Efficient computation of incremental standard deviation (removing first value)
$begingroup$
I found this link about incremental standard deviation where it computes the standard deviation every time a new element was added to the dataset.
Is there a similar method when adding a new value and removing the first value from the dataset?
For example,
[45, 26, 78, 45, 34, 56] - initial data set
[26, 78, 45, 34, 56, 74 *(new data)*] - first value 45 was removed
statistics algorithms computational-mathematics standard-deviation
$endgroup$
add a comment |
$begingroup$
I found this link about incremental standard deviation where it computes the standard deviation every time a new element was added to the dataset.
Is there a similar method when adding a new value and removing the first value from the dataset?
For example,
[45, 26, 78, 45, 34, 56] - initial data set
[26, 78, 45, 34, 56, 74 *(new data)*] - first value 45 was removed
statistics algorithms computational-mathematics standard-deviation
$endgroup$
add a comment |
$begingroup$
I found this link about incremental standard deviation where it computes the standard deviation every time a new element was added to the dataset.
Is there a similar method when adding a new value and removing the first value from the dataset?
For example,
[45, 26, 78, 45, 34, 56] - initial data set
[26, 78, 45, 34, 56, 74 *(new data)*] - first value 45 was removed
statistics algorithms computational-mathematics standard-deviation
$endgroup$
I found this link about incremental standard deviation where it computes the standard deviation every time a new element was added to the dataset.
Is there a similar method when adding a new value and removing the first value from the dataset?
For example,
[45, 26, 78, 45, 34, 56] - initial data set
[26, 78, 45, 34, 56, 74 *(new data)*] - first value 45 was removed
statistics algorithms computational-mathematics standard-deviation
statistics algorithms computational-mathematics standard-deviation
edited Jan 30 at 1:34
Alexander Gruber♦
20.1k25103174
20.1k25103174
asked Jan 30 at 1:28
KrissyKrissy
112
112
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The formula at the link is a special case of the sample variance decomposition formula given in O'Neill (2014) (Result 1). Your problem involves a double-application of this formula.
Denoting the data-sets used in an obvious way, your goal is to write $s_{2:n+1}^2$ in terms of $s_{1:n}^2$ and any other necessary sample quantities. To do this we can use sample variance decompositions:
$$s_{2:n+1}^2 = frac{n-2}{n-1} s_{2:n}^2 + frac{1}{n} (bar{x}_{2:n} - x_{n+1})^2,$$
$$s_{1:n}^2 = frac{n-2}{n-1} s_{2:n}^2 + frac{1}{n} (bar{x}_{2:n} - x_{1})^2.$$
Hence, we have:
$$begin{equation} begin{aligned}
s_{2:n+1}^2
&= frac{n-2}{n-1} s_{2:n}^2 + frac{1}{n} (bar{x}_{2:n} - x_{n+1})^2 \[6pt]
&= s_{1:n}^2 - frac{1}{n} (bar{x}_{2:n} - x_{1})^2 + frac{1}{n} (bar{x}_{2:n} - x_{n+1})^2 \[6pt]
&= s_{1:n}^2 - frac{1}{n} Big[ (bar{x}_{2:n} - x_{1})^2 - (bar{x}_{2:n} - x_{n+1})^2 Big] \[6pt]
&= s_{1:n}^2 - frac{1}{n} Big[ (bar{x}_{2:n}^2 -2 bar{x}_{2:n} x_{1} + x_{1}^2) - (bar{x}_{2:n}^2 -2 bar{x}_{2:n} x_{n+1} + x_{n+1}^2) Big] \[6pt]
&= s_{1:n}^2 - frac{1}{n} Big[ -2 bar{x}_{2:n} x_{1} + x_{1}^2 + 2 bar{x}_{2:n} x_{n+1} - x_{n+1}^2 Big] \[6pt]
&= s_{1:n}^2 - frac{1}{n} Big[ 2 bar{x}_{2:n} (x_{n+1} - x_{1}) + (x_{1}^2 - x_{n+1}^2) Big]. \[6pt]
end{aligned} end{equation}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092986%2fefficient-computation-of-incremental-standard-deviation-removing-first-value%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The formula at the link is a special case of the sample variance decomposition formula given in O'Neill (2014) (Result 1). Your problem involves a double-application of this formula.
Denoting the data-sets used in an obvious way, your goal is to write $s_{2:n+1}^2$ in terms of $s_{1:n}^2$ and any other necessary sample quantities. To do this we can use sample variance decompositions:
$$s_{2:n+1}^2 = frac{n-2}{n-1} s_{2:n}^2 + frac{1}{n} (bar{x}_{2:n} - x_{n+1})^2,$$
$$s_{1:n}^2 = frac{n-2}{n-1} s_{2:n}^2 + frac{1}{n} (bar{x}_{2:n} - x_{1})^2.$$
Hence, we have:
$$begin{equation} begin{aligned}
s_{2:n+1}^2
&= frac{n-2}{n-1} s_{2:n}^2 + frac{1}{n} (bar{x}_{2:n} - x_{n+1})^2 \[6pt]
&= s_{1:n}^2 - frac{1}{n} (bar{x}_{2:n} - x_{1})^2 + frac{1}{n} (bar{x}_{2:n} - x_{n+1})^2 \[6pt]
&= s_{1:n}^2 - frac{1}{n} Big[ (bar{x}_{2:n} - x_{1})^2 - (bar{x}_{2:n} - x_{n+1})^2 Big] \[6pt]
&= s_{1:n}^2 - frac{1}{n} Big[ (bar{x}_{2:n}^2 -2 bar{x}_{2:n} x_{1} + x_{1}^2) - (bar{x}_{2:n}^2 -2 bar{x}_{2:n} x_{n+1} + x_{n+1}^2) Big] \[6pt]
&= s_{1:n}^2 - frac{1}{n} Big[ -2 bar{x}_{2:n} x_{1} + x_{1}^2 + 2 bar{x}_{2:n} x_{n+1} - x_{n+1}^2 Big] \[6pt]
&= s_{1:n}^2 - frac{1}{n} Big[ 2 bar{x}_{2:n} (x_{n+1} - x_{1}) + (x_{1}^2 - x_{n+1}^2) Big]. \[6pt]
end{aligned} end{equation}$$
$endgroup$
add a comment |
$begingroup$
The formula at the link is a special case of the sample variance decomposition formula given in O'Neill (2014) (Result 1). Your problem involves a double-application of this formula.
Denoting the data-sets used in an obvious way, your goal is to write $s_{2:n+1}^2$ in terms of $s_{1:n}^2$ and any other necessary sample quantities. To do this we can use sample variance decompositions:
$$s_{2:n+1}^2 = frac{n-2}{n-1} s_{2:n}^2 + frac{1}{n} (bar{x}_{2:n} - x_{n+1})^2,$$
$$s_{1:n}^2 = frac{n-2}{n-1} s_{2:n}^2 + frac{1}{n} (bar{x}_{2:n} - x_{1})^2.$$
Hence, we have:
$$begin{equation} begin{aligned}
s_{2:n+1}^2
&= frac{n-2}{n-1} s_{2:n}^2 + frac{1}{n} (bar{x}_{2:n} - x_{n+1})^2 \[6pt]
&= s_{1:n}^2 - frac{1}{n} (bar{x}_{2:n} - x_{1})^2 + frac{1}{n} (bar{x}_{2:n} - x_{n+1})^2 \[6pt]
&= s_{1:n}^2 - frac{1}{n} Big[ (bar{x}_{2:n} - x_{1})^2 - (bar{x}_{2:n} - x_{n+1})^2 Big] \[6pt]
&= s_{1:n}^2 - frac{1}{n} Big[ (bar{x}_{2:n}^2 -2 bar{x}_{2:n} x_{1} + x_{1}^2) - (bar{x}_{2:n}^2 -2 bar{x}_{2:n} x_{n+1} + x_{n+1}^2) Big] \[6pt]
&= s_{1:n}^2 - frac{1}{n} Big[ -2 bar{x}_{2:n} x_{1} + x_{1}^2 + 2 bar{x}_{2:n} x_{n+1} - x_{n+1}^2 Big] \[6pt]
&= s_{1:n}^2 - frac{1}{n} Big[ 2 bar{x}_{2:n} (x_{n+1} - x_{1}) + (x_{1}^2 - x_{n+1}^2) Big]. \[6pt]
end{aligned} end{equation}$$
$endgroup$
add a comment |
$begingroup$
The formula at the link is a special case of the sample variance decomposition formula given in O'Neill (2014) (Result 1). Your problem involves a double-application of this formula.
Denoting the data-sets used in an obvious way, your goal is to write $s_{2:n+1}^2$ in terms of $s_{1:n}^2$ and any other necessary sample quantities. To do this we can use sample variance decompositions:
$$s_{2:n+1}^2 = frac{n-2}{n-1} s_{2:n}^2 + frac{1}{n} (bar{x}_{2:n} - x_{n+1})^2,$$
$$s_{1:n}^2 = frac{n-2}{n-1} s_{2:n}^2 + frac{1}{n} (bar{x}_{2:n} - x_{1})^2.$$
Hence, we have:
$$begin{equation} begin{aligned}
s_{2:n+1}^2
&= frac{n-2}{n-1} s_{2:n}^2 + frac{1}{n} (bar{x}_{2:n} - x_{n+1})^2 \[6pt]
&= s_{1:n}^2 - frac{1}{n} (bar{x}_{2:n} - x_{1})^2 + frac{1}{n} (bar{x}_{2:n} - x_{n+1})^2 \[6pt]
&= s_{1:n}^2 - frac{1}{n} Big[ (bar{x}_{2:n} - x_{1})^2 - (bar{x}_{2:n} - x_{n+1})^2 Big] \[6pt]
&= s_{1:n}^2 - frac{1}{n} Big[ (bar{x}_{2:n}^2 -2 bar{x}_{2:n} x_{1} + x_{1}^2) - (bar{x}_{2:n}^2 -2 bar{x}_{2:n} x_{n+1} + x_{n+1}^2) Big] \[6pt]
&= s_{1:n}^2 - frac{1}{n} Big[ -2 bar{x}_{2:n} x_{1} + x_{1}^2 + 2 bar{x}_{2:n} x_{n+1} - x_{n+1}^2 Big] \[6pt]
&= s_{1:n}^2 - frac{1}{n} Big[ 2 bar{x}_{2:n} (x_{n+1} - x_{1}) + (x_{1}^2 - x_{n+1}^2) Big]. \[6pt]
end{aligned} end{equation}$$
$endgroup$
The formula at the link is a special case of the sample variance decomposition formula given in O'Neill (2014) (Result 1). Your problem involves a double-application of this formula.
Denoting the data-sets used in an obvious way, your goal is to write $s_{2:n+1}^2$ in terms of $s_{1:n}^2$ and any other necessary sample quantities. To do this we can use sample variance decompositions:
$$s_{2:n+1}^2 = frac{n-2}{n-1} s_{2:n}^2 + frac{1}{n} (bar{x}_{2:n} - x_{n+1})^2,$$
$$s_{1:n}^2 = frac{n-2}{n-1} s_{2:n}^2 + frac{1}{n} (bar{x}_{2:n} - x_{1})^2.$$
Hence, we have:
$$begin{equation} begin{aligned}
s_{2:n+1}^2
&= frac{n-2}{n-1} s_{2:n}^2 + frac{1}{n} (bar{x}_{2:n} - x_{n+1})^2 \[6pt]
&= s_{1:n}^2 - frac{1}{n} (bar{x}_{2:n} - x_{1})^2 + frac{1}{n} (bar{x}_{2:n} - x_{n+1})^2 \[6pt]
&= s_{1:n}^2 - frac{1}{n} Big[ (bar{x}_{2:n} - x_{1})^2 - (bar{x}_{2:n} - x_{n+1})^2 Big] \[6pt]
&= s_{1:n}^2 - frac{1}{n} Big[ (bar{x}_{2:n}^2 -2 bar{x}_{2:n} x_{1} + x_{1}^2) - (bar{x}_{2:n}^2 -2 bar{x}_{2:n} x_{n+1} + x_{n+1}^2) Big] \[6pt]
&= s_{1:n}^2 - frac{1}{n} Big[ -2 bar{x}_{2:n} x_{1} + x_{1}^2 + 2 bar{x}_{2:n} x_{n+1} - x_{n+1}^2 Big] \[6pt]
&= s_{1:n}^2 - frac{1}{n} Big[ 2 bar{x}_{2:n} (x_{n+1} - x_{1}) + (x_{1}^2 - x_{n+1}^2) Big]. \[6pt]
end{aligned} end{equation}$$
answered Jan 31 at 4:10
BenBen
1,870215
1,870215
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092986%2fefficient-computation-of-incremental-standard-deviation-removing-first-value%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown