Compute $int_0^infty e^{-az} sum_{n=0}^infty frac{z^{n+2}(u+z)^n}{(n+1)!(n+2)!} dz$
$begingroup$
I got stuck in this problem:
$$int_0^infty e^{-az} sum_{n=0}^infty frac{z^{n+2}(u+z)^n}{(n+1)!(n+2)!} dz ~~(1)$$
where $a>0$.
My thoughts: By Binomial expansion we have
$$ int_0^infty e^{-az} z^{n+2}(u+z)^ndz\
= sum_{k=0}^n frac{n!u^k}{k!(n-k)!} int_0^infty z^{2n-k+2}e^{-az}dz\
= sum_{k=0}^n frac{n!u^k}{k!(n-k)!} frac{(2n-k+2)!}{a^{2n-k+3}}.~~~~~~~~
$$
So
$$(1)=sum_{n=0}^infty frac{1}{(n+1)!(n+2)!} sum_{k=0}^n frac{n!u^k}{k!(n-k)!} frac{(2n-k+2)!}{a^{2n-k+3}}.
$$
Then I got lost. Please let me know if you have any idea or direction about computing $(1)$. Any help would be greatly appreciated, thanks!
calculus combinatorics bessel-functions
$endgroup$
add a comment |
$begingroup$
I got stuck in this problem:
$$int_0^infty e^{-az} sum_{n=0}^infty frac{z^{n+2}(u+z)^n}{(n+1)!(n+2)!} dz ~~(1)$$
where $a>0$.
My thoughts: By Binomial expansion we have
$$ int_0^infty e^{-az} z^{n+2}(u+z)^ndz\
= sum_{k=0}^n frac{n!u^k}{k!(n-k)!} int_0^infty z^{2n-k+2}e^{-az}dz\
= sum_{k=0}^n frac{n!u^k}{k!(n-k)!} frac{(2n-k+2)!}{a^{2n-k+3}}.~~~~~~~~
$$
So
$$(1)=sum_{n=0}^infty frac{1}{(n+1)!(n+2)!} sum_{k=0}^n frac{n!u^k}{k!(n-k)!} frac{(2n-k+2)!}{a^{2n-k+3}}.
$$
Then I got lost. Please let me know if you have any idea or direction about computing $(1)$. Any help would be greatly appreciated, thanks!
calculus combinatorics bessel-functions
$endgroup$
$begingroup$
It should have a simplified solution but I really don't know how to proceed.
$endgroup$
– Violet. W
Feb 6 at 17:28
add a comment |
$begingroup$
I got stuck in this problem:
$$int_0^infty e^{-az} sum_{n=0}^infty frac{z^{n+2}(u+z)^n}{(n+1)!(n+2)!} dz ~~(1)$$
where $a>0$.
My thoughts: By Binomial expansion we have
$$ int_0^infty e^{-az} z^{n+2}(u+z)^ndz\
= sum_{k=0}^n frac{n!u^k}{k!(n-k)!} int_0^infty z^{2n-k+2}e^{-az}dz\
= sum_{k=0}^n frac{n!u^k}{k!(n-k)!} frac{(2n-k+2)!}{a^{2n-k+3}}.~~~~~~~~
$$
So
$$(1)=sum_{n=0}^infty frac{1}{(n+1)!(n+2)!} sum_{k=0}^n frac{n!u^k}{k!(n-k)!} frac{(2n-k+2)!}{a^{2n-k+3}}.
$$
Then I got lost. Please let me know if you have any idea or direction about computing $(1)$. Any help would be greatly appreciated, thanks!
calculus combinatorics bessel-functions
$endgroup$
I got stuck in this problem:
$$int_0^infty e^{-az} sum_{n=0}^infty frac{z^{n+2}(u+z)^n}{(n+1)!(n+2)!} dz ~~(1)$$
where $a>0$.
My thoughts: By Binomial expansion we have
$$ int_0^infty e^{-az} z^{n+2}(u+z)^ndz\
= sum_{k=0}^n frac{n!u^k}{k!(n-k)!} int_0^infty z^{2n-k+2}e^{-az}dz\
= sum_{k=0}^n frac{n!u^k}{k!(n-k)!} frac{(2n-k+2)!}{a^{2n-k+3}}.~~~~~~~~
$$
So
$$(1)=sum_{n=0}^infty frac{1}{(n+1)!(n+2)!} sum_{k=0}^n frac{n!u^k}{k!(n-k)!} frac{(2n-k+2)!}{a^{2n-k+3}}.
$$
Then I got lost. Please let me know if you have any idea or direction about computing $(1)$. Any help would be greatly appreciated, thanks!
calculus combinatorics bessel-functions
calculus combinatorics bessel-functions
asked Feb 2 at 2:53
Violet. WViolet. W
363
363
$begingroup$
It should have a simplified solution but I really don't know how to proceed.
$endgroup$
– Violet. W
Feb 6 at 17:28
add a comment |
$begingroup$
It should have a simplified solution but I really don't know how to proceed.
$endgroup$
– Violet. W
Feb 6 at 17:28
$begingroup$
It should have a simplified solution but I really don't know how to proceed.
$endgroup$
– Violet. W
Feb 6 at 17:28
$begingroup$
It should have a simplified solution but I really don't know how to proceed.
$endgroup$
– Violet. W
Feb 6 at 17:28
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
An explicit form for the series can be found. From the series expansion for the modified Bessel function
begin{equation}
I_{1}left(zright)=sum_{k=0}^{infty}frac{(tfrac{z}{2})^{2k+1}}{k!left(k+1right)!}
end{equation}
we have
begin{align}
sum_{n=0}^infty frac{z^{n+2}(u+z)^n}{(n+1)!(n+2)!} &=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{n=0}^infty frac{left[ z(z+u) right]^{n+3/2}}{(n+1)!(n+2)!}\
&=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{k=1}^infty frac{left[ z(z+u) right]^{k+1/2}}{k!(k+1)!}\
&=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{k=1}^infty frac{left[ sqrt{z(z+u) }right]^{2k+1}}{k!(k+1)!}\
&=frac{sqrt{z}}{left( u+z right)^{3/2}}left[I_1left( 2sqrt{z(z+u) } right)-sqrt{z(z+u) }right]\
&=frac{sqrt{z}}{left( u+z right)^{3/2}}I_1left( 2sqrt{z(z+u) } right)-frac{z}{z+u}
end{align}
To calculate the Laplace transform, we can use an identity tabulated in Ederlyi TI 4.17.15:
begin{align}
int_0^infty &t^{mu-1}left( t+beta right)^{-mu}I_{2nu}left( alphaleft( t^2+beta t right)^{1/2} right)e^{-pt},dt\
&=frac{2Gammaleft( mu+nu right)e^{beta p/2}}{alphabetaGamma(2nu+1)}M_{1/2-mu,nu}left( frac{alpha^2beta}{2p+sqrt{p^2-alpha^2}} right)W_{1/2-mu,nu}left( frac{betaleft( p+sqrt{p^2-alpha^2} right)}{2} right)
end{align}
(with $mu=3/2, nu=1/2,beta=u,alpha=2$) and the integral representation of the exponential integral (DLMF)
begin{align}
int_0^inftyfrac{ze^{-az}}{z+u},dz&=int_0^infty e^{-az},dz-uint_0^inftyfrac{e^{-az}}{z+u},dz\
&=frac{1}{a}-ue^{au}E_{1}left( au right)
end{align}
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096982%2fcompute-int-0-infty-e-az-sum-n-0-infty-fraczn2uznn1n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
An explicit form for the series can be found. From the series expansion for the modified Bessel function
begin{equation}
I_{1}left(zright)=sum_{k=0}^{infty}frac{(tfrac{z}{2})^{2k+1}}{k!left(k+1right)!}
end{equation}
we have
begin{align}
sum_{n=0}^infty frac{z^{n+2}(u+z)^n}{(n+1)!(n+2)!} &=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{n=0}^infty frac{left[ z(z+u) right]^{n+3/2}}{(n+1)!(n+2)!}\
&=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{k=1}^infty frac{left[ z(z+u) right]^{k+1/2}}{k!(k+1)!}\
&=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{k=1}^infty frac{left[ sqrt{z(z+u) }right]^{2k+1}}{k!(k+1)!}\
&=frac{sqrt{z}}{left( u+z right)^{3/2}}left[I_1left( 2sqrt{z(z+u) } right)-sqrt{z(z+u) }right]\
&=frac{sqrt{z}}{left( u+z right)^{3/2}}I_1left( 2sqrt{z(z+u) } right)-frac{z}{z+u}
end{align}
To calculate the Laplace transform, we can use an identity tabulated in Ederlyi TI 4.17.15:
begin{align}
int_0^infty &t^{mu-1}left( t+beta right)^{-mu}I_{2nu}left( alphaleft( t^2+beta t right)^{1/2} right)e^{-pt},dt\
&=frac{2Gammaleft( mu+nu right)e^{beta p/2}}{alphabetaGamma(2nu+1)}M_{1/2-mu,nu}left( frac{alpha^2beta}{2p+sqrt{p^2-alpha^2}} right)W_{1/2-mu,nu}left( frac{betaleft( p+sqrt{p^2-alpha^2} right)}{2} right)
end{align}
(with $mu=3/2, nu=1/2,beta=u,alpha=2$) and the integral representation of the exponential integral (DLMF)
begin{align}
int_0^inftyfrac{ze^{-az}}{z+u},dz&=int_0^infty e^{-az},dz-uint_0^inftyfrac{e^{-az}}{z+u},dz\
&=frac{1}{a}-ue^{au}E_{1}left( au right)
end{align}
$endgroup$
add a comment |
$begingroup$
An explicit form for the series can be found. From the series expansion for the modified Bessel function
begin{equation}
I_{1}left(zright)=sum_{k=0}^{infty}frac{(tfrac{z}{2})^{2k+1}}{k!left(k+1right)!}
end{equation}
we have
begin{align}
sum_{n=0}^infty frac{z^{n+2}(u+z)^n}{(n+1)!(n+2)!} &=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{n=0}^infty frac{left[ z(z+u) right]^{n+3/2}}{(n+1)!(n+2)!}\
&=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{k=1}^infty frac{left[ z(z+u) right]^{k+1/2}}{k!(k+1)!}\
&=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{k=1}^infty frac{left[ sqrt{z(z+u) }right]^{2k+1}}{k!(k+1)!}\
&=frac{sqrt{z}}{left( u+z right)^{3/2}}left[I_1left( 2sqrt{z(z+u) } right)-sqrt{z(z+u) }right]\
&=frac{sqrt{z}}{left( u+z right)^{3/2}}I_1left( 2sqrt{z(z+u) } right)-frac{z}{z+u}
end{align}
To calculate the Laplace transform, we can use an identity tabulated in Ederlyi TI 4.17.15:
begin{align}
int_0^infty &t^{mu-1}left( t+beta right)^{-mu}I_{2nu}left( alphaleft( t^2+beta t right)^{1/2} right)e^{-pt},dt\
&=frac{2Gammaleft( mu+nu right)e^{beta p/2}}{alphabetaGamma(2nu+1)}M_{1/2-mu,nu}left( frac{alpha^2beta}{2p+sqrt{p^2-alpha^2}} right)W_{1/2-mu,nu}left( frac{betaleft( p+sqrt{p^2-alpha^2} right)}{2} right)
end{align}
(with $mu=3/2, nu=1/2,beta=u,alpha=2$) and the integral representation of the exponential integral (DLMF)
begin{align}
int_0^inftyfrac{ze^{-az}}{z+u},dz&=int_0^infty e^{-az},dz-uint_0^inftyfrac{e^{-az}}{z+u},dz\
&=frac{1}{a}-ue^{au}E_{1}left( au right)
end{align}
$endgroup$
add a comment |
$begingroup$
An explicit form for the series can be found. From the series expansion for the modified Bessel function
begin{equation}
I_{1}left(zright)=sum_{k=0}^{infty}frac{(tfrac{z}{2})^{2k+1}}{k!left(k+1right)!}
end{equation}
we have
begin{align}
sum_{n=0}^infty frac{z^{n+2}(u+z)^n}{(n+1)!(n+2)!} &=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{n=0}^infty frac{left[ z(z+u) right]^{n+3/2}}{(n+1)!(n+2)!}\
&=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{k=1}^infty frac{left[ z(z+u) right]^{k+1/2}}{k!(k+1)!}\
&=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{k=1}^infty frac{left[ sqrt{z(z+u) }right]^{2k+1}}{k!(k+1)!}\
&=frac{sqrt{z}}{left( u+z right)^{3/2}}left[I_1left( 2sqrt{z(z+u) } right)-sqrt{z(z+u) }right]\
&=frac{sqrt{z}}{left( u+z right)^{3/2}}I_1left( 2sqrt{z(z+u) } right)-frac{z}{z+u}
end{align}
To calculate the Laplace transform, we can use an identity tabulated in Ederlyi TI 4.17.15:
begin{align}
int_0^infty &t^{mu-1}left( t+beta right)^{-mu}I_{2nu}left( alphaleft( t^2+beta t right)^{1/2} right)e^{-pt},dt\
&=frac{2Gammaleft( mu+nu right)e^{beta p/2}}{alphabetaGamma(2nu+1)}M_{1/2-mu,nu}left( frac{alpha^2beta}{2p+sqrt{p^2-alpha^2}} right)W_{1/2-mu,nu}left( frac{betaleft( p+sqrt{p^2-alpha^2} right)}{2} right)
end{align}
(with $mu=3/2, nu=1/2,beta=u,alpha=2$) and the integral representation of the exponential integral (DLMF)
begin{align}
int_0^inftyfrac{ze^{-az}}{z+u},dz&=int_0^infty e^{-az},dz-uint_0^inftyfrac{e^{-az}}{z+u},dz\
&=frac{1}{a}-ue^{au}E_{1}left( au right)
end{align}
$endgroup$
An explicit form for the series can be found. From the series expansion for the modified Bessel function
begin{equation}
I_{1}left(zright)=sum_{k=0}^{infty}frac{(tfrac{z}{2})^{2k+1}}{k!left(k+1right)!}
end{equation}
we have
begin{align}
sum_{n=0}^infty frac{z^{n+2}(u+z)^n}{(n+1)!(n+2)!} &=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{n=0}^infty frac{left[ z(z+u) right]^{n+3/2}}{(n+1)!(n+2)!}\
&=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{k=1}^infty frac{left[ z(z+u) right]^{k+1/2}}{k!(k+1)!}\
&=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{k=1}^infty frac{left[ sqrt{z(z+u) }right]^{2k+1}}{k!(k+1)!}\
&=frac{sqrt{z}}{left( u+z right)^{3/2}}left[I_1left( 2sqrt{z(z+u) } right)-sqrt{z(z+u) }right]\
&=frac{sqrt{z}}{left( u+z right)^{3/2}}I_1left( 2sqrt{z(z+u) } right)-frac{z}{z+u}
end{align}
To calculate the Laplace transform, we can use an identity tabulated in Ederlyi TI 4.17.15:
begin{align}
int_0^infty &t^{mu-1}left( t+beta right)^{-mu}I_{2nu}left( alphaleft( t^2+beta t right)^{1/2} right)e^{-pt},dt\
&=frac{2Gammaleft( mu+nu right)e^{beta p/2}}{alphabetaGamma(2nu+1)}M_{1/2-mu,nu}left( frac{alpha^2beta}{2p+sqrt{p^2-alpha^2}} right)W_{1/2-mu,nu}left( frac{betaleft( p+sqrt{p^2-alpha^2} right)}{2} right)
end{align}
(with $mu=3/2, nu=1/2,beta=u,alpha=2$) and the integral representation of the exponential integral (DLMF)
begin{align}
int_0^inftyfrac{ze^{-az}}{z+u},dz&=int_0^infty e^{-az},dz-uint_0^inftyfrac{e^{-az}}{z+u},dz\
&=frac{1}{a}-ue^{au}E_{1}left( au right)
end{align}
answered Mar 31 at 21:10
Paul EntaPaul Enta
5,47611435
5,47611435
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096982%2fcompute-int-0-infty-e-az-sum-n-0-infty-fraczn2uznn1n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
It should have a simplified solution but I really don't know how to proceed.
$endgroup$
– Violet. W
Feb 6 at 17:28