Compute $int_0^infty e^{-az} sum_{n=0}^infty frac{z^{n+2}(u+z)^n}{(n+1)!(n+2)!} dz$












2












$begingroup$


I got stuck in this problem:



$$int_0^infty e^{-az} sum_{n=0}^infty frac{z^{n+2}(u+z)^n}{(n+1)!(n+2)!} dz ~~(1)$$
where $a>0$.



My thoughts: By Binomial expansion we have
$$ int_0^infty e^{-az} z^{n+2}(u+z)^ndz\
= sum_{k=0}^n frac{n!u^k}{k!(n-k)!} int_0^infty z^{2n-k+2}e^{-az}dz\
= sum_{k=0}^n frac{n!u^k}{k!(n-k)!} frac{(2n-k+2)!}{a^{2n-k+3}}.~~~~~~~~
$$

So
$$(1)=sum_{n=0}^infty frac{1}{(n+1)!(n+2)!} sum_{k=0}^n frac{n!u^k}{k!(n-k)!} frac{(2n-k+2)!}{a^{2n-k+3}}.
$$

Then I got lost. Please let me know if you have any idea or direction about computing $(1)$. Any help would be greatly appreciated, thanks!










share|cite|improve this question









$endgroup$












  • $begingroup$
    It should have a simplified solution but I really don't know how to proceed.
    $endgroup$
    – Violet. W
    Feb 6 at 17:28
















2












$begingroup$


I got stuck in this problem:



$$int_0^infty e^{-az} sum_{n=0}^infty frac{z^{n+2}(u+z)^n}{(n+1)!(n+2)!} dz ~~(1)$$
where $a>0$.



My thoughts: By Binomial expansion we have
$$ int_0^infty e^{-az} z^{n+2}(u+z)^ndz\
= sum_{k=0}^n frac{n!u^k}{k!(n-k)!} int_0^infty z^{2n-k+2}e^{-az}dz\
= sum_{k=0}^n frac{n!u^k}{k!(n-k)!} frac{(2n-k+2)!}{a^{2n-k+3}}.~~~~~~~~
$$

So
$$(1)=sum_{n=0}^infty frac{1}{(n+1)!(n+2)!} sum_{k=0}^n frac{n!u^k}{k!(n-k)!} frac{(2n-k+2)!}{a^{2n-k+3}}.
$$

Then I got lost. Please let me know if you have any idea or direction about computing $(1)$. Any help would be greatly appreciated, thanks!










share|cite|improve this question









$endgroup$












  • $begingroup$
    It should have a simplified solution but I really don't know how to proceed.
    $endgroup$
    – Violet. W
    Feb 6 at 17:28














2












2








2


1



$begingroup$


I got stuck in this problem:



$$int_0^infty e^{-az} sum_{n=0}^infty frac{z^{n+2}(u+z)^n}{(n+1)!(n+2)!} dz ~~(1)$$
where $a>0$.



My thoughts: By Binomial expansion we have
$$ int_0^infty e^{-az} z^{n+2}(u+z)^ndz\
= sum_{k=0}^n frac{n!u^k}{k!(n-k)!} int_0^infty z^{2n-k+2}e^{-az}dz\
= sum_{k=0}^n frac{n!u^k}{k!(n-k)!} frac{(2n-k+2)!}{a^{2n-k+3}}.~~~~~~~~
$$

So
$$(1)=sum_{n=0}^infty frac{1}{(n+1)!(n+2)!} sum_{k=0}^n frac{n!u^k}{k!(n-k)!} frac{(2n-k+2)!}{a^{2n-k+3}}.
$$

Then I got lost. Please let me know if you have any idea or direction about computing $(1)$. Any help would be greatly appreciated, thanks!










share|cite|improve this question









$endgroup$




I got stuck in this problem:



$$int_0^infty e^{-az} sum_{n=0}^infty frac{z^{n+2}(u+z)^n}{(n+1)!(n+2)!} dz ~~(1)$$
where $a>0$.



My thoughts: By Binomial expansion we have
$$ int_0^infty e^{-az} z^{n+2}(u+z)^ndz\
= sum_{k=0}^n frac{n!u^k}{k!(n-k)!} int_0^infty z^{2n-k+2}e^{-az}dz\
= sum_{k=0}^n frac{n!u^k}{k!(n-k)!} frac{(2n-k+2)!}{a^{2n-k+3}}.~~~~~~~~
$$

So
$$(1)=sum_{n=0}^infty frac{1}{(n+1)!(n+2)!} sum_{k=0}^n frac{n!u^k}{k!(n-k)!} frac{(2n-k+2)!}{a^{2n-k+3}}.
$$

Then I got lost. Please let me know if you have any idea or direction about computing $(1)$. Any help would be greatly appreciated, thanks!







calculus combinatorics bessel-functions






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Feb 2 at 2:53









Violet. WViolet. W

363




363












  • $begingroup$
    It should have a simplified solution but I really don't know how to proceed.
    $endgroup$
    – Violet. W
    Feb 6 at 17:28


















  • $begingroup$
    It should have a simplified solution but I really don't know how to proceed.
    $endgroup$
    – Violet. W
    Feb 6 at 17:28
















$begingroup$
It should have a simplified solution but I really don't know how to proceed.
$endgroup$
– Violet. W
Feb 6 at 17:28




$begingroup$
It should have a simplified solution but I really don't know how to proceed.
$endgroup$
– Violet. W
Feb 6 at 17:28










1 Answer
1






active

oldest

votes


















1












$begingroup$

An explicit form for the series can be found. From the series expansion for the modified Bessel function
begin{equation}
I_{1}left(zright)=sum_{k=0}^{infty}frac{(tfrac{z}{2})^{2k+1}}{k!left(k+1right)!}
end{equation}

we have
begin{align}
sum_{n=0}^infty frac{z^{n+2}(u+z)^n}{(n+1)!(n+2)!} &=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{n=0}^infty frac{left[ z(z+u) right]^{n+3/2}}{(n+1)!(n+2)!}\
&=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{k=1}^infty frac{left[ z(z+u) right]^{k+1/2}}{k!(k+1)!}\
&=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{k=1}^infty frac{left[ sqrt{z(z+u) }right]^{2k+1}}{k!(k+1)!}\
&=frac{sqrt{z}}{left( u+z right)^{3/2}}left[I_1left( 2sqrt{z(z+u) } right)-sqrt{z(z+u) }right]\
&=frac{sqrt{z}}{left( u+z right)^{3/2}}I_1left( 2sqrt{z(z+u) } right)-frac{z}{z+u}
end{align}

To calculate the Laplace transform, we can use an identity tabulated in Ederlyi TI 4.17.15:
begin{align}
int_0^infty &t^{mu-1}left( t+beta right)^{-mu}I_{2nu}left( alphaleft( t^2+beta t right)^{1/2} right)e^{-pt},dt\
&=frac{2Gammaleft( mu+nu right)e^{beta p/2}}{alphabetaGamma(2nu+1)}M_{1/2-mu,nu}left( frac{alpha^2beta}{2p+sqrt{p^2-alpha^2}} right)W_{1/2-mu,nu}left( frac{betaleft( p+sqrt{p^2-alpha^2} right)}{2} right)
end{align}

(with $mu=3/2, nu=1/2,beta=u,alpha=2$) and the integral representation of the exponential integral (DLMF)
begin{align}
int_0^inftyfrac{ze^{-az}}{z+u},dz&=int_0^infty e^{-az},dz-uint_0^inftyfrac{e^{-az}}{z+u},dz\
&=frac{1}{a}-ue^{au}E_{1}left( au right)
end{align}






share|cite|improve this answer









$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096982%2fcompute-int-0-infty-e-az-sum-n-0-infty-fraczn2uznn1n%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    An explicit form for the series can be found. From the series expansion for the modified Bessel function
    begin{equation}
    I_{1}left(zright)=sum_{k=0}^{infty}frac{(tfrac{z}{2})^{2k+1}}{k!left(k+1right)!}
    end{equation}

    we have
    begin{align}
    sum_{n=0}^infty frac{z^{n+2}(u+z)^n}{(n+1)!(n+2)!} &=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{n=0}^infty frac{left[ z(z+u) right]^{n+3/2}}{(n+1)!(n+2)!}\
    &=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{k=1}^infty frac{left[ z(z+u) right]^{k+1/2}}{k!(k+1)!}\
    &=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{k=1}^infty frac{left[ sqrt{z(z+u) }right]^{2k+1}}{k!(k+1)!}\
    &=frac{sqrt{z}}{left( u+z right)^{3/2}}left[I_1left( 2sqrt{z(z+u) } right)-sqrt{z(z+u) }right]\
    &=frac{sqrt{z}}{left( u+z right)^{3/2}}I_1left( 2sqrt{z(z+u) } right)-frac{z}{z+u}
    end{align}

    To calculate the Laplace transform, we can use an identity tabulated in Ederlyi TI 4.17.15:
    begin{align}
    int_0^infty &t^{mu-1}left( t+beta right)^{-mu}I_{2nu}left( alphaleft( t^2+beta t right)^{1/2} right)e^{-pt},dt\
    &=frac{2Gammaleft( mu+nu right)e^{beta p/2}}{alphabetaGamma(2nu+1)}M_{1/2-mu,nu}left( frac{alpha^2beta}{2p+sqrt{p^2-alpha^2}} right)W_{1/2-mu,nu}left( frac{betaleft( p+sqrt{p^2-alpha^2} right)}{2} right)
    end{align}

    (with $mu=3/2, nu=1/2,beta=u,alpha=2$) and the integral representation of the exponential integral (DLMF)
    begin{align}
    int_0^inftyfrac{ze^{-az}}{z+u},dz&=int_0^infty e^{-az},dz-uint_0^inftyfrac{e^{-az}}{z+u},dz\
    &=frac{1}{a}-ue^{au}E_{1}left( au right)
    end{align}






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      An explicit form for the series can be found. From the series expansion for the modified Bessel function
      begin{equation}
      I_{1}left(zright)=sum_{k=0}^{infty}frac{(tfrac{z}{2})^{2k+1}}{k!left(k+1right)!}
      end{equation}

      we have
      begin{align}
      sum_{n=0}^infty frac{z^{n+2}(u+z)^n}{(n+1)!(n+2)!} &=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{n=0}^infty frac{left[ z(z+u) right]^{n+3/2}}{(n+1)!(n+2)!}\
      &=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{k=1}^infty frac{left[ z(z+u) right]^{k+1/2}}{k!(k+1)!}\
      &=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{k=1}^infty frac{left[ sqrt{z(z+u) }right]^{2k+1}}{k!(k+1)!}\
      &=frac{sqrt{z}}{left( u+z right)^{3/2}}left[I_1left( 2sqrt{z(z+u) } right)-sqrt{z(z+u) }right]\
      &=frac{sqrt{z}}{left( u+z right)^{3/2}}I_1left( 2sqrt{z(z+u) } right)-frac{z}{z+u}
      end{align}

      To calculate the Laplace transform, we can use an identity tabulated in Ederlyi TI 4.17.15:
      begin{align}
      int_0^infty &t^{mu-1}left( t+beta right)^{-mu}I_{2nu}left( alphaleft( t^2+beta t right)^{1/2} right)e^{-pt},dt\
      &=frac{2Gammaleft( mu+nu right)e^{beta p/2}}{alphabetaGamma(2nu+1)}M_{1/2-mu,nu}left( frac{alpha^2beta}{2p+sqrt{p^2-alpha^2}} right)W_{1/2-mu,nu}left( frac{betaleft( p+sqrt{p^2-alpha^2} right)}{2} right)
      end{align}

      (with $mu=3/2, nu=1/2,beta=u,alpha=2$) and the integral representation of the exponential integral (DLMF)
      begin{align}
      int_0^inftyfrac{ze^{-az}}{z+u},dz&=int_0^infty e^{-az},dz-uint_0^inftyfrac{e^{-az}}{z+u},dz\
      &=frac{1}{a}-ue^{au}E_{1}left( au right)
      end{align}






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        An explicit form for the series can be found. From the series expansion for the modified Bessel function
        begin{equation}
        I_{1}left(zright)=sum_{k=0}^{infty}frac{(tfrac{z}{2})^{2k+1}}{k!left(k+1right)!}
        end{equation}

        we have
        begin{align}
        sum_{n=0}^infty frac{z^{n+2}(u+z)^n}{(n+1)!(n+2)!} &=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{n=0}^infty frac{left[ z(z+u) right]^{n+3/2}}{(n+1)!(n+2)!}\
        &=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{k=1}^infty frac{left[ z(z+u) right]^{k+1/2}}{k!(k+1)!}\
        &=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{k=1}^infty frac{left[ sqrt{z(z+u) }right]^{2k+1}}{k!(k+1)!}\
        &=frac{sqrt{z}}{left( u+z right)^{3/2}}left[I_1left( 2sqrt{z(z+u) } right)-sqrt{z(z+u) }right]\
        &=frac{sqrt{z}}{left( u+z right)^{3/2}}I_1left( 2sqrt{z(z+u) } right)-frac{z}{z+u}
        end{align}

        To calculate the Laplace transform, we can use an identity tabulated in Ederlyi TI 4.17.15:
        begin{align}
        int_0^infty &t^{mu-1}left( t+beta right)^{-mu}I_{2nu}left( alphaleft( t^2+beta t right)^{1/2} right)e^{-pt},dt\
        &=frac{2Gammaleft( mu+nu right)e^{beta p/2}}{alphabetaGamma(2nu+1)}M_{1/2-mu,nu}left( frac{alpha^2beta}{2p+sqrt{p^2-alpha^2}} right)W_{1/2-mu,nu}left( frac{betaleft( p+sqrt{p^2-alpha^2} right)}{2} right)
        end{align}

        (with $mu=3/2, nu=1/2,beta=u,alpha=2$) and the integral representation of the exponential integral (DLMF)
        begin{align}
        int_0^inftyfrac{ze^{-az}}{z+u},dz&=int_0^infty e^{-az},dz-uint_0^inftyfrac{e^{-az}}{z+u},dz\
        &=frac{1}{a}-ue^{au}E_{1}left( au right)
        end{align}






        share|cite|improve this answer









        $endgroup$



        An explicit form for the series can be found. From the series expansion for the modified Bessel function
        begin{equation}
        I_{1}left(zright)=sum_{k=0}^{infty}frac{(tfrac{z}{2})^{2k+1}}{k!left(k+1right)!}
        end{equation}

        we have
        begin{align}
        sum_{n=0}^infty frac{z^{n+2}(u+z)^n}{(n+1)!(n+2)!} &=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{n=0}^infty frac{left[ z(z+u) right]^{n+3/2}}{(n+1)!(n+2)!}\
        &=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{k=1}^infty frac{left[ z(z+u) right]^{k+1/2}}{k!(k+1)!}\
        &=frac{sqrt{z}}{left( u+z right)^{3/2}}sum_{k=1}^infty frac{left[ sqrt{z(z+u) }right]^{2k+1}}{k!(k+1)!}\
        &=frac{sqrt{z}}{left( u+z right)^{3/2}}left[I_1left( 2sqrt{z(z+u) } right)-sqrt{z(z+u) }right]\
        &=frac{sqrt{z}}{left( u+z right)^{3/2}}I_1left( 2sqrt{z(z+u) } right)-frac{z}{z+u}
        end{align}

        To calculate the Laplace transform, we can use an identity tabulated in Ederlyi TI 4.17.15:
        begin{align}
        int_0^infty &t^{mu-1}left( t+beta right)^{-mu}I_{2nu}left( alphaleft( t^2+beta t right)^{1/2} right)e^{-pt},dt\
        &=frac{2Gammaleft( mu+nu right)e^{beta p/2}}{alphabetaGamma(2nu+1)}M_{1/2-mu,nu}left( frac{alpha^2beta}{2p+sqrt{p^2-alpha^2}} right)W_{1/2-mu,nu}left( frac{betaleft( p+sqrt{p^2-alpha^2} right)}{2} right)
        end{align}

        (with $mu=3/2, nu=1/2,beta=u,alpha=2$) and the integral representation of the exponential integral (DLMF)
        begin{align}
        int_0^inftyfrac{ze^{-az}}{z+u},dz&=int_0^infty e^{-az},dz-uint_0^inftyfrac{e^{-az}}{z+u},dz\
        &=frac{1}{a}-ue^{au}E_{1}left( au right)
        end{align}







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Mar 31 at 21:10









        Paul EntaPaul Enta

        5,47611435




        5,47611435






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096982%2fcompute-int-0-infty-e-az-sum-n-0-infty-fraczn2uznn1n%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith