A test for convergence involving logarithms
$begingroup$
$$sum_{n=2}^infty frac{n^{log n}}{(log n)^n}$$
Tried to use the inequality of $ln x< x-1$ and apply the comparison theorem but no success.
calculus sequences-and-series
$endgroup$
add a comment |
$begingroup$
$$sum_{n=2}^infty frac{n^{log n}}{(log n)^n}$$
Tried to use the inequality of $ln x< x-1$ and apply the comparison theorem but no success.
calculus sequences-and-series
$endgroup$
$begingroup$
As tip for future posts, you can enclose exponents in braces{ }
to capture the entire argument. That is,$n^{log n}$
produces $n^{log n}$.
$endgroup$
– Clayton
Jan 30 at 1:54
add a comment |
$begingroup$
$$sum_{n=2}^infty frac{n^{log n}}{(log n)^n}$$
Tried to use the inequality of $ln x< x-1$ and apply the comparison theorem but no success.
calculus sequences-and-series
$endgroup$
$$sum_{n=2}^infty frac{n^{log n}}{(log n)^n}$$
Tried to use the inequality of $ln x< x-1$ and apply the comparison theorem but no success.
calculus sequences-and-series
calculus sequences-and-series
edited Jan 30 at 3:03
David G. Stork
11.6k41534
11.6k41534
asked Jan 30 at 1:52
Nick KaklNick Kakl
176
176
$begingroup$
As tip for future posts, you can enclose exponents in braces{ }
to capture the entire argument. That is,$n^{log n}$
produces $n^{log n}$.
$endgroup$
– Clayton
Jan 30 at 1:54
add a comment |
$begingroup$
As tip for future posts, you can enclose exponents in braces{ }
to capture the entire argument. That is,$n^{log n}$
produces $n^{log n}$.
$endgroup$
– Clayton
Jan 30 at 1:54
$begingroup$
As tip for future posts, you can enclose exponents in braces
{ }
to capture the entire argument. That is, $n^{log n}$
produces $n^{log n}$.$endgroup$
– Clayton
Jan 30 at 1:54
$begingroup$
As tip for future posts, you can enclose exponents in braces
{ }
to capture the entire argument. That is, $n^{log n}$
produces $n^{log n}$.$endgroup$
– Clayton
Jan 30 at 1:54
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
We consider
$$lim_{nto infty}sqrt[n]{frac{n^{log n}}{(log n)^n}}
=lim_{nto infty}frac{n^{frac{log n}{n}}}{log n}
=lim_{nto infty}frac{e^{frac{(log n)^2}{n}}}{log n}=0.$$
By Cauchy test, this series is convergent.
$endgroup$
$begingroup$
Thnx for the answer, you got the limit with DLH?
$endgroup$
– Nick Kakl
Jan 30 at 2:59
$begingroup$
Yse, it is easy to get $frac{(log n)^2}{n}to 0$ as $nto infty$.
$endgroup$
– Riemann
Jan 30 at 3:03
add a comment |
$begingroup$
Let's upper-bound each term with a term whose sum converges. Note that, for $n$ large enough, $log log n geq 1$, therefore:
$$frac{n^{log n}}{(log n)^n} = frac{e^{log^2n}}{e^{nloglog n}}leq frac{e^{log^2n}}{e^{n}}=e^{-frac n 2}e^{-frac n 2+log^2n}$$
and because for $n$ large enough, $left(-frac n 2+log^2nright)leq 0$ (left as an exercise),
we must have $$frac{n^{log n}}{(log n)^n} leq e^{-frac n 2}$$
Conclusion: The sum converges
$endgroup$
$begingroup$
Ty for the answer :)
$endgroup$
– Nick Kakl
Jan 30 at 2:59
add a comment |
$begingroup$
Too long for a comment.
The ratio test is interesting to work
$$a_n=frac{n^{log n}}{(log n)^n}implies log(a_n)=log ^2(n)-n log (n)$$ Now, using Taylor for infinitely large values of $n$,
$$log(a_{n+1})-log(a_n)=-1-log left({n}right)+frac{2 log
left({n}right)-frac{1}{2}}{n}+Oleft(frac{1}{n^2}right)$$ and, continuing with Taylor expansions,
$$frac{a_{n+1} } {a_n }=e^{log(a_{n+1})-log(a_n) }=frac1 {e n}+frac{2 log
left({n}right)-frac{1}{2}}{en^2}+Oleft(frac{1}{n^3}right)$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093001%2fa-test-for-convergence-involving-logarithms%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We consider
$$lim_{nto infty}sqrt[n]{frac{n^{log n}}{(log n)^n}}
=lim_{nto infty}frac{n^{frac{log n}{n}}}{log n}
=lim_{nto infty}frac{e^{frac{(log n)^2}{n}}}{log n}=0.$$
By Cauchy test, this series is convergent.
$endgroup$
$begingroup$
Thnx for the answer, you got the limit with DLH?
$endgroup$
– Nick Kakl
Jan 30 at 2:59
$begingroup$
Yse, it is easy to get $frac{(log n)^2}{n}to 0$ as $nto infty$.
$endgroup$
– Riemann
Jan 30 at 3:03
add a comment |
$begingroup$
We consider
$$lim_{nto infty}sqrt[n]{frac{n^{log n}}{(log n)^n}}
=lim_{nto infty}frac{n^{frac{log n}{n}}}{log n}
=lim_{nto infty}frac{e^{frac{(log n)^2}{n}}}{log n}=0.$$
By Cauchy test, this series is convergent.
$endgroup$
$begingroup$
Thnx for the answer, you got the limit with DLH?
$endgroup$
– Nick Kakl
Jan 30 at 2:59
$begingroup$
Yse, it is easy to get $frac{(log n)^2}{n}to 0$ as $nto infty$.
$endgroup$
– Riemann
Jan 30 at 3:03
add a comment |
$begingroup$
We consider
$$lim_{nto infty}sqrt[n]{frac{n^{log n}}{(log n)^n}}
=lim_{nto infty}frac{n^{frac{log n}{n}}}{log n}
=lim_{nto infty}frac{e^{frac{(log n)^2}{n}}}{log n}=0.$$
By Cauchy test, this series is convergent.
$endgroup$
We consider
$$lim_{nto infty}sqrt[n]{frac{n^{log n}}{(log n)^n}}
=lim_{nto infty}frac{n^{frac{log n}{n}}}{log n}
=lim_{nto infty}frac{e^{frac{(log n)^2}{n}}}{log n}=0.$$
By Cauchy test, this series is convergent.
answered Jan 30 at 2:54
RiemannRiemann
3,5251422
3,5251422
$begingroup$
Thnx for the answer, you got the limit with DLH?
$endgroup$
– Nick Kakl
Jan 30 at 2:59
$begingroup$
Yse, it is easy to get $frac{(log n)^2}{n}to 0$ as $nto infty$.
$endgroup$
– Riemann
Jan 30 at 3:03
add a comment |
$begingroup$
Thnx for the answer, you got the limit with DLH?
$endgroup$
– Nick Kakl
Jan 30 at 2:59
$begingroup$
Yse, it is easy to get $frac{(log n)^2}{n}to 0$ as $nto infty$.
$endgroup$
– Riemann
Jan 30 at 3:03
$begingroup$
Thnx for the answer, you got the limit with DLH?
$endgroup$
– Nick Kakl
Jan 30 at 2:59
$begingroup$
Thnx for the answer, you got the limit with DLH?
$endgroup$
– Nick Kakl
Jan 30 at 2:59
$begingroup$
Yse, it is easy to get $frac{(log n)^2}{n}to 0$ as $nto infty$.
$endgroup$
– Riemann
Jan 30 at 3:03
$begingroup$
Yse, it is easy to get $frac{(log n)^2}{n}to 0$ as $nto infty$.
$endgroup$
– Riemann
Jan 30 at 3:03
add a comment |
$begingroup$
Let's upper-bound each term with a term whose sum converges. Note that, for $n$ large enough, $log log n geq 1$, therefore:
$$frac{n^{log n}}{(log n)^n} = frac{e^{log^2n}}{e^{nloglog n}}leq frac{e^{log^2n}}{e^{n}}=e^{-frac n 2}e^{-frac n 2+log^2n}$$
and because for $n$ large enough, $left(-frac n 2+log^2nright)leq 0$ (left as an exercise),
we must have $$frac{n^{log n}}{(log n)^n} leq e^{-frac n 2}$$
Conclusion: The sum converges
$endgroup$
$begingroup$
Ty for the answer :)
$endgroup$
– Nick Kakl
Jan 30 at 2:59
add a comment |
$begingroup$
Let's upper-bound each term with a term whose sum converges. Note that, for $n$ large enough, $log log n geq 1$, therefore:
$$frac{n^{log n}}{(log n)^n} = frac{e^{log^2n}}{e^{nloglog n}}leq frac{e^{log^2n}}{e^{n}}=e^{-frac n 2}e^{-frac n 2+log^2n}$$
and because for $n$ large enough, $left(-frac n 2+log^2nright)leq 0$ (left as an exercise),
we must have $$frac{n^{log n}}{(log n)^n} leq e^{-frac n 2}$$
Conclusion: The sum converges
$endgroup$
$begingroup$
Ty for the answer :)
$endgroup$
– Nick Kakl
Jan 30 at 2:59
add a comment |
$begingroup$
Let's upper-bound each term with a term whose sum converges. Note that, for $n$ large enough, $log log n geq 1$, therefore:
$$frac{n^{log n}}{(log n)^n} = frac{e^{log^2n}}{e^{nloglog n}}leq frac{e^{log^2n}}{e^{n}}=e^{-frac n 2}e^{-frac n 2+log^2n}$$
and because for $n$ large enough, $left(-frac n 2+log^2nright)leq 0$ (left as an exercise),
we must have $$frac{n^{log n}}{(log n)^n} leq e^{-frac n 2}$$
Conclusion: The sum converges
$endgroup$
Let's upper-bound each term with a term whose sum converges. Note that, for $n$ large enough, $log log n geq 1$, therefore:
$$frac{n^{log n}}{(log n)^n} = frac{e^{log^2n}}{e^{nloglog n}}leq frac{e^{log^2n}}{e^{n}}=e^{-frac n 2}e^{-frac n 2+log^2n}$$
and because for $n$ large enough, $left(-frac n 2+log^2nright)leq 0$ (left as an exercise),
we must have $$frac{n^{log n}}{(log n)^n} leq e^{-frac n 2}$$
Conclusion: The sum converges
answered Jan 30 at 2:49
Stefan LafonStefan Lafon
3,005212
3,005212
$begingroup$
Ty for the answer :)
$endgroup$
– Nick Kakl
Jan 30 at 2:59
add a comment |
$begingroup$
Ty for the answer :)
$endgroup$
– Nick Kakl
Jan 30 at 2:59
$begingroup$
Ty for the answer :)
$endgroup$
– Nick Kakl
Jan 30 at 2:59
$begingroup$
Ty for the answer :)
$endgroup$
– Nick Kakl
Jan 30 at 2:59
add a comment |
$begingroup$
Too long for a comment.
The ratio test is interesting to work
$$a_n=frac{n^{log n}}{(log n)^n}implies log(a_n)=log ^2(n)-n log (n)$$ Now, using Taylor for infinitely large values of $n$,
$$log(a_{n+1})-log(a_n)=-1-log left({n}right)+frac{2 log
left({n}right)-frac{1}{2}}{n}+Oleft(frac{1}{n^2}right)$$ and, continuing with Taylor expansions,
$$frac{a_{n+1} } {a_n }=e^{log(a_{n+1})-log(a_n) }=frac1 {e n}+frac{2 log
left({n}right)-frac{1}{2}}{en^2}+Oleft(frac{1}{n^3}right)$$
$endgroup$
add a comment |
$begingroup$
Too long for a comment.
The ratio test is interesting to work
$$a_n=frac{n^{log n}}{(log n)^n}implies log(a_n)=log ^2(n)-n log (n)$$ Now, using Taylor for infinitely large values of $n$,
$$log(a_{n+1})-log(a_n)=-1-log left({n}right)+frac{2 log
left({n}right)-frac{1}{2}}{n}+Oleft(frac{1}{n^2}right)$$ and, continuing with Taylor expansions,
$$frac{a_{n+1} } {a_n }=e^{log(a_{n+1})-log(a_n) }=frac1 {e n}+frac{2 log
left({n}right)-frac{1}{2}}{en^2}+Oleft(frac{1}{n^3}right)$$
$endgroup$
add a comment |
$begingroup$
Too long for a comment.
The ratio test is interesting to work
$$a_n=frac{n^{log n}}{(log n)^n}implies log(a_n)=log ^2(n)-n log (n)$$ Now, using Taylor for infinitely large values of $n$,
$$log(a_{n+1})-log(a_n)=-1-log left({n}right)+frac{2 log
left({n}right)-frac{1}{2}}{n}+Oleft(frac{1}{n^2}right)$$ and, continuing with Taylor expansions,
$$frac{a_{n+1} } {a_n }=e^{log(a_{n+1})-log(a_n) }=frac1 {e n}+frac{2 log
left({n}right)-frac{1}{2}}{en^2}+Oleft(frac{1}{n^3}right)$$
$endgroup$
Too long for a comment.
The ratio test is interesting to work
$$a_n=frac{n^{log n}}{(log n)^n}implies log(a_n)=log ^2(n)-n log (n)$$ Now, using Taylor for infinitely large values of $n$,
$$log(a_{n+1})-log(a_n)=-1-log left({n}right)+frac{2 log
left({n}right)-frac{1}{2}}{n}+Oleft(frac{1}{n^2}right)$$ and, continuing with Taylor expansions,
$$frac{a_{n+1} } {a_n }=e^{log(a_{n+1})-log(a_n) }=frac1 {e n}+frac{2 log
left({n}right)-frac{1}{2}}{en^2}+Oleft(frac{1}{n^3}right)$$
answered Jan 30 at 5:45
Claude LeiboviciClaude Leibovici
125k1158136
125k1158136
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093001%2fa-test-for-convergence-involving-logarithms%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
As tip for future posts, you can enclose exponents in braces
{ }
to capture the entire argument. That is,$n^{log n}$
produces $n^{log n}$.$endgroup$
– Clayton
Jan 30 at 1:54