Integral $intfrac{1}{1+x^3}dx$
$begingroup$
Calculate$$intfrac{1}{1+x^3}dx$$
After calculating the partial fractions I got:
$$frac{1}{3}intfrac{1}{x+1}dx+frac{1}{3}intfrac{2-x}{x^2-x+1}dx=frac{1}{3}ln(x+1)+frac{1}{3}intfrac{2-x}{x^2-x+1}dx$$
I have no idea on how to proceed. Am I missing a substitution or something?
integration indefinite-integrals
$endgroup$
add a comment |
$begingroup$
Calculate$$intfrac{1}{1+x^3}dx$$
After calculating the partial fractions I got:
$$frac{1}{3}intfrac{1}{x+1}dx+frac{1}{3}intfrac{2-x}{x^2-x+1}dx=frac{1}{3}ln(x+1)+frac{1}{3}intfrac{2-x}{x^2-x+1}dx$$
I have no idea on how to proceed. Am I missing a substitution or something?
integration indefinite-integrals
$endgroup$
add a comment |
$begingroup$
Calculate$$intfrac{1}{1+x^3}dx$$
After calculating the partial fractions I got:
$$frac{1}{3}intfrac{1}{x+1}dx+frac{1}{3}intfrac{2-x}{x^2-x+1}dx=frac{1}{3}ln(x+1)+frac{1}{3}intfrac{2-x}{x^2-x+1}dx$$
I have no idea on how to proceed. Am I missing a substitution or something?
integration indefinite-integrals
$endgroup$
Calculate$$intfrac{1}{1+x^3}dx$$
After calculating the partial fractions I got:
$$frac{1}{3}intfrac{1}{x+1}dx+frac{1}{3}intfrac{2-x}{x^2-x+1}dx=frac{1}{3}ln(x+1)+frac{1}{3}intfrac{2-x}{x^2-x+1}dx$$
I have no idea on how to proceed. Am I missing a substitution or something?
integration indefinite-integrals
integration indefinite-integrals
edited Jan 29 at 23:49
Zacky
7,81511062
7,81511062
asked Jan 29 at 23:34
VakiPitsiVakiPitsi
1998
1998
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
To integrate $frac{2- x}{x^2- x+ 1}$, complete the square in the denominator: $int frac{2- x}{x^2- x+ 1}dx= intfrac{2- x}{x^2- x+ frac{1}{4}-frac{1}{4}+ 1}dx= intfrac{2-x}{left(x- frac{1}{2}right)+ frac{3}{4}}dx$.
Now let $u= x- frac{1}{2}$ so that $du= dx$ and $x= u+ frac{1}{2}$ and $2- x= frac{3}{2}- u$ and $dx= -dy.
$int frac{2- x}{x^2- x+ 1}dx= $$-int frac{frac{3}{2}- u}{u^2+ frac{3}{4}}du= $$-frac{3}{2}intfrac{du}{u^2+ frac{3}{4}}+ intfrac{u du}{u^2+ frac{3}{4}}$.
$endgroup$
$begingroup$
I still have some difficulty to calculate $int frac{1}{u^2+frac{3}{4}}du$. But otherwise very explanatory answer thank you
$endgroup$
– VakiPitsi
Jan 30 at 0:27
1
$begingroup$
Multiply both numerator and denominator by $frac{4}{2}$ to get $frac{4}{3}intfrac{1}{frac{4}{3}u^2+ 1}du$. Now let $v= frac{2}{sqrt{3}}u$ so that $dv= frac{2}{sqrt{3}}du$, $du= frac{sqrt{3}}{2}dv$, and the integral becomes $frac{2}{sqrt{3}}intfrac{1}{v^2+ 1}dv$. That integral is an arctangent.
$endgroup$
– user247327
Jan 30 at 12:57
add a comment |
$begingroup$
Hint: You can break up your second calculated indefinite integral into two components as so:
$$frac{2-x}{x^2-x+1} = -frac{1}{2}(frac{2x -1}{x^2-x+1}) + frac{3/2}{(x-frac{1}{2})^2 + 3/4}$$
Note that $x^2-x+1 = (x - frac{1}{2})^2 + frac{3}{4}$
$endgroup$
add a comment |
$begingroup$
Alternative approach: Partial fractions.
Recall that for any complex $z$, and any $n=1,2,...$
$$z^{1/n}=|z|^{1/n}expleft[frac{i}{n}(2pi k+arg z)right],qquad k=0,1,...,n-1$$
Then plug in $z=-1$ and $n=3$ to see that $arg z=arg(-1)=pi$ so that in fact,
$$1+x^3=prod_{k=0}^2left(x-expfrac{ipi(2k+1)}3right)$$
So, letting $r_k=expfrac{ipi(2k+1)}3$,
$$frac1{1+x^3}=prod_{k=0}^2frac1{x-r_k}$$
Look! That's a thing we can do partial fractions on! To do so, we say that
$$prod_{k=0}^2frac1{x-r_k}=sum_{k=0}^2frac{b(k)}{x-r_k}$$
$$left(prod_{a=0}^2(x-r_a)right)prod_{k=0}^2frac1{x-r_k}=left(prod_{a=0}^2(x-r_a)right)sum_{k=0}^2frac{b(k)}{x-r_k}$$
$$1=sum_{k=0}^2frac{b(k)}{x-r_k}prod_{a=0}^2(x-r_a)$$
$$1=sum_{k=0}^2b(k)prod_{a=0\ aneq k}^2(x-r_a)$$
then for any $j=0,1,2$, we may plug in $x=r_j$ and notice that all the terms of the sum vanish except for the case $k=j$, which gives
$$1=b(j)prod_{a=0\ aneq j}^2(r_j-r_a)$$
$$b(j)=prod_{a=0\ aneq j}^2frac1{r_j-r_a}$$
Which is an explicit formula for our partial fractions coefficients. Anyway, we may now integrate:
$$I=intfrac{mathrm dx}{1+x^3}=intsum_{k=0}^2frac{b(k)}{x-r_k}mathrm dx$$
$$I=sum_{k=0}^2b(k)intfrac{mathrm dx}{x-r_k}$$
Which is very easily shown to be
$$I=sum_{k=0}^{2}b(k)lnleft|x-r_kright|$$
$$I=b(0)lnleft|x-r_0right|+b(1)lnleft|x-r_1right|+b(2)lnleft|x-r_2right|$$
And since $b(k)=prodlimits_{a=0\ aneq k}^2frac1{r_k-r_a}$, we have that
$$
b(0)=frac1{(r_0-r_1)(r_0-r_2)}\
b(1)=frac1{(r_1-r_0)(r_1-r_2)}\
b(2)=frac1{(r_2-r_0)(r_2-r_1)}$$
And from $exp(itheta)=costheta+isintheta$,
$$
r_0=expfrac{ipi}3=frac{1+isqrt3}2\
r_1=expfrac{3ipi}3=-1\
r_2=expfrac{5ipi}3=frac{1-isqrt3}2
$$
So
$$
b(0)=-frac16(1+isqrt3)\
b(1)=frac16(1+isqrt3)\
b(2)=frac16(-1+isqrt3)
$$
And finally
$$I=-frac{1+isqrt3}6lnleft|x-frac{1+isqrt3}2right|+frac{1+isqrt3}6lnleft|x+1right|+frac{-1+isqrt3}6lnleft|x+frac{-1+isqrt3}2right|+C$$
In fact, using the same method, it can be shown that
$$intfrac{mathrm dx}{1+x^n}=sum_{k=0}^{n-1}lnleft|x-expfrac{ipi(2k+1)}{n}right|prod_{a=0\aneq k}^{n-1}frac1{expfrac{ipi(2k+1)}{n}-expfrac{ipi(2a+1)}{n}}$$
$endgroup$
1
$begingroup$
Before I got halfway through reading the solution, I knew it was yours!
$endgroup$
– user150203
Jan 30 at 6:42
$begingroup$
@DavidG Haha thanks. I can usually tell which solutions are yours too :)
$endgroup$
– clathratus
Jan 30 at 21:36
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092884%2fintegral-int-frac11x3dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
To integrate $frac{2- x}{x^2- x+ 1}$, complete the square in the denominator: $int frac{2- x}{x^2- x+ 1}dx= intfrac{2- x}{x^2- x+ frac{1}{4}-frac{1}{4}+ 1}dx= intfrac{2-x}{left(x- frac{1}{2}right)+ frac{3}{4}}dx$.
Now let $u= x- frac{1}{2}$ so that $du= dx$ and $x= u+ frac{1}{2}$ and $2- x= frac{3}{2}- u$ and $dx= -dy.
$int frac{2- x}{x^2- x+ 1}dx= $$-int frac{frac{3}{2}- u}{u^2+ frac{3}{4}}du= $$-frac{3}{2}intfrac{du}{u^2+ frac{3}{4}}+ intfrac{u du}{u^2+ frac{3}{4}}$.
$endgroup$
$begingroup$
I still have some difficulty to calculate $int frac{1}{u^2+frac{3}{4}}du$. But otherwise very explanatory answer thank you
$endgroup$
– VakiPitsi
Jan 30 at 0:27
1
$begingroup$
Multiply both numerator and denominator by $frac{4}{2}$ to get $frac{4}{3}intfrac{1}{frac{4}{3}u^2+ 1}du$. Now let $v= frac{2}{sqrt{3}}u$ so that $dv= frac{2}{sqrt{3}}du$, $du= frac{sqrt{3}}{2}dv$, and the integral becomes $frac{2}{sqrt{3}}intfrac{1}{v^2+ 1}dv$. That integral is an arctangent.
$endgroup$
– user247327
Jan 30 at 12:57
add a comment |
$begingroup$
To integrate $frac{2- x}{x^2- x+ 1}$, complete the square in the denominator: $int frac{2- x}{x^2- x+ 1}dx= intfrac{2- x}{x^2- x+ frac{1}{4}-frac{1}{4}+ 1}dx= intfrac{2-x}{left(x- frac{1}{2}right)+ frac{3}{4}}dx$.
Now let $u= x- frac{1}{2}$ so that $du= dx$ and $x= u+ frac{1}{2}$ and $2- x= frac{3}{2}- u$ and $dx= -dy.
$int frac{2- x}{x^2- x+ 1}dx= $$-int frac{frac{3}{2}- u}{u^2+ frac{3}{4}}du= $$-frac{3}{2}intfrac{du}{u^2+ frac{3}{4}}+ intfrac{u du}{u^2+ frac{3}{4}}$.
$endgroup$
$begingroup$
I still have some difficulty to calculate $int frac{1}{u^2+frac{3}{4}}du$. But otherwise very explanatory answer thank you
$endgroup$
– VakiPitsi
Jan 30 at 0:27
1
$begingroup$
Multiply both numerator and denominator by $frac{4}{2}$ to get $frac{4}{3}intfrac{1}{frac{4}{3}u^2+ 1}du$. Now let $v= frac{2}{sqrt{3}}u$ so that $dv= frac{2}{sqrt{3}}du$, $du= frac{sqrt{3}}{2}dv$, and the integral becomes $frac{2}{sqrt{3}}intfrac{1}{v^2+ 1}dv$. That integral is an arctangent.
$endgroup$
– user247327
Jan 30 at 12:57
add a comment |
$begingroup$
To integrate $frac{2- x}{x^2- x+ 1}$, complete the square in the denominator: $int frac{2- x}{x^2- x+ 1}dx= intfrac{2- x}{x^2- x+ frac{1}{4}-frac{1}{4}+ 1}dx= intfrac{2-x}{left(x- frac{1}{2}right)+ frac{3}{4}}dx$.
Now let $u= x- frac{1}{2}$ so that $du= dx$ and $x= u+ frac{1}{2}$ and $2- x= frac{3}{2}- u$ and $dx= -dy.
$int frac{2- x}{x^2- x+ 1}dx= $$-int frac{frac{3}{2}- u}{u^2+ frac{3}{4}}du= $$-frac{3}{2}intfrac{du}{u^2+ frac{3}{4}}+ intfrac{u du}{u^2+ frac{3}{4}}$.
$endgroup$
To integrate $frac{2- x}{x^2- x+ 1}$, complete the square in the denominator: $int frac{2- x}{x^2- x+ 1}dx= intfrac{2- x}{x^2- x+ frac{1}{4}-frac{1}{4}+ 1}dx= intfrac{2-x}{left(x- frac{1}{2}right)+ frac{3}{4}}dx$.
Now let $u= x- frac{1}{2}$ so that $du= dx$ and $x= u+ frac{1}{2}$ and $2- x= frac{3}{2}- u$ and $dx= -dy.
$int frac{2- x}{x^2- x+ 1}dx= $$-int frac{frac{3}{2}- u}{u^2+ frac{3}{4}}du= $$-frac{3}{2}intfrac{du}{u^2+ frac{3}{4}}+ intfrac{u du}{u^2+ frac{3}{4}}$.
answered Jan 30 at 0:04
user247327user247327
11.6k1516
11.6k1516
$begingroup$
I still have some difficulty to calculate $int frac{1}{u^2+frac{3}{4}}du$. But otherwise very explanatory answer thank you
$endgroup$
– VakiPitsi
Jan 30 at 0:27
1
$begingroup$
Multiply both numerator and denominator by $frac{4}{2}$ to get $frac{4}{3}intfrac{1}{frac{4}{3}u^2+ 1}du$. Now let $v= frac{2}{sqrt{3}}u$ so that $dv= frac{2}{sqrt{3}}du$, $du= frac{sqrt{3}}{2}dv$, and the integral becomes $frac{2}{sqrt{3}}intfrac{1}{v^2+ 1}dv$. That integral is an arctangent.
$endgroup$
– user247327
Jan 30 at 12:57
add a comment |
$begingroup$
I still have some difficulty to calculate $int frac{1}{u^2+frac{3}{4}}du$. But otherwise very explanatory answer thank you
$endgroup$
– VakiPitsi
Jan 30 at 0:27
1
$begingroup$
Multiply both numerator and denominator by $frac{4}{2}$ to get $frac{4}{3}intfrac{1}{frac{4}{3}u^2+ 1}du$. Now let $v= frac{2}{sqrt{3}}u$ so that $dv= frac{2}{sqrt{3}}du$, $du= frac{sqrt{3}}{2}dv$, and the integral becomes $frac{2}{sqrt{3}}intfrac{1}{v^2+ 1}dv$. That integral is an arctangent.
$endgroup$
– user247327
Jan 30 at 12:57
$begingroup$
I still have some difficulty to calculate $int frac{1}{u^2+frac{3}{4}}du$. But otherwise very explanatory answer thank you
$endgroup$
– VakiPitsi
Jan 30 at 0:27
$begingroup$
I still have some difficulty to calculate $int frac{1}{u^2+frac{3}{4}}du$. But otherwise very explanatory answer thank you
$endgroup$
– VakiPitsi
Jan 30 at 0:27
1
1
$begingroup$
Multiply both numerator and denominator by $frac{4}{2}$ to get $frac{4}{3}intfrac{1}{frac{4}{3}u^2+ 1}du$. Now let $v= frac{2}{sqrt{3}}u$ so that $dv= frac{2}{sqrt{3}}du$, $du= frac{sqrt{3}}{2}dv$, and the integral becomes $frac{2}{sqrt{3}}intfrac{1}{v^2+ 1}dv$. That integral is an arctangent.
$endgroup$
– user247327
Jan 30 at 12:57
$begingroup$
Multiply both numerator and denominator by $frac{4}{2}$ to get $frac{4}{3}intfrac{1}{frac{4}{3}u^2+ 1}du$. Now let $v= frac{2}{sqrt{3}}u$ so that $dv= frac{2}{sqrt{3}}du$, $du= frac{sqrt{3}}{2}dv$, and the integral becomes $frac{2}{sqrt{3}}intfrac{1}{v^2+ 1}dv$. That integral is an arctangent.
$endgroup$
– user247327
Jan 30 at 12:57
add a comment |
$begingroup$
Hint: You can break up your second calculated indefinite integral into two components as so:
$$frac{2-x}{x^2-x+1} = -frac{1}{2}(frac{2x -1}{x^2-x+1}) + frac{3/2}{(x-frac{1}{2})^2 + 3/4}$$
Note that $x^2-x+1 = (x - frac{1}{2})^2 + frac{3}{4}$
$endgroup$
add a comment |
$begingroup$
Hint: You can break up your second calculated indefinite integral into two components as so:
$$frac{2-x}{x^2-x+1} = -frac{1}{2}(frac{2x -1}{x^2-x+1}) + frac{3/2}{(x-frac{1}{2})^2 + 3/4}$$
Note that $x^2-x+1 = (x - frac{1}{2})^2 + frac{3}{4}$
$endgroup$
add a comment |
$begingroup$
Hint: You can break up your second calculated indefinite integral into two components as so:
$$frac{2-x}{x^2-x+1} = -frac{1}{2}(frac{2x -1}{x^2-x+1}) + frac{3/2}{(x-frac{1}{2})^2 + 3/4}$$
Note that $x^2-x+1 = (x - frac{1}{2})^2 + frac{3}{4}$
$endgroup$
Hint: You can break up your second calculated indefinite integral into two components as so:
$$frac{2-x}{x^2-x+1} = -frac{1}{2}(frac{2x -1}{x^2-x+1}) + frac{3/2}{(x-frac{1}{2})^2 + 3/4}$$
Note that $x^2-x+1 = (x - frac{1}{2})^2 + frac{3}{4}$
answered Jan 29 at 23:44
HyperionHyperion
702111
702111
add a comment |
add a comment |
$begingroup$
Alternative approach: Partial fractions.
Recall that for any complex $z$, and any $n=1,2,...$
$$z^{1/n}=|z|^{1/n}expleft[frac{i}{n}(2pi k+arg z)right],qquad k=0,1,...,n-1$$
Then plug in $z=-1$ and $n=3$ to see that $arg z=arg(-1)=pi$ so that in fact,
$$1+x^3=prod_{k=0}^2left(x-expfrac{ipi(2k+1)}3right)$$
So, letting $r_k=expfrac{ipi(2k+1)}3$,
$$frac1{1+x^3}=prod_{k=0}^2frac1{x-r_k}$$
Look! That's a thing we can do partial fractions on! To do so, we say that
$$prod_{k=0}^2frac1{x-r_k}=sum_{k=0}^2frac{b(k)}{x-r_k}$$
$$left(prod_{a=0}^2(x-r_a)right)prod_{k=0}^2frac1{x-r_k}=left(prod_{a=0}^2(x-r_a)right)sum_{k=0}^2frac{b(k)}{x-r_k}$$
$$1=sum_{k=0}^2frac{b(k)}{x-r_k}prod_{a=0}^2(x-r_a)$$
$$1=sum_{k=0}^2b(k)prod_{a=0\ aneq k}^2(x-r_a)$$
then for any $j=0,1,2$, we may plug in $x=r_j$ and notice that all the terms of the sum vanish except for the case $k=j$, which gives
$$1=b(j)prod_{a=0\ aneq j}^2(r_j-r_a)$$
$$b(j)=prod_{a=0\ aneq j}^2frac1{r_j-r_a}$$
Which is an explicit formula for our partial fractions coefficients. Anyway, we may now integrate:
$$I=intfrac{mathrm dx}{1+x^3}=intsum_{k=0}^2frac{b(k)}{x-r_k}mathrm dx$$
$$I=sum_{k=0}^2b(k)intfrac{mathrm dx}{x-r_k}$$
Which is very easily shown to be
$$I=sum_{k=0}^{2}b(k)lnleft|x-r_kright|$$
$$I=b(0)lnleft|x-r_0right|+b(1)lnleft|x-r_1right|+b(2)lnleft|x-r_2right|$$
And since $b(k)=prodlimits_{a=0\ aneq k}^2frac1{r_k-r_a}$, we have that
$$
b(0)=frac1{(r_0-r_1)(r_0-r_2)}\
b(1)=frac1{(r_1-r_0)(r_1-r_2)}\
b(2)=frac1{(r_2-r_0)(r_2-r_1)}$$
And from $exp(itheta)=costheta+isintheta$,
$$
r_0=expfrac{ipi}3=frac{1+isqrt3}2\
r_1=expfrac{3ipi}3=-1\
r_2=expfrac{5ipi}3=frac{1-isqrt3}2
$$
So
$$
b(0)=-frac16(1+isqrt3)\
b(1)=frac16(1+isqrt3)\
b(2)=frac16(-1+isqrt3)
$$
And finally
$$I=-frac{1+isqrt3}6lnleft|x-frac{1+isqrt3}2right|+frac{1+isqrt3}6lnleft|x+1right|+frac{-1+isqrt3}6lnleft|x+frac{-1+isqrt3}2right|+C$$
In fact, using the same method, it can be shown that
$$intfrac{mathrm dx}{1+x^n}=sum_{k=0}^{n-1}lnleft|x-expfrac{ipi(2k+1)}{n}right|prod_{a=0\aneq k}^{n-1}frac1{expfrac{ipi(2k+1)}{n}-expfrac{ipi(2a+1)}{n}}$$
$endgroup$
1
$begingroup$
Before I got halfway through reading the solution, I knew it was yours!
$endgroup$
– user150203
Jan 30 at 6:42
$begingroup$
@DavidG Haha thanks. I can usually tell which solutions are yours too :)
$endgroup$
– clathratus
Jan 30 at 21:36
add a comment |
$begingroup$
Alternative approach: Partial fractions.
Recall that for any complex $z$, and any $n=1,2,...$
$$z^{1/n}=|z|^{1/n}expleft[frac{i}{n}(2pi k+arg z)right],qquad k=0,1,...,n-1$$
Then plug in $z=-1$ and $n=3$ to see that $arg z=arg(-1)=pi$ so that in fact,
$$1+x^3=prod_{k=0}^2left(x-expfrac{ipi(2k+1)}3right)$$
So, letting $r_k=expfrac{ipi(2k+1)}3$,
$$frac1{1+x^3}=prod_{k=0}^2frac1{x-r_k}$$
Look! That's a thing we can do partial fractions on! To do so, we say that
$$prod_{k=0}^2frac1{x-r_k}=sum_{k=0}^2frac{b(k)}{x-r_k}$$
$$left(prod_{a=0}^2(x-r_a)right)prod_{k=0}^2frac1{x-r_k}=left(prod_{a=0}^2(x-r_a)right)sum_{k=0}^2frac{b(k)}{x-r_k}$$
$$1=sum_{k=0}^2frac{b(k)}{x-r_k}prod_{a=0}^2(x-r_a)$$
$$1=sum_{k=0}^2b(k)prod_{a=0\ aneq k}^2(x-r_a)$$
then for any $j=0,1,2$, we may plug in $x=r_j$ and notice that all the terms of the sum vanish except for the case $k=j$, which gives
$$1=b(j)prod_{a=0\ aneq j}^2(r_j-r_a)$$
$$b(j)=prod_{a=0\ aneq j}^2frac1{r_j-r_a}$$
Which is an explicit formula for our partial fractions coefficients. Anyway, we may now integrate:
$$I=intfrac{mathrm dx}{1+x^3}=intsum_{k=0}^2frac{b(k)}{x-r_k}mathrm dx$$
$$I=sum_{k=0}^2b(k)intfrac{mathrm dx}{x-r_k}$$
Which is very easily shown to be
$$I=sum_{k=0}^{2}b(k)lnleft|x-r_kright|$$
$$I=b(0)lnleft|x-r_0right|+b(1)lnleft|x-r_1right|+b(2)lnleft|x-r_2right|$$
And since $b(k)=prodlimits_{a=0\ aneq k}^2frac1{r_k-r_a}$, we have that
$$
b(0)=frac1{(r_0-r_1)(r_0-r_2)}\
b(1)=frac1{(r_1-r_0)(r_1-r_2)}\
b(2)=frac1{(r_2-r_0)(r_2-r_1)}$$
And from $exp(itheta)=costheta+isintheta$,
$$
r_0=expfrac{ipi}3=frac{1+isqrt3}2\
r_1=expfrac{3ipi}3=-1\
r_2=expfrac{5ipi}3=frac{1-isqrt3}2
$$
So
$$
b(0)=-frac16(1+isqrt3)\
b(1)=frac16(1+isqrt3)\
b(2)=frac16(-1+isqrt3)
$$
And finally
$$I=-frac{1+isqrt3}6lnleft|x-frac{1+isqrt3}2right|+frac{1+isqrt3}6lnleft|x+1right|+frac{-1+isqrt3}6lnleft|x+frac{-1+isqrt3}2right|+C$$
In fact, using the same method, it can be shown that
$$intfrac{mathrm dx}{1+x^n}=sum_{k=0}^{n-1}lnleft|x-expfrac{ipi(2k+1)}{n}right|prod_{a=0\aneq k}^{n-1}frac1{expfrac{ipi(2k+1)}{n}-expfrac{ipi(2a+1)}{n}}$$
$endgroup$
1
$begingroup$
Before I got halfway through reading the solution, I knew it was yours!
$endgroup$
– user150203
Jan 30 at 6:42
$begingroup$
@DavidG Haha thanks. I can usually tell which solutions are yours too :)
$endgroup$
– clathratus
Jan 30 at 21:36
add a comment |
$begingroup$
Alternative approach: Partial fractions.
Recall that for any complex $z$, and any $n=1,2,...$
$$z^{1/n}=|z|^{1/n}expleft[frac{i}{n}(2pi k+arg z)right],qquad k=0,1,...,n-1$$
Then plug in $z=-1$ and $n=3$ to see that $arg z=arg(-1)=pi$ so that in fact,
$$1+x^3=prod_{k=0}^2left(x-expfrac{ipi(2k+1)}3right)$$
So, letting $r_k=expfrac{ipi(2k+1)}3$,
$$frac1{1+x^3}=prod_{k=0}^2frac1{x-r_k}$$
Look! That's a thing we can do partial fractions on! To do so, we say that
$$prod_{k=0}^2frac1{x-r_k}=sum_{k=0}^2frac{b(k)}{x-r_k}$$
$$left(prod_{a=0}^2(x-r_a)right)prod_{k=0}^2frac1{x-r_k}=left(prod_{a=0}^2(x-r_a)right)sum_{k=0}^2frac{b(k)}{x-r_k}$$
$$1=sum_{k=0}^2frac{b(k)}{x-r_k}prod_{a=0}^2(x-r_a)$$
$$1=sum_{k=0}^2b(k)prod_{a=0\ aneq k}^2(x-r_a)$$
then for any $j=0,1,2$, we may plug in $x=r_j$ and notice that all the terms of the sum vanish except for the case $k=j$, which gives
$$1=b(j)prod_{a=0\ aneq j}^2(r_j-r_a)$$
$$b(j)=prod_{a=0\ aneq j}^2frac1{r_j-r_a}$$
Which is an explicit formula for our partial fractions coefficients. Anyway, we may now integrate:
$$I=intfrac{mathrm dx}{1+x^3}=intsum_{k=0}^2frac{b(k)}{x-r_k}mathrm dx$$
$$I=sum_{k=0}^2b(k)intfrac{mathrm dx}{x-r_k}$$
Which is very easily shown to be
$$I=sum_{k=0}^{2}b(k)lnleft|x-r_kright|$$
$$I=b(0)lnleft|x-r_0right|+b(1)lnleft|x-r_1right|+b(2)lnleft|x-r_2right|$$
And since $b(k)=prodlimits_{a=0\ aneq k}^2frac1{r_k-r_a}$, we have that
$$
b(0)=frac1{(r_0-r_1)(r_0-r_2)}\
b(1)=frac1{(r_1-r_0)(r_1-r_2)}\
b(2)=frac1{(r_2-r_0)(r_2-r_1)}$$
And from $exp(itheta)=costheta+isintheta$,
$$
r_0=expfrac{ipi}3=frac{1+isqrt3}2\
r_1=expfrac{3ipi}3=-1\
r_2=expfrac{5ipi}3=frac{1-isqrt3}2
$$
So
$$
b(0)=-frac16(1+isqrt3)\
b(1)=frac16(1+isqrt3)\
b(2)=frac16(-1+isqrt3)
$$
And finally
$$I=-frac{1+isqrt3}6lnleft|x-frac{1+isqrt3}2right|+frac{1+isqrt3}6lnleft|x+1right|+frac{-1+isqrt3}6lnleft|x+frac{-1+isqrt3}2right|+C$$
In fact, using the same method, it can be shown that
$$intfrac{mathrm dx}{1+x^n}=sum_{k=0}^{n-1}lnleft|x-expfrac{ipi(2k+1)}{n}right|prod_{a=0\aneq k}^{n-1}frac1{expfrac{ipi(2k+1)}{n}-expfrac{ipi(2a+1)}{n}}$$
$endgroup$
Alternative approach: Partial fractions.
Recall that for any complex $z$, and any $n=1,2,...$
$$z^{1/n}=|z|^{1/n}expleft[frac{i}{n}(2pi k+arg z)right],qquad k=0,1,...,n-1$$
Then plug in $z=-1$ and $n=3$ to see that $arg z=arg(-1)=pi$ so that in fact,
$$1+x^3=prod_{k=0}^2left(x-expfrac{ipi(2k+1)}3right)$$
So, letting $r_k=expfrac{ipi(2k+1)}3$,
$$frac1{1+x^3}=prod_{k=0}^2frac1{x-r_k}$$
Look! That's a thing we can do partial fractions on! To do so, we say that
$$prod_{k=0}^2frac1{x-r_k}=sum_{k=0}^2frac{b(k)}{x-r_k}$$
$$left(prod_{a=0}^2(x-r_a)right)prod_{k=0}^2frac1{x-r_k}=left(prod_{a=0}^2(x-r_a)right)sum_{k=0}^2frac{b(k)}{x-r_k}$$
$$1=sum_{k=0}^2frac{b(k)}{x-r_k}prod_{a=0}^2(x-r_a)$$
$$1=sum_{k=0}^2b(k)prod_{a=0\ aneq k}^2(x-r_a)$$
then for any $j=0,1,2$, we may plug in $x=r_j$ and notice that all the terms of the sum vanish except for the case $k=j$, which gives
$$1=b(j)prod_{a=0\ aneq j}^2(r_j-r_a)$$
$$b(j)=prod_{a=0\ aneq j}^2frac1{r_j-r_a}$$
Which is an explicit formula for our partial fractions coefficients. Anyway, we may now integrate:
$$I=intfrac{mathrm dx}{1+x^3}=intsum_{k=0}^2frac{b(k)}{x-r_k}mathrm dx$$
$$I=sum_{k=0}^2b(k)intfrac{mathrm dx}{x-r_k}$$
Which is very easily shown to be
$$I=sum_{k=0}^{2}b(k)lnleft|x-r_kright|$$
$$I=b(0)lnleft|x-r_0right|+b(1)lnleft|x-r_1right|+b(2)lnleft|x-r_2right|$$
And since $b(k)=prodlimits_{a=0\ aneq k}^2frac1{r_k-r_a}$, we have that
$$
b(0)=frac1{(r_0-r_1)(r_0-r_2)}\
b(1)=frac1{(r_1-r_0)(r_1-r_2)}\
b(2)=frac1{(r_2-r_0)(r_2-r_1)}$$
And from $exp(itheta)=costheta+isintheta$,
$$
r_0=expfrac{ipi}3=frac{1+isqrt3}2\
r_1=expfrac{3ipi}3=-1\
r_2=expfrac{5ipi}3=frac{1-isqrt3}2
$$
So
$$
b(0)=-frac16(1+isqrt3)\
b(1)=frac16(1+isqrt3)\
b(2)=frac16(-1+isqrt3)
$$
And finally
$$I=-frac{1+isqrt3}6lnleft|x-frac{1+isqrt3}2right|+frac{1+isqrt3}6lnleft|x+1right|+frac{-1+isqrt3}6lnleft|x+frac{-1+isqrt3}2right|+C$$
In fact, using the same method, it can be shown that
$$intfrac{mathrm dx}{1+x^n}=sum_{k=0}^{n-1}lnleft|x-expfrac{ipi(2k+1)}{n}right|prod_{a=0\aneq k}^{n-1}frac1{expfrac{ipi(2k+1)}{n}-expfrac{ipi(2a+1)}{n}}$$
edited Jan 30 at 1:56
answered Jan 30 at 1:47
clathratusclathratus
5,0641439
5,0641439
1
$begingroup$
Before I got halfway through reading the solution, I knew it was yours!
$endgroup$
– user150203
Jan 30 at 6:42
$begingroup$
@DavidG Haha thanks. I can usually tell which solutions are yours too :)
$endgroup$
– clathratus
Jan 30 at 21:36
add a comment |
1
$begingroup$
Before I got halfway through reading the solution, I knew it was yours!
$endgroup$
– user150203
Jan 30 at 6:42
$begingroup$
@DavidG Haha thanks. I can usually tell which solutions are yours too :)
$endgroup$
– clathratus
Jan 30 at 21:36
1
1
$begingroup$
Before I got halfway through reading the solution, I knew it was yours!
$endgroup$
– user150203
Jan 30 at 6:42
$begingroup$
Before I got halfway through reading the solution, I knew it was yours!
$endgroup$
– user150203
Jan 30 at 6:42
$begingroup$
@DavidG Haha thanks. I can usually tell which solutions are yours too :)
$endgroup$
– clathratus
Jan 30 at 21:36
$begingroup$
@DavidG Haha thanks. I can usually tell which solutions are yours too :)
$endgroup$
– clathratus
Jan 30 at 21:36
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092884%2fintegral-int-frac11x3dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown