conditional distribution of $X$ given $min(X,alpha)$












1












$begingroup$


let $alpha in mathbb{R}.$ So I want to find a conditional distribution for $X$ given $Y=min(X,alpha).$
I know that for all $B in mathcal{B}(mathbb{R})$
$$P_Y(B)=int_B 1_{]-infty, alpha]}(x)dP_X+P(X>alpha)delta_{alpha}(B).$$



I don't know this will help us to find out the conditional distribution.
Thank you for any idea.










share|cite|improve this question









$endgroup$












  • $begingroup$
    It seems that any $$(A,y)mapsto 1_{yneq alpha} delta_{y}(A) + 1_{y=alpha}P_{X|Y=y}(A)$$ where $P_{X|Y=alpha}$ is an arbitrary probability measure is a regular conditional probability of $X|min(X,alpha)$.
    $endgroup$
    – Gabriel Romon
    Feb 2 at 11:55












  • $begingroup$
    if we take a non negative function $h$ from $mathbb{R^2}$ to $mathbb{R}$ a way to find the conditional distribution is to write :$$int_{mathbb{R^2}}h(x,y)dP_{(X,Y)}(x,y)=int_{mathbb{R}}(int_{mathbb{R}}h(x,y)dP_{X|Y=y}(x))dP_Y(y)$$
    $endgroup$
    – mathex
    Feb 2 at 20:44












  • $begingroup$
    And we have $$int h(X,min(alpha,X))dP=int_{]-infty,alpha]}h(x,x)dP_X(x)+int_{]alpha,+infty[}h(x,alpha)dP_X(x)$$ I wonder how to find $P_{X|Y=y}$ from this equality
    $endgroup$
    – mathex
    Feb 2 at 20:54












  • $begingroup$
    So that $$forall y in mathbb{R}, forall B in mathcal{B}(mathbb{R}), P_{X|Y=y}(B)=1_{]-infty,alpha]}(y)delta_y(B)+1_{]alpha,infty[}(y)frac{P_X(B cap ]alpha,+infty[)}{P_X(]alpha,+infty[)}$$ supposing that $P_X(]alpha,+infty[)>0$
    $endgroup$
    – mathex
    Feb 2 at 21:07


















1












$begingroup$


let $alpha in mathbb{R}.$ So I want to find a conditional distribution for $X$ given $Y=min(X,alpha).$
I know that for all $B in mathcal{B}(mathbb{R})$
$$P_Y(B)=int_B 1_{]-infty, alpha]}(x)dP_X+P(X>alpha)delta_{alpha}(B).$$



I don't know this will help us to find out the conditional distribution.
Thank you for any idea.










share|cite|improve this question









$endgroup$












  • $begingroup$
    It seems that any $$(A,y)mapsto 1_{yneq alpha} delta_{y}(A) + 1_{y=alpha}P_{X|Y=y}(A)$$ where $P_{X|Y=alpha}$ is an arbitrary probability measure is a regular conditional probability of $X|min(X,alpha)$.
    $endgroup$
    – Gabriel Romon
    Feb 2 at 11:55












  • $begingroup$
    if we take a non negative function $h$ from $mathbb{R^2}$ to $mathbb{R}$ a way to find the conditional distribution is to write :$$int_{mathbb{R^2}}h(x,y)dP_{(X,Y)}(x,y)=int_{mathbb{R}}(int_{mathbb{R}}h(x,y)dP_{X|Y=y}(x))dP_Y(y)$$
    $endgroup$
    – mathex
    Feb 2 at 20:44












  • $begingroup$
    And we have $$int h(X,min(alpha,X))dP=int_{]-infty,alpha]}h(x,x)dP_X(x)+int_{]alpha,+infty[}h(x,alpha)dP_X(x)$$ I wonder how to find $P_{X|Y=y}$ from this equality
    $endgroup$
    – mathex
    Feb 2 at 20:54












  • $begingroup$
    So that $$forall y in mathbb{R}, forall B in mathcal{B}(mathbb{R}), P_{X|Y=y}(B)=1_{]-infty,alpha]}(y)delta_y(B)+1_{]alpha,infty[}(y)frac{P_X(B cap ]alpha,+infty[)}{P_X(]alpha,+infty[)}$$ supposing that $P_X(]alpha,+infty[)>0$
    $endgroup$
    – mathex
    Feb 2 at 21:07
















1












1








1


0



$begingroup$


let $alpha in mathbb{R}.$ So I want to find a conditional distribution for $X$ given $Y=min(X,alpha).$
I know that for all $B in mathcal{B}(mathbb{R})$
$$P_Y(B)=int_B 1_{]-infty, alpha]}(x)dP_X+P(X>alpha)delta_{alpha}(B).$$



I don't know this will help us to find out the conditional distribution.
Thank you for any idea.










share|cite|improve this question









$endgroup$




let $alpha in mathbb{R}.$ So I want to find a conditional distribution for $X$ given $Y=min(X,alpha).$
I know that for all $B in mathcal{B}(mathbb{R})$
$$P_Y(B)=int_B 1_{]-infty, alpha]}(x)dP_X+P(X>alpha)delta_{alpha}(B).$$



I don't know this will help us to find out the conditional distribution.
Thank you for any idea.







probability-theory measure-theory conditional-expectation conditional-probability






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 31 at 15:25









mathexmathex

1088




1088












  • $begingroup$
    It seems that any $$(A,y)mapsto 1_{yneq alpha} delta_{y}(A) + 1_{y=alpha}P_{X|Y=y}(A)$$ where $P_{X|Y=alpha}$ is an arbitrary probability measure is a regular conditional probability of $X|min(X,alpha)$.
    $endgroup$
    – Gabriel Romon
    Feb 2 at 11:55












  • $begingroup$
    if we take a non negative function $h$ from $mathbb{R^2}$ to $mathbb{R}$ a way to find the conditional distribution is to write :$$int_{mathbb{R^2}}h(x,y)dP_{(X,Y)}(x,y)=int_{mathbb{R}}(int_{mathbb{R}}h(x,y)dP_{X|Y=y}(x))dP_Y(y)$$
    $endgroup$
    – mathex
    Feb 2 at 20:44












  • $begingroup$
    And we have $$int h(X,min(alpha,X))dP=int_{]-infty,alpha]}h(x,x)dP_X(x)+int_{]alpha,+infty[}h(x,alpha)dP_X(x)$$ I wonder how to find $P_{X|Y=y}$ from this equality
    $endgroup$
    – mathex
    Feb 2 at 20:54












  • $begingroup$
    So that $$forall y in mathbb{R}, forall B in mathcal{B}(mathbb{R}), P_{X|Y=y}(B)=1_{]-infty,alpha]}(y)delta_y(B)+1_{]alpha,infty[}(y)frac{P_X(B cap ]alpha,+infty[)}{P_X(]alpha,+infty[)}$$ supposing that $P_X(]alpha,+infty[)>0$
    $endgroup$
    – mathex
    Feb 2 at 21:07




















  • $begingroup$
    It seems that any $$(A,y)mapsto 1_{yneq alpha} delta_{y}(A) + 1_{y=alpha}P_{X|Y=y}(A)$$ where $P_{X|Y=alpha}$ is an arbitrary probability measure is a regular conditional probability of $X|min(X,alpha)$.
    $endgroup$
    – Gabriel Romon
    Feb 2 at 11:55












  • $begingroup$
    if we take a non negative function $h$ from $mathbb{R^2}$ to $mathbb{R}$ a way to find the conditional distribution is to write :$$int_{mathbb{R^2}}h(x,y)dP_{(X,Y)}(x,y)=int_{mathbb{R}}(int_{mathbb{R}}h(x,y)dP_{X|Y=y}(x))dP_Y(y)$$
    $endgroup$
    – mathex
    Feb 2 at 20:44












  • $begingroup$
    And we have $$int h(X,min(alpha,X))dP=int_{]-infty,alpha]}h(x,x)dP_X(x)+int_{]alpha,+infty[}h(x,alpha)dP_X(x)$$ I wonder how to find $P_{X|Y=y}$ from this equality
    $endgroup$
    – mathex
    Feb 2 at 20:54












  • $begingroup$
    So that $$forall y in mathbb{R}, forall B in mathcal{B}(mathbb{R}), P_{X|Y=y}(B)=1_{]-infty,alpha]}(y)delta_y(B)+1_{]alpha,infty[}(y)frac{P_X(B cap ]alpha,+infty[)}{P_X(]alpha,+infty[)}$$ supposing that $P_X(]alpha,+infty[)>0$
    $endgroup$
    – mathex
    Feb 2 at 21:07


















$begingroup$
It seems that any $$(A,y)mapsto 1_{yneq alpha} delta_{y}(A) + 1_{y=alpha}P_{X|Y=y}(A)$$ where $P_{X|Y=alpha}$ is an arbitrary probability measure is a regular conditional probability of $X|min(X,alpha)$.
$endgroup$
– Gabriel Romon
Feb 2 at 11:55






$begingroup$
It seems that any $$(A,y)mapsto 1_{yneq alpha} delta_{y}(A) + 1_{y=alpha}P_{X|Y=y}(A)$$ where $P_{X|Y=alpha}$ is an arbitrary probability measure is a regular conditional probability of $X|min(X,alpha)$.
$endgroup$
– Gabriel Romon
Feb 2 at 11:55














$begingroup$
if we take a non negative function $h$ from $mathbb{R^2}$ to $mathbb{R}$ a way to find the conditional distribution is to write :$$int_{mathbb{R^2}}h(x,y)dP_{(X,Y)}(x,y)=int_{mathbb{R}}(int_{mathbb{R}}h(x,y)dP_{X|Y=y}(x))dP_Y(y)$$
$endgroup$
– mathex
Feb 2 at 20:44






$begingroup$
if we take a non negative function $h$ from $mathbb{R^2}$ to $mathbb{R}$ a way to find the conditional distribution is to write :$$int_{mathbb{R^2}}h(x,y)dP_{(X,Y)}(x,y)=int_{mathbb{R}}(int_{mathbb{R}}h(x,y)dP_{X|Y=y}(x))dP_Y(y)$$
$endgroup$
– mathex
Feb 2 at 20:44














$begingroup$
And we have $$int h(X,min(alpha,X))dP=int_{]-infty,alpha]}h(x,x)dP_X(x)+int_{]alpha,+infty[}h(x,alpha)dP_X(x)$$ I wonder how to find $P_{X|Y=y}$ from this equality
$endgroup$
– mathex
Feb 2 at 20:54






$begingroup$
And we have $$int h(X,min(alpha,X))dP=int_{]-infty,alpha]}h(x,x)dP_X(x)+int_{]alpha,+infty[}h(x,alpha)dP_X(x)$$ I wonder how to find $P_{X|Y=y}$ from this equality
$endgroup$
– mathex
Feb 2 at 20:54














$begingroup$
So that $$forall y in mathbb{R}, forall B in mathcal{B}(mathbb{R}), P_{X|Y=y}(B)=1_{]-infty,alpha]}(y)delta_y(B)+1_{]alpha,infty[}(y)frac{P_X(B cap ]alpha,+infty[)}{P_X(]alpha,+infty[)}$$ supposing that $P_X(]alpha,+infty[)>0$
$endgroup$
– mathex
Feb 2 at 21:07






$begingroup$
So that $$forall y in mathbb{R}, forall B in mathcal{B}(mathbb{R}), P_{X|Y=y}(B)=1_{]-infty,alpha]}(y)delta_y(B)+1_{]alpha,infty[}(y)frac{P_X(B cap ]alpha,+infty[)}{P_X(]alpha,+infty[)}$$ supposing that $P_X(]alpha,+infty[)>0$
$endgroup$
– mathex
Feb 2 at 21:07












0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095009%2fconditional-distribution-of-x-given-minx-alpha%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095009%2fconditional-distribution-of-x-given-minx-alpha%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

Npm cannot find a required file even through it is in the searched directory