Trig substitution problem. Stuck but close.












0












$begingroup$


I have this problem:



$$int_0^2 sqrt{1 + 4x^2}$$



Here's how I start. I focus on finding the antiderivative:
$$ int sqrt{4 * (frac{1}{4} + x^2)}$$



$$ int 2* sqrt{frac{1}{4} + x^2)} dx$$



so let $x = frac{1}{2} * tan{theta}$ so $dx = frac{1}{2} * sec^2theta dtheta$



so...



$$ int 2 sqrt{frac{1}{4} + frac{1}{4}tan^2{theta}} * frac{1}{2}sec^2{theta} cdot dtheta$$



and by $sec^2{theta} = 1 + tan^2{theta}$:



$$ int 2 cdot frac{1}{2} sec{theta} cdot frac{1}{2} sec^2{theta} cdot dtheta$$



$$ int frac{1}{2} sec{theta} cdot sec^2{theta} cdot dtheta$$ Let's call the above line : (1)



and now integration by parts:



$u = sec{theta}$ and so $du = sec{theta}tan{theta}$



$dv = sec^2{theta}$ and so $v = tan{theta}$



so = $$frac{1}{2} (cdot sec{theta}tan{theta} - int tan^2{theta} sec{theta} cdot dtheta)$$



and so since $tan^2{theta} = sec^2{theta} - 1$



$$frac{1}{2} (cdot sec{theta}tan{theta} - int sec^3{theta} - int sec{theta} cdot dtheta)$$



So using (1) we have:



$$(frac{1}{2} cdot sec{theta} cdot tan{theta} - frac{1}{2} int sec^3{theta} - frac{1}{2} int sec{theta} cdot dtheta) = int frac{1}{2} sec{theta} cdot sec^2{theta} cdot dtheta = int frac{1}{2} sec^3{theta} dtheta$$



combining like sec^3{theta} terms:



$$ (frac{1}{2} cdot sec{theta} cdot tan{theta} - frac{1}{2} int sec{theta} cdot dtheta) = sec^3{theta} $$



and now multiplying by $frac{1}{2}$ again:



$$ (frac{1}{4} cdot sec{theta} cdot tan{theta} - frac{1}{4} int sec{theta} cdot dtheta) = frac{1}{2} sec^3{theta} $$



But what's the antiderivative of $int sec{theta} dtheta$ ?



I'm told to do this but I don't really get it:



enter image description here










share|cite|improve this question









$endgroup$












  • $begingroup$
    wow. A bit cleaner to use $x = frac{1}{2} sinh t$ although you still need some "double angle" formula.
    $endgroup$
    – Will Jagy
    Jan 30 at 1:17
















0












$begingroup$


I have this problem:



$$int_0^2 sqrt{1 + 4x^2}$$



Here's how I start. I focus on finding the antiderivative:
$$ int sqrt{4 * (frac{1}{4} + x^2)}$$



$$ int 2* sqrt{frac{1}{4} + x^2)} dx$$



so let $x = frac{1}{2} * tan{theta}$ so $dx = frac{1}{2} * sec^2theta dtheta$



so...



$$ int 2 sqrt{frac{1}{4} + frac{1}{4}tan^2{theta}} * frac{1}{2}sec^2{theta} cdot dtheta$$



and by $sec^2{theta} = 1 + tan^2{theta}$:



$$ int 2 cdot frac{1}{2} sec{theta} cdot frac{1}{2} sec^2{theta} cdot dtheta$$



$$ int frac{1}{2} sec{theta} cdot sec^2{theta} cdot dtheta$$ Let's call the above line : (1)



and now integration by parts:



$u = sec{theta}$ and so $du = sec{theta}tan{theta}$



$dv = sec^2{theta}$ and so $v = tan{theta}$



so = $$frac{1}{2} (cdot sec{theta}tan{theta} - int tan^2{theta} sec{theta} cdot dtheta)$$



and so since $tan^2{theta} = sec^2{theta} - 1$



$$frac{1}{2} (cdot sec{theta}tan{theta} - int sec^3{theta} - int sec{theta} cdot dtheta)$$



So using (1) we have:



$$(frac{1}{2} cdot sec{theta} cdot tan{theta} - frac{1}{2} int sec^3{theta} - frac{1}{2} int sec{theta} cdot dtheta) = int frac{1}{2} sec{theta} cdot sec^2{theta} cdot dtheta = int frac{1}{2} sec^3{theta} dtheta$$



combining like sec^3{theta} terms:



$$ (frac{1}{2} cdot sec{theta} cdot tan{theta} - frac{1}{2} int sec{theta} cdot dtheta) = sec^3{theta} $$



and now multiplying by $frac{1}{2}$ again:



$$ (frac{1}{4} cdot sec{theta} cdot tan{theta} - frac{1}{4} int sec{theta} cdot dtheta) = frac{1}{2} sec^3{theta} $$



But what's the antiderivative of $int sec{theta} dtheta$ ?



I'm told to do this but I don't really get it:



enter image description here










share|cite|improve this question









$endgroup$












  • $begingroup$
    wow. A bit cleaner to use $x = frac{1}{2} sinh t$ although you still need some "double angle" formula.
    $endgroup$
    – Will Jagy
    Jan 30 at 1:17














0












0








0





$begingroup$


I have this problem:



$$int_0^2 sqrt{1 + 4x^2}$$



Here's how I start. I focus on finding the antiderivative:
$$ int sqrt{4 * (frac{1}{4} + x^2)}$$



$$ int 2* sqrt{frac{1}{4} + x^2)} dx$$



so let $x = frac{1}{2} * tan{theta}$ so $dx = frac{1}{2} * sec^2theta dtheta$



so...



$$ int 2 sqrt{frac{1}{4} + frac{1}{4}tan^2{theta}} * frac{1}{2}sec^2{theta} cdot dtheta$$



and by $sec^2{theta} = 1 + tan^2{theta}$:



$$ int 2 cdot frac{1}{2} sec{theta} cdot frac{1}{2} sec^2{theta} cdot dtheta$$



$$ int frac{1}{2} sec{theta} cdot sec^2{theta} cdot dtheta$$ Let's call the above line : (1)



and now integration by parts:



$u = sec{theta}$ and so $du = sec{theta}tan{theta}$



$dv = sec^2{theta}$ and so $v = tan{theta}$



so = $$frac{1}{2} (cdot sec{theta}tan{theta} - int tan^2{theta} sec{theta} cdot dtheta)$$



and so since $tan^2{theta} = sec^2{theta} - 1$



$$frac{1}{2} (cdot sec{theta}tan{theta} - int sec^3{theta} - int sec{theta} cdot dtheta)$$



So using (1) we have:



$$(frac{1}{2} cdot sec{theta} cdot tan{theta} - frac{1}{2} int sec^3{theta} - frac{1}{2} int sec{theta} cdot dtheta) = int frac{1}{2} sec{theta} cdot sec^2{theta} cdot dtheta = int frac{1}{2} sec^3{theta} dtheta$$



combining like sec^3{theta} terms:



$$ (frac{1}{2} cdot sec{theta} cdot tan{theta} - frac{1}{2} int sec{theta} cdot dtheta) = sec^3{theta} $$



and now multiplying by $frac{1}{2}$ again:



$$ (frac{1}{4} cdot sec{theta} cdot tan{theta} - frac{1}{4} int sec{theta} cdot dtheta) = frac{1}{2} sec^3{theta} $$



But what's the antiderivative of $int sec{theta} dtheta$ ?



I'm told to do this but I don't really get it:



enter image description here










share|cite|improve this question









$endgroup$




I have this problem:



$$int_0^2 sqrt{1 + 4x^2}$$



Here's how I start. I focus on finding the antiderivative:
$$ int sqrt{4 * (frac{1}{4} + x^2)}$$



$$ int 2* sqrt{frac{1}{4} + x^2)} dx$$



so let $x = frac{1}{2} * tan{theta}$ so $dx = frac{1}{2} * sec^2theta dtheta$



so...



$$ int 2 sqrt{frac{1}{4} + frac{1}{4}tan^2{theta}} * frac{1}{2}sec^2{theta} cdot dtheta$$



and by $sec^2{theta} = 1 + tan^2{theta}$:



$$ int 2 cdot frac{1}{2} sec{theta} cdot frac{1}{2} sec^2{theta} cdot dtheta$$



$$ int frac{1}{2} sec{theta} cdot sec^2{theta} cdot dtheta$$ Let's call the above line : (1)



and now integration by parts:



$u = sec{theta}$ and so $du = sec{theta}tan{theta}$



$dv = sec^2{theta}$ and so $v = tan{theta}$



so = $$frac{1}{2} (cdot sec{theta}tan{theta} - int tan^2{theta} sec{theta} cdot dtheta)$$



and so since $tan^2{theta} = sec^2{theta} - 1$



$$frac{1}{2} (cdot sec{theta}tan{theta} - int sec^3{theta} - int sec{theta} cdot dtheta)$$



So using (1) we have:



$$(frac{1}{2} cdot sec{theta} cdot tan{theta} - frac{1}{2} int sec^3{theta} - frac{1}{2} int sec{theta} cdot dtheta) = int frac{1}{2} sec{theta} cdot sec^2{theta} cdot dtheta = int frac{1}{2} sec^3{theta} dtheta$$



combining like sec^3{theta} terms:



$$ (frac{1}{2} cdot sec{theta} cdot tan{theta} - frac{1}{2} int sec{theta} cdot dtheta) = sec^3{theta} $$



and now multiplying by $frac{1}{2}$ again:



$$ (frac{1}{4} cdot sec{theta} cdot tan{theta} - frac{1}{4} int sec{theta} cdot dtheta) = frac{1}{2} sec^3{theta} $$



But what's the antiderivative of $int sec{theta} dtheta$ ?



I'm told to do this but I don't really get it:



enter image description here







calculus






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 30 at 1:13









Jwan622Jwan622

2,34611632




2,34611632












  • $begingroup$
    wow. A bit cleaner to use $x = frac{1}{2} sinh t$ although you still need some "double angle" formula.
    $endgroup$
    – Will Jagy
    Jan 30 at 1:17


















  • $begingroup$
    wow. A bit cleaner to use $x = frac{1}{2} sinh t$ although you still need some "double angle" formula.
    $endgroup$
    – Will Jagy
    Jan 30 at 1:17
















$begingroup$
wow. A bit cleaner to use $x = frac{1}{2} sinh t$ although you still need some "double angle" formula.
$endgroup$
– Will Jagy
Jan 30 at 1:17




$begingroup$
wow. A bit cleaner to use $x = frac{1}{2} sinh t$ although you still need some "double angle" formula.
$endgroup$
– Will Jagy
Jan 30 at 1:17










2 Answers
2






active

oldest

votes


















2












$begingroup$

begin{align}
int sec theta , dtheta = int frac{sec^2 theta + sec theta tan theta}{sec theta + tan theta} , dtheta=ln (sec theta + tan theta) + c
end{align}



Note that this is due to the numerator is the derivative of the denominator.



$$int frac{f'(t)}{f(t)} , dt=ln f(t) + c$$






share|cite|improve this answer









$endgroup$





















    -1












    $begingroup$

    Using a double-angle formula:



    $$sqrt{17}+frac{1}{4} sinh ^{-1}(4)$$



    enter image description here






    share|cite|improve this answer









    $endgroup$














      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092966%2ftrig-substitution-problem-stuck-but-close%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      begin{align}
      int sec theta , dtheta = int frac{sec^2 theta + sec theta tan theta}{sec theta + tan theta} , dtheta=ln (sec theta + tan theta) + c
      end{align}



      Note that this is due to the numerator is the derivative of the denominator.



      $$int frac{f'(t)}{f(t)} , dt=ln f(t) + c$$






      share|cite|improve this answer









      $endgroup$


















        2












        $begingroup$

        begin{align}
        int sec theta , dtheta = int frac{sec^2 theta + sec theta tan theta}{sec theta + tan theta} , dtheta=ln (sec theta + tan theta) + c
        end{align}



        Note that this is due to the numerator is the derivative of the denominator.



        $$int frac{f'(t)}{f(t)} , dt=ln f(t) + c$$






        share|cite|improve this answer









        $endgroup$
















          2












          2








          2





          $begingroup$

          begin{align}
          int sec theta , dtheta = int frac{sec^2 theta + sec theta tan theta}{sec theta + tan theta} , dtheta=ln (sec theta + tan theta) + c
          end{align}



          Note that this is due to the numerator is the derivative of the denominator.



          $$int frac{f'(t)}{f(t)} , dt=ln f(t) + c$$






          share|cite|improve this answer









          $endgroup$



          begin{align}
          int sec theta , dtheta = int frac{sec^2 theta + sec theta tan theta}{sec theta + tan theta} , dtheta=ln (sec theta + tan theta) + c
          end{align}



          Note that this is due to the numerator is the derivative of the denominator.



          $$int frac{f'(t)}{f(t)} , dt=ln f(t) + c$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 30 at 1:17









          Siong Thye GohSiong Thye Goh

          103k1468120




          103k1468120























              -1












              $begingroup$

              Using a double-angle formula:



              $$sqrt{17}+frac{1}{4} sinh ^{-1}(4)$$



              enter image description here






              share|cite|improve this answer









              $endgroup$


















                -1












                $begingroup$

                Using a double-angle formula:



                $$sqrt{17}+frac{1}{4} sinh ^{-1}(4)$$



                enter image description here






                share|cite|improve this answer









                $endgroup$
















                  -1












                  -1








                  -1





                  $begingroup$

                  Using a double-angle formula:



                  $$sqrt{17}+frac{1}{4} sinh ^{-1}(4)$$



                  enter image description here






                  share|cite|improve this answer









                  $endgroup$



                  Using a double-angle formula:



                  $$sqrt{17}+frac{1}{4} sinh ^{-1}(4)$$



                  enter image description here







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 30 at 1:18









                  David G. StorkDavid G. Stork

                  11.6k41534




                  11.6k41534






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092966%2ftrig-substitution-problem-stuck-but-close%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      'app-layout' is not a known element: how to share Component with different Modules

                      android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                      WPF add header to Image with URL pettitions [duplicate]