}{||v||}=||v||,frac{||lambda Av||}{||lambda v||}=||v||,frac{||A(lambda v)||}{||lambda v||}
to 0
$$
as $lambdato0$. Hence $Av=0$.
$endgroup$
For any $v$ with $||v||ne0$,
$$
||Av||=||v||,frac{||Av||}{||v||}=||v||,frac{||lambda Av||}{||lambda v||}=||v||,frac{||A(lambda v)||}{||lambda v||}
to 0
$$
as $lambdato0$. Hence $Av=0$.
answered Jan 28 at 17:11
VladimirVladimir
5,413618
5,413618
$begingroup$
How did you take care of $||lambda v||$ in the denominator when $vrightarrow 0$?
$endgroup$
– James Wang
Jan 28 at 19:02
1
$begingroup$
$v$ is constant. Instead, $lambdato0$ and hence $lambda vto0$ and hence $||A(lambda v)||/||lambda v||to 0$ and hence $||Av||=||v||,||A(lambda v)||/||lambda v||to 0$ as $lambdato0$. But $Av$ is independent of $lambda$, so this can only happen if $||Av||=0$,
$endgroup$
– Vladimir
Jan 28 at 20:14
add a comment |
$begingroup$
How did you take care of $||lambda v||$ in the denominator when $vrightarrow 0$?
$endgroup$
– James Wang
Jan 28 at 19:02
1
$begingroup$
$v$ is constant. Instead, $lambdato0$ and hence $lambda vto0$ and hence $||A(lambda v)||/||lambda v||to 0$ and hence $||Av||=||v||,||A(lambda v)||/||lambda v||to 0$ as $lambdato0$. But $Av$ is independent of $lambda$, so this can only happen if $||Av||=0$,
$endgroup$
– Vladimir
Jan 28 at 20:14
$begingroup$
How did you take care of $||lambda v||$ in the denominator when $vrightarrow 0$?
$endgroup$
– James Wang
Jan 28 at 19:02
$begingroup$
How did you take care of $||lambda v||$ in the denominator when $vrightarrow 0$?
$endgroup$
– James Wang
Jan 28 at 19:02
1
1
$begingroup$
$v$ is constant. Instead, $lambdato0$ and hence $lambda vto0$ and hence $||A(lambda v)||/||lambda v||to 0$ and hence $||Av||=||v||,||A(lambda v)||/||lambda v||to 0$ as $lambdato0$. But $Av$ is independent of $lambda$, so this can only happen if $||Av||=0$,
$endgroup$
– Vladimir
Jan 28 at 20:14
$begingroup$
$v$ is constant. Instead, $lambdato0$ and hence $lambda vto0$ and hence $||A(lambda v)||/||lambda v||to 0$ and hence $||Av||=||v||,||A(lambda v)||/||lambda v||to 0$ as $lambdato0$. But $Av$ is independent of $lambda$, so this can only happen if $||Av||=0$,
$endgroup$
– Vladimir
Jan 28 at 20:14
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091103%2fzero-linear-transformation-in-limits-with-euclidean-norm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown