Function that is homomorphism and bijection
$begingroup$
Find a function from a group
to a permutation group
{1,2,3} that this function be
homomorphism and bijection
abstract-algebra
$endgroup$
add a comment |
$begingroup$
Find a function from a group
to a permutation group
{1,2,3} that this function be
homomorphism and bijection
abstract-algebra
$endgroup$
add a comment |
$begingroup$
Find a function from a group
to a permutation group
{1,2,3} that this function be
homomorphism and bijection
abstract-algebra
$endgroup$
Find a function from a group
to a permutation group
{1,2,3} that this function be
homomorphism and bijection
abstract-algebra
abstract-algebra
edited Feb 2 at 10:07
Bernard
124k741117
124k741117
asked Feb 2 at 7:15
S.gulS.gul
112
112
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
One could just take the identity on $S_3$, the group of permutations of ${1,2,3}$.
For a slightly less trivial example, how about $h:D_3to S_3$ determined by $h(sigma)=(12)$ and $h(rho)=(123)$.
Here $D_3=langle sigma, rhomidsigma^2,rho^3,(sigmarho)^2rangle $.
So $D_3cong S_3$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097097%2ffunction-that-is-homomorphism-and-bijection%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
One could just take the identity on $S_3$, the group of permutations of ${1,2,3}$.
For a slightly less trivial example, how about $h:D_3to S_3$ determined by $h(sigma)=(12)$ and $h(rho)=(123)$.
Here $D_3=langle sigma, rhomidsigma^2,rho^3,(sigmarho)^2rangle $.
So $D_3cong S_3$.
$endgroup$
add a comment |
$begingroup$
One could just take the identity on $S_3$, the group of permutations of ${1,2,3}$.
For a slightly less trivial example, how about $h:D_3to S_3$ determined by $h(sigma)=(12)$ and $h(rho)=(123)$.
Here $D_3=langle sigma, rhomidsigma^2,rho^3,(sigmarho)^2rangle $.
So $D_3cong S_3$.
$endgroup$
add a comment |
$begingroup$
One could just take the identity on $S_3$, the group of permutations of ${1,2,3}$.
For a slightly less trivial example, how about $h:D_3to S_3$ determined by $h(sigma)=(12)$ and $h(rho)=(123)$.
Here $D_3=langle sigma, rhomidsigma^2,rho^3,(sigmarho)^2rangle $.
So $D_3cong S_3$.
$endgroup$
One could just take the identity on $S_3$, the group of permutations of ${1,2,3}$.
For a slightly less trivial example, how about $h:D_3to S_3$ determined by $h(sigma)=(12)$ and $h(rho)=(123)$.
Here $D_3=langle sigma, rhomidsigma^2,rho^3,(sigmarho)^2rangle $.
So $D_3cong S_3$.
answered Feb 2 at 8:43
Chris CusterChris Custer
14.4k3827
14.4k3827
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097097%2ffunction-that-is-homomorphism-and-bijection%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown