Integral $intfrac{1}{1+x^3}dx$












2












$begingroup$



Calculate$$intfrac{1}{1+x^3}dx$$




After calculating the partial fractions I got:



$$frac{1}{3}intfrac{1}{x+1}dx+frac{1}{3}intfrac{2-x}{x^2-x+1}dx=frac{1}{3}ln(x+1)+frac{1}{3}intfrac{2-x}{x^2-x+1}dx$$



I have no idea on how to proceed. Am I missing a substitution or something?










share|cite|improve this question











$endgroup$

















    2












    $begingroup$



    Calculate$$intfrac{1}{1+x^3}dx$$




    After calculating the partial fractions I got:



    $$frac{1}{3}intfrac{1}{x+1}dx+frac{1}{3}intfrac{2-x}{x^2-x+1}dx=frac{1}{3}ln(x+1)+frac{1}{3}intfrac{2-x}{x^2-x+1}dx$$



    I have no idea on how to proceed. Am I missing a substitution or something?










    share|cite|improve this question











    $endgroup$















      2












      2








      2





      $begingroup$



      Calculate$$intfrac{1}{1+x^3}dx$$




      After calculating the partial fractions I got:



      $$frac{1}{3}intfrac{1}{x+1}dx+frac{1}{3}intfrac{2-x}{x^2-x+1}dx=frac{1}{3}ln(x+1)+frac{1}{3}intfrac{2-x}{x^2-x+1}dx$$



      I have no idea on how to proceed. Am I missing a substitution or something?










      share|cite|improve this question











      $endgroup$





      Calculate$$intfrac{1}{1+x^3}dx$$




      After calculating the partial fractions I got:



      $$frac{1}{3}intfrac{1}{x+1}dx+frac{1}{3}intfrac{2-x}{x^2-x+1}dx=frac{1}{3}ln(x+1)+frac{1}{3}intfrac{2-x}{x^2-x+1}dx$$



      I have no idea on how to proceed. Am I missing a substitution or something?







      integration indefinite-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 29 at 23:49









      Zacky

      7,81511062




      7,81511062










      asked Jan 29 at 23:34









      VakiPitsiVakiPitsi

      1998




      1998






















          3 Answers
          3






          active

          oldest

          votes


















          2












          $begingroup$

          To integrate $frac{2- x}{x^2- x+ 1}$, complete the square in the denominator: $int frac{2- x}{x^2- x+ 1}dx= intfrac{2- x}{x^2- x+ frac{1}{4}-frac{1}{4}+ 1}dx= intfrac{2-x}{left(x- frac{1}{2}right)+ frac{3}{4}}dx$.



          Now let $u= x- frac{1}{2}$ so that $du= dx$ and $x= u+ frac{1}{2}$ and $2- x= frac{3}{2}- u$ and $dx= -dy.



          $int frac{2- x}{x^2- x+ 1}dx= $$-int frac{frac{3}{2}- u}{u^2+ frac{3}{4}}du= $$-frac{3}{2}intfrac{du}{u^2+ frac{3}{4}}+ intfrac{u du}{u^2+ frac{3}{4}}$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I still have some difficulty to calculate $int frac{1}{u^2+frac{3}{4}}du$. But otherwise very explanatory answer thank you
            $endgroup$
            – VakiPitsi
            Jan 30 at 0:27






          • 1




            $begingroup$
            Multiply both numerator and denominator by $frac{4}{2}$ to get $frac{4}{3}intfrac{1}{frac{4}{3}u^2+ 1}du$. Now let $v= frac{2}{sqrt{3}}u$ so that $dv= frac{2}{sqrt{3}}du$, $du= frac{sqrt{3}}{2}dv$, and the integral becomes $frac{2}{sqrt{3}}intfrac{1}{v^2+ 1}dv$. That integral is an arctangent.
            $endgroup$
            – user247327
            Jan 30 at 12:57



















          1












          $begingroup$

          Hint: You can break up your second calculated indefinite integral into two components as so:
          $$frac{2-x}{x^2-x+1} = -frac{1}{2}(frac{2x -1}{x^2-x+1}) + frac{3/2}{(x-frac{1}{2})^2 + 3/4}$$



          Note that $x^2-x+1 = (x - frac{1}{2})^2 + frac{3}{4}$






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            Alternative approach: Partial fractions.



            Recall that for any complex $z$, and any $n=1,2,...$
            $$z^{1/n}=|z|^{1/n}expleft[frac{i}{n}(2pi k+arg z)right],qquad k=0,1,...,n-1$$
            Then plug in $z=-1$ and $n=3$ to see that $arg z=arg(-1)=pi$ so that in fact,
            $$1+x^3=prod_{k=0}^2left(x-expfrac{ipi(2k+1)}3right)$$
            So, letting $r_k=expfrac{ipi(2k+1)}3$,
            $$frac1{1+x^3}=prod_{k=0}^2frac1{x-r_k}$$
            Look! That's a thing we can do partial fractions on! To do so, we say that
            $$prod_{k=0}^2frac1{x-r_k}=sum_{k=0}^2frac{b(k)}{x-r_k}$$
            $$left(prod_{a=0}^2(x-r_a)right)prod_{k=0}^2frac1{x-r_k}=left(prod_{a=0}^2(x-r_a)right)sum_{k=0}^2frac{b(k)}{x-r_k}$$
            $$1=sum_{k=0}^2frac{b(k)}{x-r_k}prod_{a=0}^2(x-r_a)$$
            $$1=sum_{k=0}^2b(k)prod_{a=0\ aneq k}^2(x-r_a)$$
            then for any $j=0,1,2$, we may plug in $x=r_j$ and notice that all the terms of the sum vanish except for the case $k=j$, which gives
            $$1=b(j)prod_{a=0\ aneq j}^2(r_j-r_a)$$
            $$b(j)=prod_{a=0\ aneq j}^2frac1{r_j-r_a}$$
            Which is an explicit formula for our partial fractions coefficients. Anyway, we may now integrate:
            $$I=intfrac{mathrm dx}{1+x^3}=intsum_{k=0}^2frac{b(k)}{x-r_k}mathrm dx$$
            $$I=sum_{k=0}^2b(k)intfrac{mathrm dx}{x-r_k}$$
            Which is very easily shown to be
            $$I=sum_{k=0}^{2}b(k)lnleft|x-r_kright|$$
            $$I=b(0)lnleft|x-r_0right|+b(1)lnleft|x-r_1right|+b(2)lnleft|x-r_2right|$$
            And since $b(k)=prodlimits_{a=0\ aneq k}^2frac1{r_k-r_a}$, we have that
            $$
            b(0)=frac1{(r_0-r_1)(r_0-r_2)}\
            b(1)=frac1{(r_1-r_0)(r_1-r_2)}\
            b(2)=frac1{(r_2-r_0)(r_2-r_1)}$$

            And from $exp(itheta)=costheta+isintheta$,
            $$
            r_0=expfrac{ipi}3=frac{1+isqrt3}2\
            r_1=expfrac{3ipi}3=-1\
            r_2=expfrac{5ipi}3=frac{1-isqrt3}2
            $$

            So
            $$
            b(0)=-frac16(1+isqrt3)\
            b(1)=frac16(1+isqrt3)\
            b(2)=frac16(-1+isqrt3)
            $$

            And finally
            $$I=-frac{1+isqrt3}6lnleft|x-frac{1+isqrt3}2right|+frac{1+isqrt3}6lnleft|x+1right|+frac{-1+isqrt3}6lnleft|x+frac{-1+isqrt3}2right|+C$$





            In fact, using the same method, it can be shown that
            $$intfrac{mathrm dx}{1+x^n}=sum_{k=0}^{n-1}lnleft|x-expfrac{ipi(2k+1)}{n}right|prod_{a=0\aneq k}^{n-1}frac1{expfrac{ipi(2k+1)}{n}-expfrac{ipi(2a+1)}{n}}$$






            share|cite|improve this answer











            $endgroup$









            • 1




              $begingroup$
              Before I got halfway through reading the solution, I knew it was yours!
              $endgroup$
              – user150203
              Jan 30 at 6:42










            • $begingroup$
              @DavidG Haha thanks. I can usually tell which solutions are yours too :)
              $endgroup$
              – clathratus
              Jan 30 at 21:36














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092884%2fintegral-int-frac11x3dx%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            To integrate $frac{2- x}{x^2- x+ 1}$, complete the square in the denominator: $int frac{2- x}{x^2- x+ 1}dx= intfrac{2- x}{x^2- x+ frac{1}{4}-frac{1}{4}+ 1}dx= intfrac{2-x}{left(x- frac{1}{2}right)+ frac{3}{4}}dx$.



            Now let $u= x- frac{1}{2}$ so that $du= dx$ and $x= u+ frac{1}{2}$ and $2- x= frac{3}{2}- u$ and $dx= -dy.



            $int frac{2- x}{x^2- x+ 1}dx= $$-int frac{frac{3}{2}- u}{u^2+ frac{3}{4}}du= $$-frac{3}{2}intfrac{du}{u^2+ frac{3}{4}}+ intfrac{u du}{u^2+ frac{3}{4}}$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              I still have some difficulty to calculate $int frac{1}{u^2+frac{3}{4}}du$. But otherwise very explanatory answer thank you
              $endgroup$
              – VakiPitsi
              Jan 30 at 0:27






            • 1




              $begingroup$
              Multiply both numerator and denominator by $frac{4}{2}$ to get $frac{4}{3}intfrac{1}{frac{4}{3}u^2+ 1}du$. Now let $v= frac{2}{sqrt{3}}u$ so that $dv= frac{2}{sqrt{3}}du$, $du= frac{sqrt{3}}{2}dv$, and the integral becomes $frac{2}{sqrt{3}}intfrac{1}{v^2+ 1}dv$. That integral is an arctangent.
              $endgroup$
              – user247327
              Jan 30 at 12:57
















            2












            $begingroup$

            To integrate $frac{2- x}{x^2- x+ 1}$, complete the square in the denominator: $int frac{2- x}{x^2- x+ 1}dx= intfrac{2- x}{x^2- x+ frac{1}{4}-frac{1}{4}+ 1}dx= intfrac{2-x}{left(x- frac{1}{2}right)+ frac{3}{4}}dx$.



            Now let $u= x- frac{1}{2}$ so that $du= dx$ and $x= u+ frac{1}{2}$ and $2- x= frac{3}{2}- u$ and $dx= -dy.



            $int frac{2- x}{x^2- x+ 1}dx= $$-int frac{frac{3}{2}- u}{u^2+ frac{3}{4}}du= $$-frac{3}{2}intfrac{du}{u^2+ frac{3}{4}}+ intfrac{u du}{u^2+ frac{3}{4}}$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              I still have some difficulty to calculate $int frac{1}{u^2+frac{3}{4}}du$. But otherwise very explanatory answer thank you
              $endgroup$
              – VakiPitsi
              Jan 30 at 0:27






            • 1




              $begingroup$
              Multiply both numerator and denominator by $frac{4}{2}$ to get $frac{4}{3}intfrac{1}{frac{4}{3}u^2+ 1}du$. Now let $v= frac{2}{sqrt{3}}u$ so that $dv= frac{2}{sqrt{3}}du$, $du= frac{sqrt{3}}{2}dv$, and the integral becomes $frac{2}{sqrt{3}}intfrac{1}{v^2+ 1}dv$. That integral is an arctangent.
              $endgroup$
              – user247327
              Jan 30 at 12:57














            2












            2








            2





            $begingroup$

            To integrate $frac{2- x}{x^2- x+ 1}$, complete the square in the denominator: $int frac{2- x}{x^2- x+ 1}dx= intfrac{2- x}{x^2- x+ frac{1}{4}-frac{1}{4}+ 1}dx= intfrac{2-x}{left(x- frac{1}{2}right)+ frac{3}{4}}dx$.



            Now let $u= x- frac{1}{2}$ so that $du= dx$ and $x= u+ frac{1}{2}$ and $2- x= frac{3}{2}- u$ and $dx= -dy.



            $int frac{2- x}{x^2- x+ 1}dx= $$-int frac{frac{3}{2}- u}{u^2+ frac{3}{4}}du= $$-frac{3}{2}intfrac{du}{u^2+ frac{3}{4}}+ intfrac{u du}{u^2+ frac{3}{4}}$.






            share|cite|improve this answer









            $endgroup$



            To integrate $frac{2- x}{x^2- x+ 1}$, complete the square in the denominator: $int frac{2- x}{x^2- x+ 1}dx= intfrac{2- x}{x^2- x+ frac{1}{4}-frac{1}{4}+ 1}dx= intfrac{2-x}{left(x- frac{1}{2}right)+ frac{3}{4}}dx$.



            Now let $u= x- frac{1}{2}$ so that $du= dx$ and $x= u+ frac{1}{2}$ and $2- x= frac{3}{2}- u$ and $dx= -dy.



            $int frac{2- x}{x^2- x+ 1}dx= $$-int frac{frac{3}{2}- u}{u^2+ frac{3}{4}}du= $$-frac{3}{2}intfrac{du}{u^2+ frac{3}{4}}+ intfrac{u du}{u^2+ frac{3}{4}}$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 30 at 0:04









            user247327user247327

            11.6k1516




            11.6k1516












            • $begingroup$
              I still have some difficulty to calculate $int frac{1}{u^2+frac{3}{4}}du$. But otherwise very explanatory answer thank you
              $endgroup$
              – VakiPitsi
              Jan 30 at 0:27






            • 1




              $begingroup$
              Multiply both numerator and denominator by $frac{4}{2}$ to get $frac{4}{3}intfrac{1}{frac{4}{3}u^2+ 1}du$. Now let $v= frac{2}{sqrt{3}}u$ so that $dv= frac{2}{sqrt{3}}du$, $du= frac{sqrt{3}}{2}dv$, and the integral becomes $frac{2}{sqrt{3}}intfrac{1}{v^2+ 1}dv$. That integral is an arctangent.
              $endgroup$
              – user247327
              Jan 30 at 12:57


















            • $begingroup$
              I still have some difficulty to calculate $int frac{1}{u^2+frac{3}{4}}du$. But otherwise very explanatory answer thank you
              $endgroup$
              – VakiPitsi
              Jan 30 at 0:27






            • 1




              $begingroup$
              Multiply both numerator and denominator by $frac{4}{2}$ to get $frac{4}{3}intfrac{1}{frac{4}{3}u^2+ 1}du$. Now let $v= frac{2}{sqrt{3}}u$ so that $dv= frac{2}{sqrt{3}}du$, $du= frac{sqrt{3}}{2}dv$, and the integral becomes $frac{2}{sqrt{3}}intfrac{1}{v^2+ 1}dv$. That integral is an arctangent.
              $endgroup$
              – user247327
              Jan 30 at 12:57
















            $begingroup$
            I still have some difficulty to calculate $int frac{1}{u^2+frac{3}{4}}du$. But otherwise very explanatory answer thank you
            $endgroup$
            – VakiPitsi
            Jan 30 at 0:27




            $begingroup$
            I still have some difficulty to calculate $int frac{1}{u^2+frac{3}{4}}du$. But otherwise very explanatory answer thank you
            $endgroup$
            – VakiPitsi
            Jan 30 at 0:27




            1




            1




            $begingroup$
            Multiply both numerator and denominator by $frac{4}{2}$ to get $frac{4}{3}intfrac{1}{frac{4}{3}u^2+ 1}du$. Now let $v= frac{2}{sqrt{3}}u$ so that $dv= frac{2}{sqrt{3}}du$, $du= frac{sqrt{3}}{2}dv$, and the integral becomes $frac{2}{sqrt{3}}intfrac{1}{v^2+ 1}dv$. That integral is an arctangent.
            $endgroup$
            – user247327
            Jan 30 at 12:57




            $begingroup$
            Multiply both numerator and denominator by $frac{4}{2}$ to get $frac{4}{3}intfrac{1}{frac{4}{3}u^2+ 1}du$. Now let $v= frac{2}{sqrt{3}}u$ so that $dv= frac{2}{sqrt{3}}du$, $du= frac{sqrt{3}}{2}dv$, and the integral becomes $frac{2}{sqrt{3}}intfrac{1}{v^2+ 1}dv$. That integral is an arctangent.
            $endgroup$
            – user247327
            Jan 30 at 12:57











            1












            $begingroup$

            Hint: You can break up your second calculated indefinite integral into two components as so:
            $$frac{2-x}{x^2-x+1} = -frac{1}{2}(frac{2x -1}{x^2-x+1}) + frac{3/2}{(x-frac{1}{2})^2 + 3/4}$$



            Note that $x^2-x+1 = (x - frac{1}{2})^2 + frac{3}{4}$






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              Hint: You can break up your second calculated indefinite integral into two components as so:
              $$frac{2-x}{x^2-x+1} = -frac{1}{2}(frac{2x -1}{x^2-x+1}) + frac{3/2}{(x-frac{1}{2})^2 + 3/4}$$



              Note that $x^2-x+1 = (x - frac{1}{2})^2 + frac{3}{4}$






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                Hint: You can break up your second calculated indefinite integral into two components as so:
                $$frac{2-x}{x^2-x+1} = -frac{1}{2}(frac{2x -1}{x^2-x+1}) + frac{3/2}{(x-frac{1}{2})^2 + 3/4}$$



                Note that $x^2-x+1 = (x - frac{1}{2})^2 + frac{3}{4}$






                share|cite|improve this answer









                $endgroup$



                Hint: You can break up your second calculated indefinite integral into two components as so:
                $$frac{2-x}{x^2-x+1} = -frac{1}{2}(frac{2x -1}{x^2-x+1}) + frac{3/2}{(x-frac{1}{2})^2 + 3/4}$$



                Note that $x^2-x+1 = (x - frac{1}{2})^2 + frac{3}{4}$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 29 at 23:44









                HyperionHyperion

                702111




                702111























                    1












                    $begingroup$

                    Alternative approach: Partial fractions.



                    Recall that for any complex $z$, and any $n=1,2,...$
                    $$z^{1/n}=|z|^{1/n}expleft[frac{i}{n}(2pi k+arg z)right],qquad k=0,1,...,n-1$$
                    Then plug in $z=-1$ and $n=3$ to see that $arg z=arg(-1)=pi$ so that in fact,
                    $$1+x^3=prod_{k=0}^2left(x-expfrac{ipi(2k+1)}3right)$$
                    So, letting $r_k=expfrac{ipi(2k+1)}3$,
                    $$frac1{1+x^3}=prod_{k=0}^2frac1{x-r_k}$$
                    Look! That's a thing we can do partial fractions on! To do so, we say that
                    $$prod_{k=0}^2frac1{x-r_k}=sum_{k=0}^2frac{b(k)}{x-r_k}$$
                    $$left(prod_{a=0}^2(x-r_a)right)prod_{k=0}^2frac1{x-r_k}=left(prod_{a=0}^2(x-r_a)right)sum_{k=0}^2frac{b(k)}{x-r_k}$$
                    $$1=sum_{k=0}^2frac{b(k)}{x-r_k}prod_{a=0}^2(x-r_a)$$
                    $$1=sum_{k=0}^2b(k)prod_{a=0\ aneq k}^2(x-r_a)$$
                    then for any $j=0,1,2$, we may plug in $x=r_j$ and notice that all the terms of the sum vanish except for the case $k=j$, which gives
                    $$1=b(j)prod_{a=0\ aneq j}^2(r_j-r_a)$$
                    $$b(j)=prod_{a=0\ aneq j}^2frac1{r_j-r_a}$$
                    Which is an explicit formula for our partial fractions coefficients. Anyway, we may now integrate:
                    $$I=intfrac{mathrm dx}{1+x^3}=intsum_{k=0}^2frac{b(k)}{x-r_k}mathrm dx$$
                    $$I=sum_{k=0}^2b(k)intfrac{mathrm dx}{x-r_k}$$
                    Which is very easily shown to be
                    $$I=sum_{k=0}^{2}b(k)lnleft|x-r_kright|$$
                    $$I=b(0)lnleft|x-r_0right|+b(1)lnleft|x-r_1right|+b(2)lnleft|x-r_2right|$$
                    And since $b(k)=prodlimits_{a=0\ aneq k}^2frac1{r_k-r_a}$, we have that
                    $$
                    b(0)=frac1{(r_0-r_1)(r_0-r_2)}\
                    b(1)=frac1{(r_1-r_0)(r_1-r_2)}\
                    b(2)=frac1{(r_2-r_0)(r_2-r_1)}$$

                    And from $exp(itheta)=costheta+isintheta$,
                    $$
                    r_0=expfrac{ipi}3=frac{1+isqrt3}2\
                    r_1=expfrac{3ipi}3=-1\
                    r_2=expfrac{5ipi}3=frac{1-isqrt3}2
                    $$

                    So
                    $$
                    b(0)=-frac16(1+isqrt3)\
                    b(1)=frac16(1+isqrt3)\
                    b(2)=frac16(-1+isqrt3)
                    $$

                    And finally
                    $$I=-frac{1+isqrt3}6lnleft|x-frac{1+isqrt3}2right|+frac{1+isqrt3}6lnleft|x+1right|+frac{-1+isqrt3}6lnleft|x+frac{-1+isqrt3}2right|+C$$





                    In fact, using the same method, it can be shown that
                    $$intfrac{mathrm dx}{1+x^n}=sum_{k=0}^{n-1}lnleft|x-expfrac{ipi(2k+1)}{n}right|prod_{a=0\aneq k}^{n-1}frac1{expfrac{ipi(2k+1)}{n}-expfrac{ipi(2a+1)}{n}}$$






                    share|cite|improve this answer











                    $endgroup$









                    • 1




                      $begingroup$
                      Before I got halfway through reading the solution, I knew it was yours!
                      $endgroup$
                      – user150203
                      Jan 30 at 6:42










                    • $begingroup$
                      @DavidG Haha thanks. I can usually tell which solutions are yours too :)
                      $endgroup$
                      – clathratus
                      Jan 30 at 21:36


















                    1












                    $begingroup$

                    Alternative approach: Partial fractions.



                    Recall that for any complex $z$, and any $n=1,2,...$
                    $$z^{1/n}=|z|^{1/n}expleft[frac{i}{n}(2pi k+arg z)right],qquad k=0,1,...,n-1$$
                    Then plug in $z=-1$ and $n=3$ to see that $arg z=arg(-1)=pi$ so that in fact,
                    $$1+x^3=prod_{k=0}^2left(x-expfrac{ipi(2k+1)}3right)$$
                    So, letting $r_k=expfrac{ipi(2k+1)}3$,
                    $$frac1{1+x^3}=prod_{k=0}^2frac1{x-r_k}$$
                    Look! That's a thing we can do partial fractions on! To do so, we say that
                    $$prod_{k=0}^2frac1{x-r_k}=sum_{k=0}^2frac{b(k)}{x-r_k}$$
                    $$left(prod_{a=0}^2(x-r_a)right)prod_{k=0}^2frac1{x-r_k}=left(prod_{a=0}^2(x-r_a)right)sum_{k=0}^2frac{b(k)}{x-r_k}$$
                    $$1=sum_{k=0}^2frac{b(k)}{x-r_k}prod_{a=0}^2(x-r_a)$$
                    $$1=sum_{k=0}^2b(k)prod_{a=0\ aneq k}^2(x-r_a)$$
                    then for any $j=0,1,2$, we may plug in $x=r_j$ and notice that all the terms of the sum vanish except for the case $k=j$, which gives
                    $$1=b(j)prod_{a=0\ aneq j}^2(r_j-r_a)$$
                    $$b(j)=prod_{a=0\ aneq j}^2frac1{r_j-r_a}$$
                    Which is an explicit formula for our partial fractions coefficients. Anyway, we may now integrate:
                    $$I=intfrac{mathrm dx}{1+x^3}=intsum_{k=0}^2frac{b(k)}{x-r_k}mathrm dx$$
                    $$I=sum_{k=0}^2b(k)intfrac{mathrm dx}{x-r_k}$$
                    Which is very easily shown to be
                    $$I=sum_{k=0}^{2}b(k)lnleft|x-r_kright|$$
                    $$I=b(0)lnleft|x-r_0right|+b(1)lnleft|x-r_1right|+b(2)lnleft|x-r_2right|$$
                    And since $b(k)=prodlimits_{a=0\ aneq k}^2frac1{r_k-r_a}$, we have that
                    $$
                    b(0)=frac1{(r_0-r_1)(r_0-r_2)}\
                    b(1)=frac1{(r_1-r_0)(r_1-r_2)}\
                    b(2)=frac1{(r_2-r_0)(r_2-r_1)}$$

                    And from $exp(itheta)=costheta+isintheta$,
                    $$
                    r_0=expfrac{ipi}3=frac{1+isqrt3}2\
                    r_1=expfrac{3ipi}3=-1\
                    r_2=expfrac{5ipi}3=frac{1-isqrt3}2
                    $$

                    So
                    $$
                    b(0)=-frac16(1+isqrt3)\
                    b(1)=frac16(1+isqrt3)\
                    b(2)=frac16(-1+isqrt3)
                    $$

                    And finally
                    $$I=-frac{1+isqrt3}6lnleft|x-frac{1+isqrt3}2right|+frac{1+isqrt3}6lnleft|x+1right|+frac{-1+isqrt3}6lnleft|x+frac{-1+isqrt3}2right|+C$$





                    In fact, using the same method, it can be shown that
                    $$intfrac{mathrm dx}{1+x^n}=sum_{k=0}^{n-1}lnleft|x-expfrac{ipi(2k+1)}{n}right|prod_{a=0\aneq k}^{n-1}frac1{expfrac{ipi(2k+1)}{n}-expfrac{ipi(2a+1)}{n}}$$






                    share|cite|improve this answer











                    $endgroup$









                    • 1




                      $begingroup$
                      Before I got halfway through reading the solution, I knew it was yours!
                      $endgroup$
                      – user150203
                      Jan 30 at 6:42










                    • $begingroup$
                      @DavidG Haha thanks. I can usually tell which solutions are yours too :)
                      $endgroup$
                      – clathratus
                      Jan 30 at 21:36
















                    1












                    1








                    1





                    $begingroup$

                    Alternative approach: Partial fractions.



                    Recall that for any complex $z$, and any $n=1,2,...$
                    $$z^{1/n}=|z|^{1/n}expleft[frac{i}{n}(2pi k+arg z)right],qquad k=0,1,...,n-1$$
                    Then plug in $z=-1$ and $n=3$ to see that $arg z=arg(-1)=pi$ so that in fact,
                    $$1+x^3=prod_{k=0}^2left(x-expfrac{ipi(2k+1)}3right)$$
                    So, letting $r_k=expfrac{ipi(2k+1)}3$,
                    $$frac1{1+x^3}=prod_{k=0}^2frac1{x-r_k}$$
                    Look! That's a thing we can do partial fractions on! To do so, we say that
                    $$prod_{k=0}^2frac1{x-r_k}=sum_{k=0}^2frac{b(k)}{x-r_k}$$
                    $$left(prod_{a=0}^2(x-r_a)right)prod_{k=0}^2frac1{x-r_k}=left(prod_{a=0}^2(x-r_a)right)sum_{k=0}^2frac{b(k)}{x-r_k}$$
                    $$1=sum_{k=0}^2frac{b(k)}{x-r_k}prod_{a=0}^2(x-r_a)$$
                    $$1=sum_{k=0}^2b(k)prod_{a=0\ aneq k}^2(x-r_a)$$
                    then for any $j=0,1,2$, we may plug in $x=r_j$ and notice that all the terms of the sum vanish except for the case $k=j$, which gives
                    $$1=b(j)prod_{a=0\ aneq j}^2(r_j-r_a)$$
                    $$b(j)=prod_{a=0\ aneq j}^2frac1{r_j-r_a}$$
                    Which is an explicit formula for our partial fractions coefficients. Anyway, we may now integrate:
                    $$I=intfrac{mathrm dx}{1+x^3}=intsum_{k=0}^2frac{b(k)}{x-r_k}mathrm dx$$
                    $$I=sum_{k=0}^2b(k)intfrac{mathrm dx}{x-r_k}$$
                    Which is very easily shown to be
                    $$I=sum_{k=0}^{2}b(k)lnleft|x-r_kright|$$
                    $$I=b(0)lnleft|x-r_0right|+b(1)lnleft|x-r_1right|+b(2)lnleft|x-r_2right|$$
                    And since $b(k)=prodlimits_{a=0\ aneq k}^2frac1{r_k-r_a}$, we have that
                    $$
                    b(0)=frac1{(r_0-r_1)(r_0-r_2)}\
                    b(1)=frac1{(r_1-r_0)(r_1-r_2)}\
                    b(2)=frac1{(r_2-r_0)(r_2-r_1)}$$

                    And from $exp(itheta)=costheta+isintheta$,
                    $$
                    r_0=expfrac{ipi}3=frac{1+isqrt3}2\
                    r_1=expfrac{3ipi}3=-1\
                    r_2=expfrac{5ipi}3=frac{1-isqrt3}2
                    $$

                    So
                    $$
                    b(0)=-frac16(1+isqrt3)\
                    b(1)=frac16(1+isqrt3)\
                    b(2)=frac16(-1+isqrt3)
                    $$

                    And finally
                    $$I=-frac{1+isqrt3}6lnleft|x-frac{1+isqrt3}2right|+frac{1+isqrt3}6lnleft|x+1right|+frac{-1+isqrt3}6lnleft|x+frac{-1+isqrt3}2right|+C$$





                    In fact, using the same method, it can be shown that
                    $$intfrac{mathrm dx}{1+x^n}=sum_{k=0}^{n-1}lnleft|x-expfrac{ipi(2k+1)}{n}right|prod_{a=0\aneq k}^{n-1}frac1{expfrac{ipi(2k+1)}{n}-expfrac{ipi(2a+1)}{n}}$$






                    share|cite|improve this answer











                    $endgroup$



                    Alternative approach: Partial fractions.



                    Recall that for any complex $z$, and any $n=1,2,...$
                    $$z^{1/n}=|z|^{1/n}expleft[frac{i}{n}(2pi k+arg z)right],qquad k=0,1,...,n-1$$
                    Then plug in $z=-1$ and $n=3$ to see that $arg z=arg(-1)=pi$ so that in fact,
                    $$1+x^3=prod_{k=0}^2left(x-expfrac{ipi(2k+1)}3right)$$
                    So, letting $r_k=expfrac{ipi(2k+1)}3$,
                    $$frac1{1+x^3}=prod_{k=0}^2frac1{x-r_k}$$
                    Look! That's a thing we can do partial fractions on! To do so, we say that
                    $$prod_{k=0}^2frac1{x-r_k}=sum_{k=0}^2frac{b(k)}{x-r_k}$$
                    $$left(prod_{a=0}^2(x-r_a)right)prod_{k=0}^2frac1{x-r_k}=left(prod_{a=0}^2(x-r_a)right)sum_{k=0}^2frac{b(k)}{x-r_k}$$
                    $$1=sum_{k=0}^2frac{b(k)}{x-r_k}prod_{a=0}^2(x-r_a)$$
                    $$1=sum_{k=0}^2b(k)prod_{a=0\ aneq k}^2(x-r_a)$$
                    then for any $j=0,1,2$, we may plug in $x=r_j$ and notice that all the terms of the sum vanish except for the case $k=j$, which gives
                    $$1=b(j)prod_{a=0\ aneq j}^2(r_j-r_a)$$
                    $$b(j)=prod_{a=0\ aneq j}^2frac1{r_j-r_a}$$
                    Which is an explicit formula for our partial fractions coefficients. Anyway, we may now integrate:
                    $$I=intfrac{mathrm dx}{1+x^3}=intsum_{k=0}^2frac{b(k)}{x-r_k}mathrm dx$$
                    $$I=sum_{k=0}^2b(k)intfrac{mathrm dx}{x-r_k}$$
                    Which is very easily shown to be
                    $$I=sum_{k=0}^{2}b(k)lnleft|x-r_kright|$$
                    $$I=b(0)lnleft|x-r_0right|+b(1)lnleft|x-r_1right|+b(2)lnleft|x-r_2right|$$
                    And since $b(k)=prodlimits_{a=0\ aneq k}^2frac1{r_k-r_a}$, we have that
                    $$
                    b(0)=frac1{(r_0-r_1)(r_0-r_2)}\
                    b(1)=frac1{(r_1-r_0)(r_1-r_2)}\
                    b(2)=frac1{(r_2-r_0)(r_2-r_1)}$$

                    And from $exp(itheta)=costheta+isintheta$,
                    $$
                    r_0=expfrac{ipi}3=frac{1+isqrt3}2\
                    r_1=expfrac{3ipi}3=-1\
                    r_2=expfrac{5ipi}3=frac{1-isqrt3}2
                    $$

                    So
                    $$
                    b(0)=-frac16(1+isqrt3)\
                    b(1)=frac16(1+isqrt3)\
                    b(2)=frac16(-1+isqrt3)
                    $$

                    And finally
                    $$I=-frac{1+isqrt3}6lnleft|x-frac{1+isqrt3}2right|+frac{1+isqrt3}6lnleft|x+1right|+frac{-1+isqrt3}6lnleft|x+frac{-1+isqrt3}2right|+C$$





                    In fact, using the same method, it can be shown that
                    $$intfrac{mathrm dx}{1+x^n}=sum_{k=0}^{n-1}lnleft|x-expfrac{ipi(2k+1)}{n}right|prod_{a=0\aneq k}^{n-1}frac1{expfrac{ipi(2k+1)}{n}-expfrac{ipi(2a+1)}{n}}$$







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Jan 30 at 1:56

























                    answered Jan 30 at 1:47









                    clathratusclathratus

                    5,0641439




                    5,0641439








                    • 1




                      $begingroup$
                      Before I got halfway through reading the solution, I knew it was yours!
                      $endgroup$
                      – user150203
                      Jan 30 at 6:42










                    • $begingroup$
                      @DavidG Haha thanks. I can usually tell which solutions are yours too :)
                      $endgroup$
                      – clathratus
                      Jan 30 at 21:36
















                    • 1




                      $begingroup$
                      Before I got halfway through reading the solution, I knew it was yours!
                      $endgroup$
                      – user150203
                      Jan 30 at 6:42










                    • $begingroup$
                      @DavidG Haha thanks. I can usually tell which solutions are yours too :)
                      $endgroup$
                      – clathratus
                      Jan 30 at 21:36










                    1




                    1




                    $begingroup$
                    Before I got halfway through reading the solution, I knew it was yours!
                    $endgroup$
                    – user150203
                    Jan 30 at 6:42




                    $begingroup$
                    Before I got halfway through reading the solution, I knew it was yours!
                    $endgroup$
                    – user150203
                    Jan 30 at 6:42












                    $begingroup$
                    @DavidG Haha thanks. I can usually tell which solutions are yours too :)
                    $endgroup$
                    – clathratus
                    Jan 30 at 21:36






                    $begingroup$
                    @DavidG Haha thanks. I can usually tell which solutions are yours too :)
                    $endgroup$
                    – clathratus
                    Jan 30 at 21:36




















                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092884%2fintegral-int-frac11x3dx%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

                    Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

                    A Topological Invariant for $pi_3(U(n))$