conditional distribution of $X$ given $min(X,alpha)$
$begingroup$
let $alpha in mathbb{R}.$ So I want to find a conditional distribution for $X$ given $Y=min(X,alpha).$
I know that for all $B in mathcal{B}(mathbb{R})$
$$P_Y(B)=int_B 1_{]-infty, alpha]}(x)dP_X+P(X>alpha)delta_{alpha}(B).$$
I don't know this will help us to find out the conditional distribution.
Thank you for any idea.
probability-theory measure-theory conditional-expectation conditional-probability
$endgroup$
add a comment |
$begingroup$
let $alpha in mathbb{R}.$ So I want to find a conditional distribution for $X$ given $Y=min(X,alpha).$
I know that for all $B in mathcal{B}(mathbb{R})$
$$P_Y(B)=int_B 1_{]-infty, alpha]}(x)dP_X+P(X>alpha)delta_{alpha}(B).$$
I don't know this will help us to find out the conditional distribution.
Thank you for any idea.
probability-theory measure-theory conditional-expectation conditional-probability
$endgroup$
$begingroup$
It seems that any $$(A,y)mapsto 1_{yneq alpha} delta_{y}(A) + 1_{y=alpha}P_{X|Y=y}(A)$$ where $P_{X|Y=alpha}$ is an arbitrary probability measure is a regular conditional probability of $X|min(X,alpha)$.
$endgroup$
– Gabriel Romon
Feb 2 at 11:55
$begingroup$
if we take a non negative function $h$ from $mathbb{R^2}$ to $mathbb{R}$ a way to find the conditional distribution is to write :$$int_{mathbb{R^2}}h(x,y)dP_{(X,Y)}(x,y)=int_{mathbb{R}}(int_{mathbb{R}}h(x,y)dP_{X|Y=y}(x))dP_Y(y)$$
$endgroup$
– mathex
Feb 2 at 20:44
$begingroup$
And we have $$int h(X,min(alpha,X))dP=int_{]-infty,alpha]}h(x,x)dP_X(x)+int_{]alpha,+infty[}h(x,alpha)dP_X(x)$$ I wonder how to find $P_{X|Y=y}$ from this equality
$endgroup$
– mathex
Feb 2 at 20:54
$begingroup$
So that $$forall y in mathbb{R}, forall B in mathcal{B}(mathbb{R}), P_{X|Y=y}(B)=1_{]-infty,alpha]}(y)delta_y(B)+1_{]alpha,infty[}(y)frac{P_X(B cap ]alpha,+infty[)}{P_X(]alpha,+infty[)}$$ supposing that $P_X(]alpha,+infty[)>0$
$endgroup$
– mathex
Feb 2 at 21:07
add a comment |
$begingroup$
let $alpha in mathbb{R}.$ So I want to find a conditional distribution for $X$ given $Y=min(X,alpha).$
I know that for all $B in mathcal{B}(mathbb{R})$
$$P_Y(B)=int_B 1_{]-infty, alpha]}(x)dP_X+P(X>alpha)delta_{alpha}(B).$$
I don't know this will help us to find out the conditional distribution.
Thank you for any idea.
probability-theory measure-theory conditional-expectation conditional-probability
$endgroup$
let $alpha in mathbb{R}.$ So I want to find a conditional distribution for $X$ given $Y=min(X,alpha).$
I know that for all $B in mathcal{B}(mathbb{R})$
$$P_Y(B)=int_B 1_{]-infty, alpha]}(x)dP_X+P(X>alpha)delta_{alpha}(B).$$
I don't know this will help us to find out the conditional distribution.
Thank you for any idea.
probability-theory measure-theory conditional-expectation conditional-probability
probability-theory measure-theory conditional-expectation conditional-probability
asked Jan 31 at 15:25
mathexmathex
1088
1088
$begingroup$
It seems that any $$(A,y)mapsto 1_{yneq alpha} delta_{y}(A) + 1_{y=alpha}P_{X|Y=y}(A)$$ where $P_{X|Y=alpha}$ is an arbitrary probability measure is a regular conditional probability of $X|min(X,alpha)$.
$endgroup$
– Gabriel Romon
Feb 2 at 11:55
$begingroup$
if we take a non negative function $h$ from $mathbb{R^2}$ to $mathbb{R}$ a way to find the conditional distribution is to write :$$int_{mathbb{R^2}}h(x,y)dP_{(X,Y)}(x,y)=int_{mathbb{R}}(int_{mathbb{R}}h(x,y)dP_{X|Y=y}(x))dP_Y(y)$$
$endgroup$
– mathex
Feb 2 at 20:44
$begingroup$
And we have $$int h(X,min(alpha,X))dP=int_{]-infty,alpha]}h(x,x)dP_X(x)+int_{]alpha,+infty[}h(x,alpha)dP_X(x)$$ I wonder how to find $P_{X|Y=y}$ from this equality
$endgroup$
– mathex
Feb 2 at 20:54
$begingroup$
So that $$forall y in mathbb{R}, forall B in mathcal{B}(mathbb{R}), P_{X|Y=y}(B)=1_{]-infty,alpha]}(y)delta_y(B)+1_{]alpha,infty[}(y)frac{P_X(B cap ]alpha,+infty[)}{P_X(]alpha,+infty[)}$$ supposing that $P_X(]alpha,+infty[)>0$
$endgroup$
– mathex
Feb 2 at 21:07
add a comment |
$begingroup$
It seems that any $$(A,y)mapsto 1_{yneq alpha} delta_{y}(A) + 1_{y=alpha}P_{X|Y=y}(A)$$ where $P_{X|Y=alpha}$ is an arbitrary probability measure is a regular conditional probability of $X|min(X,alpha)$.
$endgroup$
– Gabriel Romon
Feb 2 at 11:55
$begingroup$
if we take a non negative function $h$ from $mathbb{R^2}$ to $mathbb{R}$ a way to find the conditional distribution is to write :$$int_{mathbb{R^2}}h(x,y)dP_{(X,Y)}(x,y)=int_{mathbb{R}}(int_{mathbb{R}}h(x,y)dP_{X|Y=y}(x))dP_Y(y)$$
$endgroup$
– mathex
Feb 2 at 20:44
$begingroup$
And we have $$int h(X,min(alpha,X))dP=int_{]-infty,alpha]}h(x,x)dP_X(x)+int_{]alpha,+infty[}h(x,alpha)dP_X(x)$$ I wonder how to find $P_{X|Y=y}$ from this equality
$endgroup$
– mathex
Feb 2 at 20:54
$begingroup$
So that $$forall y in mathbb{R}, forall B in mathcal{B}(mathbb{R}), P_{X|Y=y}(B)=1_{]-infty,alpha]}(y)delta_y(B)+1_{]alpha,infty[}(y)frac{P_X(B cap ]alpha,+infty[)}{P_X(]alpha,+infty[)}$$ supposing that $P_X(]alpha,+infty[)>0$
$endgroup$
– mathex
Feb 2 at 21:07
$begingroup$
It seems that any $$(A,y)mapsto 1_{yneq alpha} delta_{y}(A) + 1_{y=alpha}P_{X|Y=y}(A)$$ where $P_{X|Y=alpha}$ is an arbitrary probability measure is a regular conditional probability of $X|min(X,alpha)$.
$endgroup$
– Gabriel Romon
Feb 2 at 11:55
$begingroup$
It seems that any $$(A,y)mapsto 1_{yneq alpha} delta_{y}(A) + 1_{y=alpha}P_{X|Y=y}(A)$$ where $P_{X|Y=alpha}$ is an arbitrary probability measure is a regular conditional probability of $X|min(X,alpha)$.
$endgroup$
– Gabriel Romon
Feb 2 at 11:55
$begingroup$
if we take a non negative function $h$ from $mathbb{R^2}$ to $mathbb{R}$ a way to find the conditional distribution is to write :$$int_{mathbb{R^2}}h(x,y)dP_{(X,Y)}(x,y)=int_{mathbb{R}}(int_{mathbb{R}}h(x,y)dP_{X|Y=y}(x))dP_Y(y)$$
$endgroup$
– mathex
Feb 2 at 20:44
$begingroup$
if we take a non negative function $h$ from $mathbb{R^2}$ to $mathbb{R}$ a way to find the conditional distribution is to write :$$int_{mathbb{R^2}}h(x,y)dP_{(X,Y)}(x,y)=int_{mathbb{R}}(int_{mathbb{R}}h(x,y)dP_{X|Y=y}(x))dP_Y(y)$$
$endgroup$
– mathex
Feb 2 at 20:44
$begingroup$
And we have $$int h(X,min(alpha,X))dP=int_{]-infty,alpha]}h(x,x)dP_X(x)+int_{]alpha,+infty[}h(x,alpha)dP_X(x)$$ I wonder how to find $P_{X|Y=y}$ from this equality
$endgroup$
– mathex
Feb 2 at 20:54
$begingroup$
And we have $$int h(X,min(alpha,X))dP=int_{]-infty,alpha]}h(x,x)dP_X(x)+int_{]alpha,+infty[}h(x,alpha)dP_X(x)$$ I wonder how to find $P_{X|Y=y}$ from this equality
$endgroup$
– mathex
Feb 2 at 20:54
$begingroup$
So that $$forall y in mathbb{R}, forall B in mathcal{B}(mathbb{R}), P_{X|Y=y}(B)=1_{]-infty,alpha]}(y)delta_y(B)+1_{]alpha,infty[}(y)frac{P_X(B cap ]alpha,+infty[)}{P_X(]alpha,+infty[)}$$ supposing that $P_X(]alpha,+infty[)>0$
$endgroup$
– mathex
Feb 2 at 21:07
$begingroup$
So that $$forall y in mathbb{R}, forall B in mathcal{B}(mathbb{R}), P_{X|Y=y}(B)=1_{]-infty,alpha]}(y)delta_y(B)+1_{]alpha,infty[}(y)frac{P_X(B cap ]alpha,+infty[)}{P_X(]alpha,+infty[)}$$ supposing that $P_X(]alpha,+infty[)>0$
$endgroup$
– mathex
Feb 2 at 21:07
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095009%2fconditional-distribution-of-x-given-minx-alpha%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095009%2fconditional-distribution-of-x-given-minx-alpha%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
It seems that any $$(A,y)mapsto 1_{yneq alpha} delta_{y}(A) + 1_{y=alpha}P_{X|Y=y}(A)$$ where $P_{X|Y=alpha}$ is an arbitrary probability measure is a regular conditional probability of $X|min(X,alpha)$.
$endgroup$
– Gabriel Romon
Feb 2 at 11:55
$begingroup$
if we take a non negative function $h$ from $mathbb{R^2}$ to $mathbb{R}$ a way to find the conditional distribution is to write :$$int_{mathbb{R^2}}h(x,y)dP_{(X,Y)}(x,y)=int_{mathbb{R}}(int_{mathbb{R}}h(x,y)dP_{X|Y=y}(x))dP_Y(y)$$
$endgroup$
– mathex
Feb 2 at 20:44
$begingroup$
And we have $$int h(X,min(alpha,X))dP=int_{]-infty,alpha]}h(x,x)dP_X(x)+int_{]alpha,+infty[}h(x,alpha)dP_X(x)$$ I wonder how to find $P_{X|Y=y}$ from this equality
$endgroup$
– mathex
Feb 2 at 20:54
$begingroup$
So that $$forall y in mathbb{R}, forall B in mathcal{B}(mathbb{R}), P_{X|Y=y}(B)=1_{]-infty,alpha]}(y)delta_y(B)+1_{]alpha,infty[}(y)frac{P_X(B cap ]alpha,+infty[)}{P_X(]alpha,+infty[)}$$ supposing that $P_X(]alpha,+infty[)>0$
$endgroup$
– mathex
Feb 2 at 21:07