Convergence of $int_0^2frac{1}{x^alpha |ln^beta(x)|}$
$begingroup$
I know that $int_2^{+infty}frac{1}{x^alphaln^beta(x)}$ is
$i)$ Convergent if $alphagt1$, $forallbeta$
$ii)$Convergent if $betagt1$ for $alpha=1$
$iii)$Divegent if $alphalt1$,$forallbeta$
Now i am trying to understand what happens if i have same situation with interval other interval,say $(0,2)$.Can something similar be formulated for $int_0^2frac{1}{x^alpha |ln^beta(x)|}$?
calculus convergence improper-integrals
$endgroup$
add a comment |
$begingroup$
I know that $int_2^{+infty}frac{1}{x^alphaln^beta(x)}$ is
$i)$ Convergent if $alphagt1$, $forallbeta$
$ii)$Convergent if $betagt1$ for $alpha=1$
$iii)$Divegent if $alphalt1$,$forallbeta$
Now i am trying to understand what happens if i have same situation with interval other interval,say $(0,2)$.Can something similar be formulated for $int_0^2frac{1}{x^alpha |ln^beta(x)|}$?
calculus convergence improper-integrals
$endgroup$
1
$begingroup$
$(ln , x)^{beta}$ is not defined for $x<1$. If you replace $ln, x$ by $ln, |x|$ then the answer is: convergent for $alpha <1$, divergent for $alpha >1$, convergent for $alpha =1,beta >1$. divergent for $alpha=1,beta leq 1$.
$endgroup$
– Kavi Rama Murthy
Jan 29 at 23:18
$begingroup$
@KaviRamaMurthy yes,exactly.but can this formulation be applied to $int_0^2 frac{|ln^{alpha-{2over3}}(x)|}{x^alpha}$?.For question: math.stackexchange.com/questions/3091996/…
$endgroup$
– Turan Nasibli
Jan 29 at 23:24
$begingroup$
Your title and the question are at odds.
$endgroup$
– zhw.
Jan 30 at 0:22
add a comment |
$begingroup$
I know that $int_2^{+infty}frac{1}{x^alphaln^beta(x)}$ is
$i)$ Convergent if $alphagt1$, $forallbeta$
$ii)$Convergent if $betagt1$ for $alpha=1$
$iii)$Divegent if $alphalt1$,$forallbeta$
Now i am trying to understand what happens if i have same situation with interval other interval,say $(0,2)$.Can something similar be formulated for $int_0^2frac{1}{x^alpha |ln^beta(x)|}$?
calculus convergence improper-integrals
$endgroup$
I know that $int_2^{+infty}frac{1}{x^alphaln^beta(x)}$ is
$i)$ Convergent if $alphagt1$, $forallbeta$
$ii)$Convergent if $betagt1$ for $alpha=1$
$iii)$Divegent if $alphalt1$,$forallbeta$
Now i am trying to understand what happens if i have same situation with interval other interval,say $(0,2)$.Can something similar be formulated for $int_0^2frac{1}{x^alpha |ln^beta(x)|}$?
calculus convergence improper-integrals
calculus convergence improper-integrals
edited Jan 29 at 23:20
Turan Nasibli
asked Jan 29 at 23:09


Turan NasibliTuran Nasibli
846
846
1
$begingroup$
$(ln , x)^{beta}$ is not defined for $x<1$. If you replace $ln, x$ by $ln, |x|$ then the answer is: convergent for $alpha <1$, divergent for $alpha >1$, convergent for $alpha =1,beta >1$. divergent for $alpha=1,beta leq 1$.
$endgroup$
– Kavi Rama Murthy
Jan 29 at 23:18
$begingroup$
@KaviRamaMurthy yes,exactly.but can this formulation be applied to $int_0^2 frac{|ln^{alpha-{2over3}}(x)|}{x^alpha}$?.For question: math.stackexchange.com/questions/3091996/…
$endgroup$
– Turan Nasibli
Jan 29 at 23:24
$begingroup$
Your title and the question are at odds.
$endgroup$
– zhw.
Jan 30 at 0:22
add a comment |
1
$begingroup$
$(ln , x)^{beta}$ is not defined for $x<1$. If you replace $ln, x$ by $ln, |x|$ then the answer is: convergent for $alpha <1$, divergent for $alpha >1$, convergent for $alpha =1,beta >1$. divergent for $alpha=1,beta leq 1$.
$endgroup$
– Kavi Rama Murthy
Jan 29 at 23:18
$begingroup$
@KaviRamaMurthy yes,exactly.but can this formulation be applied to $int_0^2 frac{|ln^{alpha-{2over3}}(x)|}{x^alpha}$?.For question: math.stackexchange.com/questions/3091996/…
$endgroup$
– Turan Nasibli
Jan 29 at 23:24
$begingroup$
Your title and the question are at odds.
$endgroup$
– zhw.
Jan 30 at 0:22
1
1
$begingroup$
$(ln , x)^{beta}$ is not defined for $x<1$. If you replace $ln, x$ by $ln, |x|$ then the answer is: convergent for $alpha <1$, divergent for $alpha >1$, convergent for $alpha =1,beta >1$. divergent for $alpha=1,beta leq 1$.
$endgroup$
– Kavi Rama Murthy
Jan 29 at 23:18
$begingroup$
$(ln , x)^{beta}$ is not defined for $x<1$. If you replace $ln, x$ by $ln, |x|$ then the answer is: convergent for $alpha <1$, divergent for $alpha >1$, convergent for $alpha =1,beta >1$. divergent for $alpha=1,beta leq 1$.
$endgroup$
– Kavi Rama Murthy
Jan 29 at 23:18
$begingroup$
@KaviRamaMurthy yes,exactly.but can this formulation be applied to $int_0^2 frac{|ln^{alpha-{2over3}}(x)|}{x^alpha}$?.For question: math.stackexchange.com/questions/3091996/…
$endgroup$
– Turan Nasibli
Jan 29 at 23:24
$begingroup$
@KaviRamaMurthy yes,exactly.but can this formulation be applied to $int_0^2 frac{|ln^{alpha-{2over3}}(x)|}{x^alpha}$?.For question: math.stackexchange.com/questions/3091996/…
$endgroup$
– Turan Nasibli
Jan 29 at 23:24
$begingroup$
Your title and the question are at odds.
$endgroup$
– zhw.
Jan 30 at 0:22
$begingroup$
Your title and the question are at odds.
$endgroup$
– zhw.
Jan 30 at 0:22
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092856%2fconvergence-of-int-02-frac1x-alpha-ln-betax%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092856%2fconvergence-of-int-02-frac1x-alpha-ln-betax%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
$(ln , x)^{beta}$ is not defined for $x<1$. If you replace $ln, x$ by $ln, |x|$ then the answer is: convergent for $alpha <1$, divergent for $alpha >1$, convergent for $alpha =1,beta >1$. divergent for $alpha=1,beta leq 1$.
$endgroup$
– Kavi Rama Murthy
Jan 29 at 23:18
$begingroup$
@KaviRamaMurthy yes,exactly.but can this formulation be applied to $int_0^2 frac{|ln^{alpha-{2over3}}(x)|}{x^alpha}$?.For question: math.stackexchange.com/questions/3091996/…
$endgroup$
– Turan Nasibli
Jan 29 at 23:24
$begingroup$
Your title and the question are at odds.
$endgroup$
– zhw.
Jan 30 at 0:22