Trig substitution problem. Stuck but close.
$begingroup$
I have this problem:
$$int_0^2 sqrt{1 + 4x^2}$$
Here's how I start. I focus on finding the antiderivative:
$$ int sqrt{4 * (frac{1}{4} + x^2)}$$
$$ int 2* sqrt{frac{1}{4} + x^2)} dx$$
so let $x = frac{1}{2} * tan{theta}$ so $dx = frac{1}{2} * sec^2theta dtheta$
so...
$$ int 2 sqrt{frac{1}{4} + frac{1}{4}tan^2{theta}} * frac{1}{2}sec^2{theta} cdot dtheta$$
and by $sec^2{theta} = 1 + tan^2{theta}$:
$$ int 2 cdot frac{1}{2} sec{theta} cdot frac{1}{2} sec^2{theta} cdot dtheta$$
$$ int frac{1}{2} sec{theta} cdot sec^2{theta} cdot dtheta$$ Let's call the above line : (1)
and now integration by parts:
$u = sec{theta}$ and so $du = sec{theta}tan{theta}$
$dv = sec^2{theta}$ and so $v = tan{theta}$
so = $$frac{1}{2} (cdot sec{theta}tan{theta} - int tan^2{theta} sec{theta} cdot dtheta)$$
and so since $tan^2{theta} = sec^2{theta} - 1$
$$frac{1}{2} (cdot sec{theta}tan{theta} - int sec^3{theta} - int sec{theta} cdot dtheta)$$
So using (1) we have:
$$(frac{1}{2} cdot sec{theta} cdot tan{theta} - frac{1}{2} int sec^3{theta} - frac{1}{2} int sec{theta} cdot dtheta) = int frac{1}{2} sec{theta} cdot sec^2{theta} cdot dtheta = int frac{1}{2} sec^3{theta} dtheta$$
combining like sec^3{theta} terms:
$$ (frac{1}{2} cdot sec{theta} cdot tan{theta} - frac{1}{2} int sec{theta} cdot dtheta) = sec^3{theta} $$
and now multiplying by $frac{1}{2}$ again:
$$ (frac{1}{4} cdot sec{theta} cdot tan{theta} - frac{1}{4} int sec{theta} cdot dtheta) = frac{1}{2} sec^3{theta} $$
But what's the antiderivative of $int sec{theta} dtheta$ ?
I'm told to do this but I don't really get it:
calculus
$endgroup$
add a comment |
$begingroup$
I have this problem:
$$int_0^2 sqrt{1 + 4x^2}$$
Here's how I start. I focus on finding the antiderivative:
$$ int sqrt{4 * (frac{1}{4} + x^2)}$$
$$ int 2* sqrt{frac{1}{4} + x^2)} dx$$
so let $x = frac{1}{2} * tan{theta}$ so $dx = frac{1}{2} * sec^2theta dtheta$
so...
$$ int 2 sqrt{frac{1}{4} + frac{1}{4}tan^2{theta}} * frac{1}{2}sec^2{theta} cdot dtheta$$
and by $sec^2{theta} = 1 + tan^2{theta}$:
$$ int 2 cdot frac{1}{2} sec{theta} cdot frac{1}{2} sec^2{theta} cdot dtheta$$
$$ int frac{1}{2} sec{theta} cdot sec^2{theta} cdot dtheta$$ Let's call the above line : (1)
and now integration by parts:
$u = sec{theta}$ and so $du = sec{theta}tan{theta}$
$dv = sec^2{theta}$ and so $v = tan{theta}$
so = $$frac{1}{2} (cdot sec{theta}tan{theta} - int tan^2{theta} sec{theta} cdot dtheta)$$
and so since $tan^2{theta} = sec^2{theta} - 1$
$$frac{1}{2} (cdot sec{theta}tan{theta} - int sec^3{theta} - int sec{theta} cdot dtheta)$$
So using (1) we have:
$$(frac{1}{2} cdot sec{theta} cdot tan{theta} - frac{1}{2} int sec^3{theta} - frac{1}{2} int sec{theta} cdot dtheta) = int frac{1}{2} sec{theta} cdot sec^2{theta} cdot dtheta = int frac{1}{2} sec^3{theta} dtheta$$
combining like sec^3{theta} terms:
$$ (frac{1}{2} cdot sec{theta} cdot tan{theta} - frac{1}{2} int sec{theta} cdot dtheta) = sec^3{theta} $$
and now multiplying by $frac{1}{2}$ again:
$$ (frac{1}{4} cdot sec{theta} cdot tan{theta} - frac{1}{4} int sec{theta} cdot dtheta) = frac{1}{2} sec^3{theta} $$
But what's the antiderivative of $int sec{theta} dtheta$ ?
I'm told to do this but I don't really get it:
calculus
$endgroup$
$begingroup$
wow. A bit cleaner to use $x = frac{1}{2} sinh t$ although you still need some "double angle" formula.
$endgroup$
– Will Jagy
Jan 30 at 1:17
add a comment |
$begingroup$
I have this problem:
$$int_0^2 sqrt{1 + 4x^2}$$
Here's how I start. I focus on finding the antiderivative:
$$ int sqrt{4 * (frac{1}{4} + x^2)}$$
$$ int 2* sqrt{frac{1}{4} + x^2)} dx$$
so let $x = frac{1}{2} * tan{theta}$ so $dx = frac{1}{2} * sec^2theta dtheta$
so...
$$ int 2 sqrt{frac{1}{4} + frac{1}{4}tan^2{theta}} * frac{1}{2}sec^2{theta} cdot dtheta$$
and by $sec^2{theta} = 1 + tan^2{theta}$:
$$ int 2 cdot frac{1}{2} sec{theta} cdot frac{1}{2} sec^2{theta} cdot dtheta$$
$$ int frac{1}{2} sec{theta} cdot sec^2{theta} cdot dtheta$$ Let's call the above line : (1)
and now integration by parts:
$u = sec{theta}$ and so $du = sec{theta}tan{theta}$
$dv = sec^2{theta}$ and so $v = tan{theta}$
so = $$frac{1}{2} (cdot sec{theta}tan{theta} - int tan^2{theta} sec{theta} cdot dtheta)$$
and so since $tan^2{theta} = sec^2{theta} - 1$
$$frac{1}{2} (cdot sec{theta}tan{theta} - int sec^3{theta} - int sec{theta} cdot dtheta)$$
So using (1) we have:
$$(frac{1}{2} cdot sec{theta} cdot tan{theta} - frac{1}{2} int sec^3{theta} - frac{1}{2} int sec{theta} cdot dtheta) = int frac{1}{2} sec{theta} cdot sec^2{theta} cdot dtheta = int frac{1}{2} sec^3{theta} dtheta$$
combining like sec^3{theta} terms:
$$ (frac{1}{2} cdot sec{theta} cdot tan{theta} - frac{1}{2} int sec{theta} cdot dtheta) = sec^3{theta} $$
and now multiplying by $frac{1}{2}$ again:
$$ (frac{1}{4} cdot sec{theta} cdot tan{theta} - frac{1}{4} int sec{theta} cdot dtheta) = frac{1}{2} sec^3{theta} $$
But what's the antiderivative of $int sec{theta} dtheta$ ?
I'm told to do this but I don't really get it:
calculus
$endgroup$
I have this problem:
$$int_0^2 sqrt{1 + 4x^2}$$
Here's how I start. I focus on finding the antiderivative:
$$ int sqrt{4 * (frac{1}{4} + x^2)}$$
$$ int 2* sqrt{frac{1}{4} + x^2)} dx$$
so let $x = frac{1}{2} * tan{theta}$ so $dx = frac{1}{2} * sec^2theta dtheta$
so...
$$ int 2 sqrt{frac{1}{4} + frac{1}{4}tan^2{theta}} * frac{1}{2}sec^2{theta} cdot dtheta$$
and by $sec^2{theta} = 1 + tan^2{theta}$:
$$ int 2 cdot frac{1}{2} sec{theta} cdot frac{1}{2} sec^2{theta} cdot dtheta$$
$$ int frac{1}{2} sec{theta} cdot sec^2{theta} cdot dtheta$$ Let's call the above line : (1)
and now integration by parts:
$u = sec{theta}$ and so $du = sec{theta}tan{theta}$
$dv = sec^2{theta}$ and so $v = tan{theta}$
so = $$frac{1}{2} (cdot sec{theta}tan{theta} - int tan^2{theta} sec{theta} cdot dtheta)$$
and so since $tan^2{theta} = sec^2{theta} - 1$
$$frac{1}{2} (cdot sec{theta}tan{theta} - int sec^3{theta} - int sec{theta} cdot dtheta)$$
So using (1) we have:
$$(frac{1}{2} cdot sec{theta} cdot tan{theta} - frac{1}{2} int sec^3{theta} - frac{1}{2} int sec{theta} cdot dtheta) = int frac{1}{2} sec{theta} cdot sec^2{theta} cdot dtheta = int frac{1}{2} sec^3{theta} dtheta$$
combining like sec^3{theta} terms:
$$ (frac{1}{2} cdot sec{theta} cdot tan{theta} - frac{1}{2} int sec{theta} cdot dtheta) = sec^3{theta} $$
and now multiplying by $frac{1}{2}$ again:
$$ (frac{1}{4} cdot sec{theta} cdot tan{theta} - frac{1}{4} int sec{theta} cdot dtheta) = frac{1}{2} sec^3{theta} $$
But what's the antiderivative of $int sec{theta} dtheta$ ?
I'm told to do this but I don't really get it:
calculus
calculus
asked Jan 30 at 1:13
Jwan622Jwan622
2,34611632
2,34611632
$begingroup$
wow. A bit cleaner to use $x = frac{1}{2} sinh t$ although you still need some "double angle" formula.
$endgroup$
– Will Jagy
Jan 30 at 1:17
add a comment |
$begingroup$
wow. A bit cleaner to use $x = frac{1}{2} sinh t$ although you still need some "double angle" formula.
$endgroup$
– Will Jagy
Jan 30 at 1:17
$begingroup$
wow. A bit cleaner to use $x = frac{1}{2} sinh t$ although you still need some "double angle" formula.
$endgroup$
– Will Jagy
Jan 30 at 1:17
$begingroup$
wow. A bit cleaner to use $x = frac{1}{2} sinh t$ although you still need some "double angle" formula.
$endgroup$
– Will Jagy
Jan 30 at 1:17
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
begin{align}
int sec theta , dtheta = int frac{sec^2 theta + sec theta tan theta}{sec theta + tan theta} , dtheta=ln (sec theta + tan theta) + c
end{align}
Note that this is due to the numerator is the derivative of the denominator.
$$int frac{f'(t)}{f(t)} , dt=ln f(t) + c$$
$endgroup$
add a comment |
$begingroup$
Using a double-angle formula:
$$sqrt{17}+frac{1}{4} sinh ^{-1}(4)$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092966%2ftrig-substitution-problem-stuck-but-close%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
begin{align}
int sec theta , dtheta = int frac{sec^2 theta + sec theta tan theta}{sec theta + tan theta} , dtheta=ln (sec theta + tan theta) + c
end{align}
Note that this is due to the numerator is the derivative of the denominator.
$$int frac{f'(t)}{f(t)} , dt=ln f(t) + c$$
$endgroup$
add a comment |
$begingroup$
begin{align}
int sec theta , dtheta = int frac{sec^2 theta + sec theta tan theta}{sec theta + tan theta} , dtheta=ln (sec theta + tan theta) + c
end{align}
Note that this is due to the numerator is the derivative of the denominator.
$$int frac{f'(t)}{f(t)} , dt=ln f(t) + c$$
$endgroup$
add a comment |
$begingroup$
begin{align}
int sec theta , dtheta = int frac{sec^2 theta + sec theta tan theta}{sec theta + tan theta} , dtheta=ln (sec theta + tan theta) + c
end{align}
Note that this is due to the numerator is the derivative of the denominator.
$$int frac{f'(t)}{f(t)} , dt=ln f(t) + c$$
$endgroup$
begin{align}
int sec theta , dtheta = int frac{sec^2 theta + sec theta tan theta}{sec theta + tan theta} , dtheta=ln (sec theta + tan theta) + c
end{align}
Note that this is due to the numerator is the derivative of the denominator.
$$int frac{f'(t)}{f(t)} , dt=ln f(t) + c$$
answered Jan 30 at 1:17
Siong Thye GohSiong Thye Goh
103k1468120
103k1468120
add a comment |
add a comment |
$begingroup$
Using a double-angle formula:
$$sqrt{17}+frac{1}{4} sinh ^{-1}(4)$$
$endgroup$
add a comment |
$begingroup$
Using a double-angle formula:
$$sqrt{17}+frac{1}{4} sinh ^{-1}(4)$$
$endgroup$
add a comment |
$begingroup$
Using a double-angle formula:
$$sqrt{17}+frac{1}{4} sinh ^{-1}(4)$$
$endgroup$
Using a double-angle formula:
$$sqrt{17}+frac{1}{4} sinh ^{-1}(4)$$
answered Jan 30 at 1:18
David G. StorkDavid G. Stork
11.6k41534
11.6k41534
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092966%2ftrig-substitution-problem-stuck-but-close%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
wow. A bit cleaner to use $x = frac{1}{2} sinh t$ although you still need some "double angle" formula.
$endgroup$
– Will Jagy
Jan 30 at 1:17