A test for convergence involving logarithms












1












$begingroup$


$$sum_{n=2}^infty frac{n^{log n}}{(log n)^n}$$



Tried to use the inequality of $ln x< x-1$ and apply the comparison theorem but no success.










share|cite|improve this question











$endgroup$












  • $begingroup$
    As tip for future posts, you can enclose exponents in braces { } to capture the entire argument. That is, $n^{log n}$ produces $n^{log n}$.
    $endgroup$
    – Clayton
    Jan 30 at 1:54
















1












$begingroup$


$$sum_{n=2}^infty frac{n^{log n}}{(log n)^n}$$



Tried to use the inequality of $ln x< x-1$ and apply the comparison theorem but no success.










share|cite|improve this question











$endgroup$












  • $begingroup$
    As tip for future posts, you can enclose exponents in braces { } to capture the entire argument. That is, $n^{log n}$ produces $n^{log n}$.
    $endgroup$
    – Clayton
    Jan 30 at 1:54














1












1








1





$begingroup$


$$sum_{n=2}^infty frac{n^{log n}}{(log n)^n}$$



Tried to use the inequality of $ln x< x-1$ and apply the comparison theorem but no success.










share|cite|improve this question











$endgroup$




$$sum_{n=2}^infty frac{n^{log n}}{(log n)^n}$$



Tried to use the inequality of $ln x< x-1$ and apply the comparison theorem but no success.







calculus sequences-and-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 30 at 3:03









David G. Stork

11.6k41534




11.6k41534










asked Jan 30 at 1:52









Nick KaklNick Kakl

176




176












  • $begingroup$
    As tip for future posts, you can enclose exponents in braces { } to capture the entire argument. That is, $n^{log n}$ produces $n^{log n}$.
    $endgroup$
    – Clayton
    Jan 30 at 1:54


















  • $begingroup$
    As tip for future posts, you can enclose exponents in braces { } to capture the entire argument. That is, $n^{log n}$ produces $n^{log n}$.
    $endgroup$
    – Clayton
    Jan 30 at 1:54
















$begingroup$
As tip for future posts, you can enclose exponents in braces { } to capture the entire argument. That is, $n^{log n}$ produces $n^{log n}$.
$endgroup$
– Clayton
Jan 30 at 1:54




$begingroup$
As tip for future posts, you can enclose exponents in braces { } to capture the entire argument. That is, $n^{log n}$ produces $n^{log n}$.
$endgroup$
– Clayton
Jan 30 at 1:54










3 Answers
3






active

oldest

votes


















1












$begingroup$

We consider
$$lim_{nto infty}sqrt[n]{frac{n^{log n}}{(log n)^n}}
=lim_{nto infty}frac{n^{frac{log n}{n}}}{log n}
=lim_{nto infty}frac{e^{frac{(log n)^2}{n}}}{log n}=0.$$

By Cauchy test, this series is convergent.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thnx for the answer, you got the limit with DLH?
    $endgroup$
    – Nick Kakl
    Jan 30 at 2:59










  • $begingroup$
    Yse, it is easy to get $frac{(log n)^2}{n}to 0$ as $nto infty$.
    $endgroup$
    – Riemann
    Jan 30 at 3:03





















1












$begingroup$

Let's upper-bound each term with a term whose sum converges. Note that, for $n$ large enough, $log log n geq 1$, therefore:
$$frac{n^{log n}}{(log n)^n} = frac{e^{log^2n}}{e^{nloglog n}}leq frac{e^{log^2n}}{e^{n}}=e^{-frac n 2}e^{-frac n 2+log^2n}$$
and because for $n$ large enough, $left(-frac n 2+log^2nright)leq 0$ (left as an exercise),
we must have $$frac{n^{log n}}{(log n)^n} leq e^{-frac n 2}$$
Conclusion: The sum converges






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Ty for the answer :)
    $endgroup$
    – Nick Kakl
    Jan 30 at 2:59



















0












$begingroup$

Too long for a comment.



The ratio test is interesting to work
$$a_n=frac{n^{log n}}{(log n)^n}implies log(a_n)=log ^2(n)-n log (n)$$ Now, using Taylor for infinitely large values of $n$,
$$log(a_{n+1})-log(a_n)=-1-log left({n}right)+frac{2 log
left({n}right)-frac{1}{2}}{n}+Oleft(frac{1}{n^2}right)$$
and, continuing with Taylor expansions,
$$frac{a_{n+1} } {a_n }=e^{log(a_{n+1})-log(a_n) }=frac1 {e n}+frac{2 log
left({n}right)-frac{1}{2}}{en^2}+Oleft(frac{1}{n^3}right)$$






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093001%2fa-test-for-convergence-involving-logarithms%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    We consider
    $$lim_{nto infty}sqrt[n]{frac{n^{log n}}{(log n)^n}}
    =lim_{nto infty}frac{n^{frac{log n}{n}}}{log n}
    =lim_{nto infty}frac{e^{frac{(log n)^2}{n}}}{log n}=0.$$

    By Cauchy test, this series is convergent.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Thnx for the answer, you got the limit with DLH?
      $endgroup$
      – Nick Kakl
      Jan 30 at 2:59










    • $begingroup$
      Yse, it is easy to get $frac{(log n)^2}{n}to 0$ as $nto infty$.
      $endgroup$
      – Riemann
      Jan 30 at 3:03


















    1












    $begingroup$

    We consider
    $$lim_{nto infty}sqrt[n]{frac{n^{log n}}{(log n)^n}}
    =lim_{nto infty}frac{n^{frac{log n}{n}}}{log n}
    =lim_{nto infty}frac{e^{frac{(log n)^2}{n}}}{log n}=0.$$

    By Cauchy test, this series is convergent.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Thnx for the answer, you got the limit with DLH?
      $endgroup$
      – Nick Kakl
      Jan 30 at 2:59










    • $begingroup$
      Yse, it is easy to get $frac{(log n)^2}{n}to 0$ as $nto infty$.
      $endgroup$
      – Riemann
      Jan 30 at 3:03
















    1












    1








    1





    $begingroup$

    We consider
    $$lim_{nto infty}sqrt[n]{frac{n^{log n}}{(log n)^n}}
    =lim_{nto infty}frac{n^{frac{log n}{n}}}{log n}
    =lim_{nto infty}frac{e^{frac{(log n)^2}{n}}}{log n}=0.$$

    By Cauchy test, this series is convergent.






    share|cite|improve this answer









    $endgroup$



    We consider
    $$lim_{nto infty}sqrt[n]{frac{n^{log n}}{(log n)^n}}
    =lim_{nto infty}frac{n^{frac{log n}{n}}}{log n}
    =lim_{nto infty}frac{e^{frac{(log n)^2}{n}}}{log n}=0.$$

    By Cauchy test, this series is convergent.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jan 30 at 2:54









    RiemannRiemann

    3,5251422




    3,5251422












    • $begingroup$
      Thnx for the answer, you got the limit with DLH?
      $endgroup$
      – Nick Kakl
      Jan 30 at 2:59










    • $begingroup$
      Yse, it is easy to get $frac{(log n)^2}{n}to 0$ as $nto infty$.
      $endgroup$
      – Riemann
      Jan 30 at 3:03




















    • $begingroup$
      Thnx for the answer, you got the limit with DLH?
      $endgroup$
      – Nick Kakl
      Jan 30 at 2:59










    • $begingroup$
      Yse, it is easy to get $frac{(log n)^2}{n}to 0$ as $nto infty$.
      $endgroup$
      – Riemann
      Jan 30 at 3:03


















    $begingroup$
    Thnx for the answer, you got the limit with DLH?
    $endgroup$
    – Nick Kakl
    Jan 30 at 2:59




    $begingroup$
    Thnx for the answer, you got the limit with DLH?
    $endgroup$
    – Nick Kakl
    Jan 30 at 2:59












    $begingroup$
    Yse, it is easy to get $frac{(log n)^2}{n}to 0$ as $nto infty$.
    $endgroup$
    – Riemann
    Jan 30 at 3:03






    $begingroup$
    Yse, it is easy to get $frac{(log n)^2}{n}to 0$ as $nto infty$.
    $endgroup$
    – Riemann
    Jan 30 at 3:03













    1












    $begingroup$

    Let's upper-bound each term with a term whose sum converges. Note that, for $n$ large enough, $log log n geq 1$, therefore:
    $$frac{n^{log n}}{(log n)^n} = frac{e^{log^2n}}{e^{nloglog n}}leq frac{e^{log^2n}}{e^{n}}=e^{-frac n 2}e^{-frac n 2+log^2n}$$
    and because for $n$ large enough, $left(-frac n 2+log^2nright)leq 0$ (left as an exercise),
    we must have $$frac{n^{log n}}{(log n)^n} leq e^{-frac n 2}$$
    Conclusion: The sum converges






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Ty for the answer :)
      $endgroup$
      – Nick Kakl
      Jan 30 at 2:59
















    1












    $begingroup$

    Let's upper-bound each term with a term whose sum converges. Note that, for $n$ large enough, $log log n geq 1$, therefore:
    $$frac{n^{log n}}{(log n)^n} = frac{e^{log^2n}}{e^{nloglog n}}leq frac{e^{log^2n}}{e^{n}}=e^{-frac n 2}e^{-frac n 2+log^2n}$$
    and because for $n$ large enough, $left(-frac n 2+log^2nright)leq 0$ (left as an exercise),
    we must have $$frac{n^{log n}}{(log n)^n} leq e^{-frac n 2}$$
    Conclusion: The sum converges






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Ty for the answer :)
      $endgroup$
      – Nick Kakl
      Jan 30 at 2:59














    1












    1








    1





    $begingroup$

    Let's upper-bound each term with a term whose sum converges. Note that, for $n$ large enough, $log log n geq 1$, therefore:
    $$frac{n^{log n}}{(log n)^n} = frac{e^{log^2n}}{e^{nloglog n}}leq frac{e^{log^2n}}{e^{n}}=e^{-frac n 2}e^{-frac n 2+log^2n}$$
    and because for $n$ large enough, $left(-frac n 2+log^2nright)leq 0$ (left as an exercise),
    we must have $$frac{n^{log n}}{(log n)^n} leq e^{-frac n 2}$$
    Conclusion: The sum converges






    share|cite|improve this answer









    $endgroup$



    Let's upper-bound each term with a term whose sum converges. Note that, for $n$ large enough, $log log n geq 1$, therefore:
    $$frac{n^{log n}}{(log n)^n} = frac{e^{log^2n}}{e^{nloglog n}}leq frac{e^{log^2n}}{e^{n}}=e^{-frac n 2}e^{-frac n 2+log^2n}$$
    and because for $n$ large enough, $left(-frac n 2+log^2nright)leq 0$ (left as an exercise),
    we must have $$frac{n^{log n}}{(log n)^n} leq e^{-frac n 2}$$
    Conclusion: The sum converges







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jan 30 at 2:49









    Stefan LafonStefan Lafon

    3,005212




    3,005212












    • $begingroup$
      Ty for the answer :)
      $endgroup$
      – Nick Kakl
      Jan 30 at 2:59


















    • $begingroup$
      Ty for the answer :)
      $endgroup$
      – Nick Kakl
      Jan 30 at 2:59
















    $begingroup$
    Ty for the answer :)
    $endgroup$
    – Nick Kakl
    Jan 30 at 2:59




    $begingroup$
    Ty for the answer :)
    $endgroup$
    – Nick Kakl
    Jan 30 at 2:59











    0












    $begingroup$

    Too long for a comment.



    The ratio test is interesting to work
    $$a_n=frac{n^{log n}}{(log n)^n}implies log(a_n)=log ^2(n)-n log (n)$$ Now, using Taylor for infinitely large values of $n$,
    $$log(a_{n+1})-log(a_n)=-1-log left({n}right)+frac{2 log
    left({n}right)-frac{1}{2}}{n}+Oleft(frac{1}{n^2}right)$$
    and, continuing with Taylor expansions,
    $$frac{a_{n+1} } {a_n }=e^{log(a_{n+1})-log(a_n) }=frac1 {e n}+frac{2 log
    left({n}right)-frac{1}{2}}{en^2}+Oleft(frac{1}{n^3}right)$$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Too long for a comment.



      The ratio test is interesting to work
      $$a_n=frac{n^{log n}}{(log n)^n}implies log(a_n)=log ^2(n)-n log (n)$$ Now, using Taylor for infinitely large values of $n$,
      $$log(a_{n+1})-log(a_n)=-1-log left({n}right)+frac{2 log
      left({n}right)-frac{1}{2}}{n}+Oleft(frac{1}{n^2}right)$$
      and, continuing with Taylor expansions,
      $$frac{a_{n+1} } {a_n }=e^{log(a_{n+1})-log(a_n) }=frac1 {e n}+frac{2 log
      left({n}right)-frac{1}{2}}{en^2}+Oleft(frac{1}{n^3}right)$$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Too long for a comment.



        The ratio test is interesting to work
        $$a_n=frac{n^{log n}}{(log n)^n}implies log(a_n)=log ^2(n)-n log (n)$$ Now, using Taylor for infinitely large values of $n$,
        $$log(a_{n+1})-log(a_n)=-1-log left({n}right)+frac{2 log
        left({n}right)-frac{1}{2}}{n}+Oleft(frac{1}{n^2}right)$$
        and, continuing with Taylor expansions,
        $$frac{a_{n+1} } {a_n }=e^{log(a_{n+1})-log(a_n) }=frac1 {e n}+frac{2 log
        left({n}right)-frac{1}{2}}{en^2}+Oleft(frac{1}{n^3}right)$$






        share|cite|improve this answer









        $endgroup$



        Too long for a comment.



        The ratio test is interesting to work
        $$a_n=frac{n^{log n}}{(log n)^n}implies log(a_n)=log ^2(n)-n log (n)$$ Now, using Taylor for infinitely large values of $n$,
        $$log(a_{n+1})-log(a_n)=-1-log left({n}right)+frac{2 log
        left({n}right)-frac{1}{2}}{n}+Oleft(frac{1}{n^2}right)$$
        and, continuing with Taylor expansions,
        $$frac{a_{n+1} } {a_n }=e^{log(a_{n+1})-log(a_n) }=frac1 {e n}+frac{2 log
        left({n}right)-frac{1}{2}}{en^2}+Oleft(frac{1}{n^3}right)$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 30 at 5:45









        Claude LeiboviciClaude Leibovici

        125k1158136




        125k1158136






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093001%2fa-test-for-convergence-involving-logarithms%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

            Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

            A Topological Invariant for $pi_3(U(n))$