Hensel's lemma for the completion of $mathbb{F}_q(t)$












0












$begingroup$


If we want to find the roots of a polynomial $f(x)$ modulo a prime $p$ to the power of $n$, we can use Hensel's lemma. Let's say we want to find all roots of $x^3+x^2+4x+1$ mod $49$. Then we can use Hensel's lemma for p-adic integers and compute the roots only mod $7$.



Is there also a version of Hensel's lemma, not only for the completion of $mathbb{Q}$, but for the completion of $mathbb{F}_q(t)$? Or exists any other root lifting technique in this case? I didn't found anything so far...










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Sure. Let $f(X) in mathbb{F}_q[[t]][X]$, $q$ an odd prime power. Hensel lemma is just saying that if for $a_k in mathbb{F}_q[[t]]$, $f(a_k) equiv 0 bmod t^k mathbb{F}_q[[t]]$ then $f(a_k+bt^{k}) = f(a_k)+b t^{k} f'(a_k) +O(t^{2k})$ so if $f'(a_k) equiv f'(a_1) notequiv 0 bmod t mathbb{F}_q[[t]]$ then you can always choose $a_{k+1} = a_k + b t_{k}, b equiv - frac{f(a_k)}{t^{k} f'(a_1)} bmod t mathbb{F}_q[[t]]$ such that $f(a_{k+1}) equiv 0 bmod t^{k+1}mathbb{F}_q[[t]]$, moreover the obtained limit $lim_{k to infty} a_k$ is the unique lift of $a_1$.
    $endgroup$
    – reuns
    Jan 29 at 22:41












  • $begingroup$
    Sounds good, but what do you mean with mod $...mathbb{F}_q[[t]]$? In the case of the p-adic integers I only look at mod $p$ and not $p mathbb{Q}_p$.
    $endgroup$
    – Sqyuli
    Jan 30 at 8:03












  • $begingroup$
    With $mathbb{Z}_p$ it works the same way replacing $t, mathbb{F}_q[[t]]$ by $p, mathbb{Z}_p$. My comment applies to any complete DVR whose uniformizer satisfies $(a+bpi^k)^n = a^n+bpi^k n a^{n-1}+O(pi^{k+1})$
    $endgroup$
    – reuns
    Jan 30 at 10:25


















0












$begingroup$


If we want to find the roots of a polynomial $f(x)$ modulo a prime $p$ to the power of $n$, we can use Hensel's lemma. Let's say we want to find all roots of $x^3+x^2+4x+1$ mod $49$. Then we can use Hensel's lemma for p-adic integers and compute the roots only mod $7$.



Is there also a version of Hensel's lemma, not only for the completion of $mathbb{Q}$, but for the completion of $mathbb{F}_q(t)$? Or exists any other root lifting technique in this case? I didn't found anything so far...










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Sure. Let $f(X) in mathbb{F}_q[[t]][X]$, $q$ an odd prime power. Hensel lemma is just saying that if for $a_k in mathbb{F}_q[[t]]$, $f(a_k) equiv 0 bmod t^k mathbb{F}_q[[t]]$ then $f(a_k+bt^{k}) = f(a_k)+b t^{k} f'(a_k) +O(t^{2k})$ so if $f'(a_k) equiv f'(a_1) notequiv 0 bmod t mathbb{F}_q[[t]]$ then you can always choose $a_{k+1} = a_k + b t_{k}, b equiv - frac{f(a_k)}{t^{k} f'(a_1)} bmod t mathbb{F}_q[[t]]$ such that $f(a_{k+1}) equiv 0 bmod t^{k+1}mathbb{F}_q[[t]]$, moreover the obtained limit $lim_{k to infty} a_k$ is the unique lift of $a_1$.
    $endgroup$
    – reuns
    Jan 29 at 22:41












  • $begingroup$
    Sounds good, but what do you mean with mod $...mathbb{F}_q[[t]]$? In the case of the p-adic integers I only look at mod $p$ and not $p mathbb{Q}_p$.
    $endgroup$
    – Sqyuli
    Jan 30 at 8:03












  • $begingroup$
    With $mathbb{Z}_p$ it works the same way replacing $t, mathbb{F}_q[[t]]$ by $p, mathbb{Z}_p$. My comment applies to any complete DVR whose uniformizer satisfies $(a+bpi^k)^n = a^n+bpi^k n a^{n-1}+O(pi^{k+1})$
    $endgroup$
    – reuns
    Jan 30 at 10:25
















0












0








0





$begingroup$


If we want to find the roots of a polynomial $f(x)$ modulo a prime $p$ to the power of $n$, we can use Hensel's lemma. Let's say we want to find all roots of $x^3+x^2+4x+1$ mod $49$. Then we can use Hensel's lemma for p-adic integers and compute the roots only mod $7$.



Is there also a version of Hensel's lemma, not only for the completion of $mathbb{Q}$, but for the completion of $mathbb{F}_q(t)$? Or exists any other root lifting technique in this case? I didn't found anything so far...










share|cite|improve this question









$endgroup$




If we want to find the roots of a polynomial $f(x)$ modulo a prime $p$ to the power of $n$, we can use Hensel's lemma. Let's say we want to find all roots of $x^3+x^2+4x+1$ mod $49$. Then we can use Hensel's lemma for p-adic integers and compute the roots only mod $7$.



Is there also a version of Hensel's lemma, not only for the completion of $mathbb{Q}$, but for the completion of $mathbb{F}_q(t)$? Or exists any other root lifting technique in this case? I didn't found anything so far...







number-theory function-fields hensels-lemma






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 29 at 21:44









SqyuliSqyuli

344111




344111








  • 2




    $begingroup$
    Sure. Let $f(X) in mathbb{F}_q[[t]][X]$, $q$ an odd prime power. Hensel lemma is just saying that if for $a_k in mathbb{F}_q[[t]]$, $f(a_k) equiv 0 bmod t^k mathbb{F}_q[[t]]$ then $f(a_k+bt^{k}) = f(a_k)+b t^{k} f'(a_k) +O(t^{2k})$ so if $f'(a_k) equiv f'(a_1) notequiv 0 bmod t mathbb{F}_q[[t]]$ then you can always choose $a_{k+1} = a_k + b t_{k}, b equiv - frac{f(a_k)}{t^{k} f'(a_1)} bmod t mathbb{F}_q[[t]]$ such that $f(a_{k+1}) equiv 0 bmod t^{k+1}mathbb{F}_q[[t]]$, moreover the obtained limit $lim_{k to infty} a_k$ is the unique lift of $a_1$.
    $endgroup$
    – reuns
    Jan 29 at 22:41












  • $begingroup$
    Sounds good, but what do you mean with mod $...mathbb{F}_q[[t]]$? In the case of the p-adic integers I only look at mod $p$ and not $p mathbb{Q}_p$.
    $endgroup$
    – Sqyuli
    Jan 30 at 8:03












  • $begingroup$
    With $mathbb{Z}_p$ it works the same way replacing $t, mathbb{F}_q[[t]]$ by $p, mathbb{Z}_p$. My comment applies to any complete DVR whose uniformizer satisfies $(a+bpi^k)^n = a^n+bpi^k n a^{n-1}+O(pi^{k+1})$
    $endgroup$
    – reuns
    Jan 30 at 10:25
















  • 2




    $begingroup$
    Sure. Let $f(X) in mathbb{F}_q[[t]][X]$, $q$ an odd prime power. Hensel lemma is just saying that if for $a_k in mathbb{F}_q[[t]]$, $f(a_k) equiv 0 bmod t^k mathbb{F}_q[[t]]$ then $f(a_k+bt^{k}) = f(a_k)+b t^{k} f'(a_k) +O(t^{2k})$ so if $f'(a_k) equiv f'(a_1) notequiv 0 bmod t mathbb{F}_q[[t]]$ then you can always choose $a_{k+1} = a_k + b t_{k}, b equiv - frac{f(a_k)}{t^{k} f'(a_1)} bmod t mathbb{F}_q[[t]]$ such that $f(a_{k+1}) equiv 0 bmod t^{k+1}mathbb{F}_q[[t]]$, moreover the obtained limit $lim_{k to infty} a_k$ is the unique lift of $a_1$.
    $endgroup$
    – reuns
    Jan 29 at 22:41












  • $begingroup$
    Sounds good, but what do you mean with mod $...mathbb{F}_q[[t]]$? In the case of the p-adic integers I only look at mod $p$ and not $p mathbb{Q}_p$.
    $endgroup$
    – Sqyuli
    Jan 30 at 8:03












  • $begingroup$
    With $mathbb{Z}_p$ it works the same way replacing $t, mathbb{F}_q[[t]]$ by $p, mathbb{Z}_p$. My comment applies to any complete DVR whose uniformizer satisfies $(a+bpi^k)^n = a^n+bpi^k n a^{n-1}+O(pi^{k+1})$
    $endgroup$
    – reuns
    Jan 30 at 10:25










2




2




$begingroup$
Sure. Let $f(X) in mathbb{F}_q[[t]][X]$, $q$ an odd prime power. Hensel lemma is just saying that if for $a_k in mathbb{F}_q[[t]]$, $f(a_k) equiv 0 bmod t^k mathbb{F}_q[[t]]$ then $f(a_k+bt^{k}) = f(a_k)+b t^{k} f'(a_k) +O(t^{2k})$ so if $f'(a_k) equiv f'(a_1) notequiv 0 bmod t mathbb{F}_q[[t]]$ then you can always choose $a_{k+1} = a_k + b t_{k}, b equiv - frac{f(a_k)}{t^{k} f'(a_1)} bmod t mathbb{F}_q[[t]]$ such that $f(a_{k+1}) equiv 0 bmod t^{k+1}mathbb{F}_q[[t]]$, moreover the obtained limit $lim_{k to infty} a_k$ is the unique lift of $a_1$.
$endgroup$
– reuns
Jan 29 at 22:41






$begingroup$
Sure. Let $f(X) in mathbb{F}_q[[t]][X]$, $q$ an odd prime power. Hensel lemma is just saying that if for $a_k in mathbb{F}_q[[t]]$, $f(a_k) equiv 0 bmod t^k mathbb{F}_q[[t]]$ then $f(a_k+bt^{k}) = f(a_k)+b t^{k} f'(a_k) +O(t^{2k})$ so if $f'(a_k) equiv f'(a_1) notequiv 0 bmod t mathbb{F}_q[[t]]$ then you can always choose $a_{k+1} = a_k + b t_{k}, b equiv - frac{f(a_k)}{t^{k} f'(a_1)} bmod t mathbb{F}_q[[t]]$ such that $f(a_{k+1}) equiv 0 bmod t^{k+1}mathbb{F}_q[[t]]$, moreover the obtained limit $lim_{k to infty} a_k$ is the unique lift of $a_1$.
$endgroup$
– reuns
Jan 29 at 22:41














$begingroup$
Sounds good, but what do you mean with mod $...mathbb{F}_q[[t]]$? In the case of the p-adic integers I only look at mod $p$ and not $p mathbb{Q}_p$.
$endgroup$
– Sqyuli
Jan 30 at 8:03






$begingroup$
Sounds good, but what do you mean with mod $...mathbb{F}_q[[t]]$? In the case of the p-adic integers I only look at mod $p$ and not $p mathbb{Q}_p$.
$endgroup$
– Sqyuli
Jan 30 at 8:03














$begingroup$
With $mathbb{Z}_p$ it works the same way replacing $t, mathbb{F}_q[[t]]$ by $p, mathbb{Z}_p$. My comment applies to any complete DVR whose uniformizer satisfies $(a+bpi^k)^n = a^n+bpi^k n a^{n-1}+O(pi^{k+1})$
$endgroup$
– reuns
Jan 30 at 10:25






$begingroup$
With $mathbb{Z}_p$ it works the same way replacing $t, mathbb{F}_q[[t]]$ by $p, mathbb{Z}_p$. My comment applies to any complete DVR whose uniformizer satisfies $(a+bpi^k)^n = a^n+bpi^k n a^{n-1}+O(pi^{k+1})$
$endgroup$
– reuns
Jan 30 at 10:25












0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092764%2fhensels-lemma-for-the-completion-of-mathbbf-qt%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092764%2fhensels-lemma-for-the-completion-of-mathbbf-qt%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

Npm cannot find a required file even through it is in the searched directory

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith