Riemann tensor symmetries
The Riemann tensor has its component expression:
$R^{mu}_{nurhosigma}=partial_{rho}Gamma^{mu}_{sigmanu}-partial_{sigma}Gamma^{mu}_{rhonu}+Gamma^{mu}_{rholambda}Gamma^{lambda}_{sigmanu}-Gamma^{mu}_{sigmalambda}Gamma^{lambda}_{rhonu}.$
It is straight forward to prove the antisymmetry of $R$ in the last two indices; but how to prove the antisymmetry in the first two ones without assuming symmetric connection/torsion-free metric?
differential-geometry general-relativity
add a comment |
The Riemann tensor has its component expression:
$R^{mu}_{nurhosigma}=partial_{rho}Gamma^{mu}_{sigmanu}-partial_{sigma}Gamma^{mu}_{rhonu}+Gamma^{mu}_{rholambda}Gamma^{lambda}_{sigmanu}-Gamma^{mu}_{sigmalambda}Gamma^{lambda}_{rhonu}.$
It is straight forward to prove the antisymmetry of $R$ in the last two indices; but how to prove the antisymmetry in the first two ones without assuming symmetric connection/torsion-free metric?
differential-geometry general-relativity
6
Riemann tensor can be equivalently viewed as curvature 2-form $Omega$ with values in a Lie algebra $mathfrak g$ of group $G = SO(n)$. The antisymmetry in one pair comes from being a 2-form, the antisymmetry in the other pair comes from the antisymmetry of ${mathfrak so}(n)$. This holds even when the connection has torsion. But it won't neccesarily hold for non-metric connections (such as symplectic connections). en.wikipedia.org/wiki/Curvature_form
– Marek
Dec 12 '13 at 17:28
Doesn't this just fall from definition?
– IAmNoOne
Nov 21 '18 at 5:24
$R(X,Y)Z=nabla_Y nabla_X Z - nabla_X nabla_Y Z+ nabla_{[X,Y]}Z.$ Switching $X,Y$ $R(Y,X)Z=nabla_X nabla_Y Z - nabla_Y nabla_X Z+ nabla_{[Y,X]}Z = -(nabla_Y nabla_X Z - nabla_X nabla_Y Z - nabla_{[X,Y]}Z) = -R(X,Y)Z$
– IAmNoOne
Nov 21 '18 at 5:29
add a comment |
The Riemann tensor has its component expression:
$R^{mu}_{nurhosigma}=partial_{rho}Gamma^{mu}_{sigmanu}-partial_{sigma}Gamma^{mu}_{rhonu}+Gamma^{mu}_{rholambda}Gamma^{lambda}_{sigmanu}-Gamma^{mu}_{sigmalambda}Gamma^{lambda}_{rhonu}.$
It is straight forward to prove the antisymmetry of $R$ in the last two indices; but how to prove the antisymmetry in the first two ones without assuming symmetric connection/torsion-free metric?
differential-geometry general-relativity
The Riemann tensor has its component expression:
$R^{mu}_{nurhosigma}=partial_{rho}Gamma^{mu}_{sigmanu}-partial_{sigma}Gamma^{mu}_{rhonu}+Gamma^{mu}_{rholambda}Gamma^{lambda}_{sigmanu}-Gamma^{mu}_{sigmalambda}Gamma^{lambda}_{rhonu}.$
It is straight forward to prove the antisymmetry of $R$ in the last two indices; but how to prove the antisymmetry in the first two ones without assuming symmetric connection/torsion-free metric?
differential-geometry general-relativity
differential-geometry general-relativity
asked Dec 12 '13 at 16:17
user115376
515
515
6
Riemann tensor can be equivalently viewed as curvature 2-form $Omega$ with values in a Lie algebra $mathfrak g$ of group $G = SO(n)$. The antisymmetry in one pair comes from being a 2-form, the antisymmetry in the other pair comes from the antisymmetry of ${mathfrak so}(n)$. This holds even when the connection has torsion. But it won't neccesarily hold for non-metric connections (such as symplectic connections). en.wikipedia.org/wiki/Curvature_form
– Marek
Dec 12 '13 at 17:28
Doesn't this just fall from definition?
– IAmNoOne
Nov 21 '18 at 5:24
$R(X,Y)Z=nabla_Y nabla_X Z - nabla_X nabla_Y Z+ nabla_{[X,Y]}Z.$ Switching $X,Y$ $R(Y,X)Z=nabla_X nabla_Y Z - nabla_Y nabla_X Z+ nabla_{[Y,X]}Z = -(nabla_Y nabla_X Z - nabla_X nabla_Y Z - nabla_{[X,Y]}Z) = -R(X,Y)Z$
– IAmNoOne
Nov 21 '18 at 5:29
add a comment |
6
Riemann tensor can be equivalently viewed as curvature 2-form $Omega$ with values in a Lie algebra $mathfrak g$ of group $G = SO(n)$. The antisymmetry in one pair comes from being a 2-form, the antisymmetry in the other pair comes from the antisymmetry of ${mathfrak so}(n)$. This holds even when the connection has torsion. But it won't neccesarily hold for non-metric connections (such as symplectic connections). en.wikipedia.org/wiki/Curvature_form
– Marek
Dec 12 '13 at 17:28
Doesn't this just fall from definition?
– IAmNoOne
Nov 21 '18 at 5:24
$R(X,Y)Z=nabla_Y nabla_X Z - nabla_X nabla_Y Z+ nabla_{[X,Y]}Z.$ Switching $X,Y$ $R(Y,X)Z=nabla_X nabla_Y Z - nabla_Y nabla_X Z+ nabla_{[Y,X]}Z = -(nabla_Y nabla_X Z - nabla_X nabla_Y Z - nabla_{[X,Y]}Z) = -R(X,Y)Z$
– IAmNoOne
Nov 21 '18 at 5:29
6
6
Riemann tensor can be equivalently viewed as curvature 2-form $Omega$ with values in a Lie algebra $mathfrak g$ of group $G = SO(n)$. The antisymmetry in one pair comes from being a 2-form, the antisymmetry in the other pair comes from the antisymmetry of ${mathfrak so}(n)$. This holds even when the connection has torsion. But it won't neccesarily hold for non-metric connections (such as symplectic connections). en.wikipedia.org/wiki/Curvature_form
– Marek
Dec 12 '13 at 17:28
Riemann tensor can be equivalently viewed as curvature 2-form $Omega$ with values in a Lie algebra $mathfrak g$ of group $G = SO(n)$. The antisymmetry in one pair comes from being a 2-form, the antisymmetry in the other pair comes from the antisymmetry of ${mathfrak so}(n)$. This holds even when the connection has torsion. But it won't neccesarily hold for non-metric connections (such as symplectic connections). en.wikipedia.org/wiki/Curvature_form
– Marek
Dec 12 '13 at 17:28
Doesn't this just fall from definition?
– IAmNoOne
Nov 21 '18 at 5:24
Doesn't this just fall from definition?
– IAmNoOne
Nov 21 '18 at 5:24
$R(X,Y)Z=nabla_Y nabla_X Z - nabla_X nabla_Y Z+ nabla_{[X,Y]}Z.$ Switching $X,Y$ $R(Y,X)Z=nabla_X nabla_Y Z - nabla_Y nabla_X Z+ nabla_{[Y,X]}Z = -(nabla_Y nabla_X Z - nabla_X nabla_Y Z - nabla_{[X,Y]}Z) = -R(X,Y)Z$
– IAmNoOne
Nov 21 '18 at 5:29
$R(X,Y)Z=nabla_Y nabla_X Z - nabla_X nabla_Y Z+ nabla_{[X,Y]}Z.$ Switching $X,Y$ $R(Y,X)Z=nabla_X nabla_Y Z - nabla_Y nabla_X Z+ nabla_{[Y,X]}Z = -(nabla_Y nabla_X Z - nabla_X nabla_Y Z - nabla_{[X,Y]}Z) = -R(X,Y)Z$
– IAmNoOne
Nov 21 '18 at 5:29
add a comment |
1 Answer
1
active
oldest
votes
This simple change in definition,
$$nabla_anabla_b-nabla_bnabla_a$$
for
$$nabla_anabla_b-nabla_bnabla_a+T^d_{quad{ab}}nabla_d$$
However, that the Riemann tensor with torsion is no longer symmetric under exchange of the first pair of indices with the second.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f604342%2friemann-tensor-symmetries%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
This simple change in definition,
$$nabla_anabla_b-nabla_bnabla_a$$
for
$$nabla_anabla_b-nabla_bnabla_a+T^d_{quad{ab}}nabla_d$$
However, that the Riemann tensor with torsion is no longer symmetric under exchange of the first pair of indices with the second.
add a comment |
This simple change in definition,
$$nabla_anabla_b-nabla_bnabla_a$$
for
$$nabla_anabla_b-nabla_bnabla_a+T^d_{quad{ab}}nabla_d$$
However, that the Riemann tensor with torsion is no longer symmetric under exchange of the first pair of indices with the second.
add a comment |
This simple change in definition,
$$nabla_anabla_b-nabla_bnabla_a$$
for
$$nabla_anabla_b-nabla_bnabla_a+T^d_{quad{ab}}nabla_d$$
However, that the Riemann tensor with torsion is no longer symmetric under exchange of the first pair of indices with the second.
This simple change in definition,
$$nabla_anabla_b-nabla_bnabla_a$$
for
$$nabla_anabla_b-nabla_bnabla_a+T^d_{quad{ab}}nabla_d$$
However, that the Riemann tensor with torsion is no longer symmetric under exchange of the first pair of indices with the second.
answered Dec 13 '13 at 15:40
jimbo
1,645713
1,645713
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f604342%2friemann-tensor-symmetries%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
6
Riemann tensor can be equivalently viewed as curvature 2-form $Omega$ with values in a Lie algebra $mathfrak g$ of group $G = SO(n)$. The antisymmetry in one pair comes from being a 2-form, the antisymmetry in the other pair comes from the antisymmetry of ${mathfrak so}(n)$. This holds even when the connection has torsion. But it won't neccesarily hold for non-metric connections (such as symplectic connections). en.wikipedia.org/wiki/Curvature_form
– Marek
Dec 12 '13 at 17:28
Doesn't this just fall from definition?
– IAmNoOne
Nov 21 '18 at 5:24
$R(X,Y)Z=nabla_Y nabla_X Z - nabla_X nabla_Y Z+ nabla_{[X,Y]}Z.$ Switching $X,Y$ $R(Y,X)Z=nabla_X nabla_Y Z - nabla_Y nabla_X Z+ nabla_{[Y,X]}Z = -(nabla_Y nabla_X Z - nabla_X nabla_Y Z - nabla_{[X,Y]}Z) = -R(X,Y)Z$
– IAmNoOne
Nov 21 '18 at 5:29