Forming ANOVA table without observed values.












0












$begingroup$


regression analysis



Need some help in forming the ANOVA table without observed values.
I only managed to find SST with the first line of hint, but do not know how to proceed to find SSTreatment or SSError.
Any hint/solution will be greatly appreciated.










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    regression analysis



    Need some help in forming the ANOVA table without observed values.
    I only managed to find SST with the first line of hint, but do not know how to proceed to find SSTreatment or SSError.
    Any hint/solution will be greatly appreciated.










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      regression analysis



      Need some help in forming the ANOVA table without observed values.
      I only managed to find SST with the first line of hint, but do not know how to proceed to find SSTreatment or SSError.
      Any hint/solution will be greatly appreciated.










      share|cite|improve this question









      $endgroup$




      regression analysis



      Need some help in forming the ANOVA table without observed values.
      I only managed to find SST with the first line of hint, but do not know how to proceed to find SSTreatment or SSError.
      Any hint/solution will be greatly appreciated.







      regression linear-regression






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Feb 2 at 0:43









      jaclynxjaclynx

      4916




      4916






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          First set up the error funcion



          $$F(beta_0, beta_1) =sum_{i=1}^{N}[y_i-beta_0-beta_1x_i]^2.$$



          Differentiate with respect to $beta_0$ and $beta_1$ and set the derivatives equal to $0$ to obtain.



          $$sum_{i=1}^Ny_i-Nbeta_0-left[sum_{i=1}^{N}x_iright]beta_1=0$$
          $$sum_{i=1}^Ny_ix_i-left[sum_{i=1}^{N}x_iright]beta_0-left[sum_{i=1}^{N}x^2_iright]beta_1=0.$$



          The first equation can be rewritten as



          $$Nbar{y}-Nbeta_0-Nbar{x}beta_1=0 implies beta_0 = bar{y}-2bar{x}=0.$$



          From the second equaiton we can obtain



          $$150-15cdot 2cdot 0 - left[sum_{i=1}^{15}x^2_iright]beta_1=0$$
          $$implies sum_{i=1}^{15}x^2_i=37.5$$



          We know that the correlation $r$ is given by



          $$r= dfrac{1/Nsum_{i=1}^{15}x_iy_i-bar{x}bar{y}}{s_x s_y}$$



          We have to determine $s_x$ in order to calculate $r$:
          $$s_x = dfrac{1}{15-1}sum_{i=1}^{15}(x_i-bar{x})^2$$
          $$= dfrac{1}{15-1}left[sum_{i=1}^{15}x^2_i-2bar{x}sum_{i=1}^{15}x_i+sum_{i=1}^{15}bar{x}^2right]$$
          $$= dfrac{1}{15-1}left[sum_{i=1}^{15}x^2_i-2cdot 15cdotbar{x}^2+15bar{x}^2right]$$
          $$= dfrac{1}{15-1}left[sum_{i=1}^{15}x^2_i-15cdotbar{x}^2right].$$



          Finally, we know that $text{SSTotal}=sum_{i=1}^{15}left[y_i-bar{y}right]^2$ and



          $$r^2 = dfrac{text{SSTreatment}}{text{SSTotal}}=dfrac{text{SSTreatment}}{sum_{i=1}^{15}left[y_i-bar{y}right]^2}=dfrac{text{SSTreatment}}{(15-1)s^2_y}$$
          $$implies text{SSTreatment} =(15-1),r^2,s^2_y$$






          share|cite|improve this answer









          $endgroup$














            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096911%2fforming-anova-table-without-observed-values%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            First set up the error funcion



            $$F(beta_0, beta_1) =sum_{i=1}^{N}[y_i-beta_0-beta_1x_i]^2.$$



            Differentiate with respect to $beta_0$ and $beta_1$ and set the derivatives equal to $0$ to obtain.



            $$sum_{i=1}^Ny_i-Nbeta_0-left[sum_{i=1}^{N}x_iright]beta_1=0$$
            $$sum_{i=1}^Ny_ix_i-left[sum_{i=1}^{N}x_iright]beta_0-left[sum_{i=1}^{N}x^2_iright]beta_1=0.$$



            The first equation can be rewritten as



            $$Nbar{y}-Nbeta_0-Nbar{x}beta_1=0 implies beta_0 = bar{y}-2bar{x}=0.$$



            From the second equaiton we can obtain



            $$150-15cdot 2cdot 0 - left[sum_{i=1}^{15}x^2_iright]beta_1=0$$
            $$implies sum_{i=1}^{15}x^2_i=37.5$$



            We know that the correlation $r$ is given by



            $$r= dfrac{1/Nsum_{i=1}^{15}x_iy_i-bar{x}bar{y}}{s_x s_y}$$



            We have to determine $s_x$ in order to calculate $r$:
            $$s_x = dfrac{1}{15-1}sum_{i=1}^{15}(x_i-bar{x})^2$$
            $$= dfrac{1}{15-1}left[sum_{i=1}^{15}x^2_i-2bar{x}sum_{i=1}^{15}x_i+sum_{i=1}^{15}bar{x}^2right]$$
            $$= dfrac{1}{15-1}left[sum_{i=1}^{15}x^2_i-2cdot 15cdotbar{x}^2+15bar{x}^2right]$$
            $$= dfrac{1}{15-1}left[sum_{i=1}^{15}x^2_i-15cdotbar{x}^2right].$$



            Finally, we know that $text{SSTotal}=sum_{i=1}^{15}left[y_i-bar{y}right]^2$ and



            $$r^2 = dfrac{text{SSTreatment}}{text{SSTotal}}=dfrac{text{SSTreatment}}{sum_{i=1}^{15}left[y_i-bar{y}right]^2}=dfrac{text{SSTreatment}}{(15-1)s^2_y}$$
            $$implies text{SSTreatment} =(15-1),r^2,s^2_y$$






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              First set up the error funcion



              $$F(beta_0, beta_1) =sum_{i=1}^{N}[y_i-beta_0-beta_1x_i]^2.$$



              Differentiate with respect to $beta_0$ and $beta_1$ and set the derivatives equal to $0$ to obtain.



              $$sum_{i=1}^Ny_i-Nbeta_0-left[sum_{i=1}^{N}x_iright]beta_1=0$$
              $$sum_{i=1}^Ny_ix_i-left[sum_{i=1}^{N}x_iright]beta_0-left[sum_{i=1}^{N}x^2_iright]beta_1=0.$$



              The first equation can be rewritten as



              $$Nbar{y}-Nbeta_0-Nbar{x}beta_1=0 implies beta_0 = bar{y}-2bar{x}=0.$$



              From the second equaiton we can obtain



              $$150-15cdot 2cdot 0 - left[sum_{i=1}^{15}x^2_iright]beta_1=0$$
              $$implies sum_{i=1}^{15}x^2_i=37.5$$



              We know that the correlation $r$ is given by



              $$r= dfrac{1/Nsum_{i=1}^{15}x_iy_i-bar{x}bar{y}}{s_x s_y}$$



              We have to determine $s_x$ in order to calculate $r$:
              $$s_x = dfrac{1}{15-1}sum_{i=1}^{15}(x_i-bar{x})^2$$
              $$= dfrac{1}{15-1}left[sum_{i=1}^{15}x^2_i-2bar{x}sum_{i=1}^{15}x_i+sum_{i=1}^{15}bar{x}^2right]$$
              $$= dfrac{1}{15-1}left[sum_{i=1}^{15}x^2_i-2cdot 15cdotbar{x}^2+15bar{x}^2right]$$
              $$= dfrac{1}{15-1}left[sum_{i=1}^{15}x^2_i-15cdotbar{x}^2right].$$



              Finally, we know that $text{SSTotal}=sum_{i=1}^{15}left[y_i-bar{y}right]^2$ and



              $$r^2 = dfrac{text{SSTreatment}}{text{SSTotal}}=dfrac{text{SSTreatment}}{sum_{i=1}^{15}left[y_i-bar{y}right]^2}=dfrac{text{SSTreatment}}{(15-1)s^2_y}$$
              $$implies text{SSTreatment} =(15-1),r^2,s^2_y$$






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                First set up the error funcion



                $$F(beta_0, beta_1) =sum_{i=1}^{N}[y_i-beta_0-beta_1x_i]^2.$$



                Differentiate with respect to $beta_0$ and $beta_1$ and set the derivatives equal to $0$ to obtain.



                $$sum_{i=1}^Ny_i-Nbeta_0-left[sum_{i=1}^{N}x_iright]beta_1=0$$
                $$sum_{i=1}^Ny_ix_i-left[sum_{i=1}^{N}x_iright]beta_0-left[sum_{i=1}^{N}x^2_iright]beta_1=0.$$



                The first equation can be rewritten as



                $$Nbar{y}-Nbeta_0-Nbar{x}beta_1=0 implies beta_0 = bar{y}-2bar{x}=0.$$



                From the second equaiton we can obtain



                $$150-15cdot 2cdot 0 - left[sum_{i=1}^{15}x^2_iright]beta_1=0$$
                $$implies sum_{i=1}^{15}x^2_i=37.5$$



                We know that the correlation $r$ is given by



                $$r= dfrac{1/Nsum_{i=1}^{15}x_iy_i-bar{x}bar{y}}{s_x s_y}$$



                We have to determine $s_x$ in order to calculate $r$:
                $$s_x = dfrac{1}{15-1}sum_{i=1}^{15}(x_i-bar{x})^2$$
                $$= dfrac{1}{15-1}left[sum_{i=1}^{15}x^2_i-2bar{x}sum_{i=1}^{15}x_i+sum_{i=1}^{15}bar{x}^2right]$$
                $$= dfrac{1}{15-1}left[sum_{i=1}^{15}x^2_i-2cdot 15cdotbar{x}^2+15bar{x}^2right]$$
                $$= dfrac{1}{15-1}left[sum_{i=1}^{15}x^2_i-15cdotbar{x}^2right].$$



                Finally, we know that $text{SSTotal}=sum_{i=1}^{15}left[y_i-bar{y}right]^2$ and



                $$r^2 = dfrac{text{SSTreatment}}{text{SSTotal}}=dfrac{text{SSTreatment}}{sum_{i=1}^{15}left[y_i-bar{y}right]^2}=dfrac{text{SSTreatment}}{(15-1)s^2_y}$$
                $$implies text{SSTreatment} =(15-1),r^2,s^2_y$$






                share|cite|improve this answer









                $endgroup$



                First set up the error funcion



                $$F(beta_0, beta_1) =sum_{i=1}^{N}[y_i-beta_0-beta_1x_i]^2.$$



                Differentiate with respect to $beta_0$ and $beta_1$ and set the derivatives equal to $0$ to obtain.



                $$sum_{i=1}^Ny_i-Nbeta_0-left[sum_{i=1}^{N}x_iright]beta_1=0$$
                $$sum_{i=1}^Ny_ix_i-left[sum_{i=1}^{N}x_iright]beta_0-left[sum_{i=1}^{N}x^2_iright]beta_1=0.$$



                The first equation can be rewritten as



                $$Nbar{y}-Nbeta_0-Nbar{x}beta_1=0 implies beta_0 = bar{y}-2bar{x}=0.$$



                From the second equaiton we can obtain



                $$150-15cdot 2cdot 0 - left[sum_{i=1}^{15}x^2_iright]beta_1=0$$
                $$implies sum_{i=1}^{15}x^2_i=37.5$$



                We know that the correlation $r$ is given by



                $$r= dfrac{1/Nsum_{i=1}^{15}x_iy_i-bar{x}bar{y}}{s_x s_y}$$



                We have to determine $s_x$ in order to calculate $r$:
                $$s_x = dfrac{1}{15-1}sum_{i=1}^{15}(x_i-bar{x})^2$$
                $$= dfrac{1}{15-1}left[sum_{i=1}^{15}x^2_i-2bar{x}sum_{i=1}^{15}x_i+sum_{i=1}^{15}bar{x}^2right]$$
                $$= dfrac{1}{15-1}left[sum_{i=1}^{15}x^2_i-2cdot 15cdotbar{x}^2+15bar{x}^2right]$$
                $$= dfrac{1}{15-1}left[sum_{i=1}^{15}x^2_i-15cdotbar{x}^2right].$$



                Finally, we know that $text{SSTotal}=sum_{i=1}^{15}left[y_i-bar{y}right]^2$ and



                $$r^2 = dfrac{text{SSTreatment}}{text{SSTotal}}=dfrac{text{SSTreatment}}{sum_{i=1}^{15}left[y_i-bar{y}right]^2}=dfrac{text{SSTreatment}}{(15-1)s^2_y}$$
                $$implies text{SSTreatment} =(15-1),r^2,s^2_y$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Mar 7 at 17:15









                MachineLearnerMachineLearner

                1,384212




                1,384212






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096911%2fforming-anova-table-without-observed-values%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith