Hensel's lemma for the completion of $mathbb{F}_q(t)$
$begingroup$
If we want to find the roots of a polynomial $f(x)$ modulo a prime $p$ to the power of $n$, we can use Hensel's lemma. Let's say we want to find all roots of $x^3+x^2+4x+1$ mod $49$. Then we can use Hensel's lemma for p-adic integers and compute the roots only mod $7$.
Is there also a version of Hensel's lemma, not only for the completion of $mathbb{Q}$, but for the completion of $mathbb{F}_q(t)$? Or exists any other root lifting technique in this case? I didn't found anything so far...
number-theory function-fields hensels-lemma
$endgroup$
add a comment |
$begingroup$
If we want to find the roots of a polynomial $f(x)$ modulo a prime $p$ to the power of $n$, we can use Hensel's lemma. Let's say we want to find all roots of $x^3+x^2+4x+1$ mod $49$. Then we can use Hensel's lemma for p-adic integers and compute the roots only mod $7$.
Is there also a version of Hensel's lemma, not only for the completion of $mathbb{Q}$, but for the completion of $mathbb{F}_q(t)$? Or exists any other root lifting technique in this case? I didn't found anything so far...
number-theory function-fields hensels-lemma
$endgroup$
2
$begingroup$
Sure. Let $f(X) in mathbb{F}_q[[t]][X]$, $q$ an odd prime power. Hensel lemma is just saying that if for $a_k in mathbb{F}_q[[t]]$, $f(a_k) equiv 0 bmod t^k mathbb{F}_q[[t]]$ then $f(a_k+bt^{k}) = f(a_k)+b t^{k} f'(a_k) +O(t^{2k})$ so if $f'(a_k) equiv f'(a_1) notequiv 0 bmod t mathbb{F}_q[[t]]$ then you can always choose $a_{k+1} = a_k + b t_{k}, b equiv - frac{f(a_k)}{t^{k} f'(a_1)} bmod t mathbb{F}_q[[t]]$ such that $f(a_{k+1}) equiv 0 bmod t^{k+1}mathbb{F}_q[[t]]$, moreover the obtained limit $lim_{k to infty} a_k$ is the unique lift of $a_1$.
$endgroup$
– reuns
Jan 29 at 22:41
$begingroup$
Sounds good, but what do you mean with mod $...mathbb{F}_q[[t]]$? In the case of the p-adic integers I only look at mod $p$ and not $p mathbb{Q}_p$.
$endgroup$
– Sqyuli
Jan 30 at 8:03
$begingroup$
With $mathbb{Z}_p$ it works the same way replacing $t, mathbb{F}_q[[t]]$ by $p, mathbb{Z}_p$. My comment applies to any complete DVR whose uniformizer satisfies $(a+bpi^k)^n = a^n+bpi^k n a^{n-1}+O(pi^{k+1})$
$endgroup$
– reuns
Jan 30 at 10:25
add a comment |
$begingroup$
If we want to find the roots of a polynomial $f(x)$ modulo a prime $p$ to the power of $n$, we can use Hensel's lemma. Let's say we want to find all roots of $x^3+x^2+4x+1$ mod $49$. Then we can use Hensel's lemma for p-adic integers and compute the roots only mod $7$.
Is there also a version of Hensel's lemma, not only for the completion of $mathbb{Q}$, but for the completion of $mathbb{F}_q(t)$? Or exists any other root lifting technique in this case? I didn't found anything so far...
number-theory function-fields hensels-lemma
$endgroup$
If we want to find the roots of a polynomial $f(x)$ modulo a prime $p$ to the power of $n$, we can use Hensel's lemma. Let's say we want to find all roots of $x^3+x^2+4x+1$ mod $49$. Then we can use Hensel's lemma for p-adic integers and compute the roots only mod $7$.
Is there also a version of Hensel's lemma, not only for the completion of $mathbb{Q}$, but for the completion of $mathbb{F}_q(t)$? Or exists any other root lifting technique in this case? I didn't found anything so far...
number-theory function-fields hensels-lemma
number-theory function-fields hensels-lemma
asked Jan 29 at 21:44
SqyuliSqyuli
344111
344111
2
$begingroup$
Sure. Let $f(X) in mathbb{F}_q[[t]][X]$, $q$ an odd prime power. Hensel lemma is just saying that if for $a_k in mathbb{F}_q[[t]]$, $f(a_k) equiv 0 bmod t^k mathbb{F}_q[[t]]$ then $f(a_k+bt^{k}) = f(a_k)+b t^{k} f'(a_k) +O(t^{2k})$ so if $f'(a_k) equiv f'(a_1) notequiv 0 bmod t mathbb{F}_q[[t]]$ then you can always choose $a_{k+1} = a_k + b t_{k}, b equiv - frac{f(a_k)}{t^{k} f'(a_1)} bmod t mathbb{F}_q[[t]]$ such that $f(a_{k+1}) equiv 0 bmod t^{k+1}mathbb{F}_q[[t]]$, moreover the obtained limit $lim_{k to infty} a_k$ is the unique lift of $a_1$.
$endgroup$
– reuns
Jan 29 at 22:41
$begingroup$
Sounds good, but what do you mean with mod $...mathbb{F}_q[[t]]$? In the case of the p-adic integers I only look at mod $p$ and not $p mathbb{Q}_p$.
$endgroup$
– Sqyuli
Jan 30 at 8:03
$begingroup$
With $mathbb{Z}_p$ it works the same way replacing $t, mathbb{F}_q[[t]]$ by $p, mathbb{Z}_p$. My comment applies to any complete DVR whose uniformizer satisfies $(a+bpi^k)^n = a^n+bpi^k n a^{n-1}+O(pi^{k+1})$
$endgroup$
– reuns
Jan 30 at 10:25
add a comment |
2
$begingroup$
Sure. Let $f(X) in mathbb{F}_q[[t]][X]$, $q$ an odd prime power. Hensel lemma is just saying that if for $a_k in mathbb{F}_q[[t]]$, $f(a_k) equiv 0 bmod t^k mathbb{F}_q[[t]]$ then $f(a_k+bt^{k}) = f(a_k)+b t^{k} f'(a_k) +O(t^{2k})$ so if $f'(a_k) equiv f'(a_1) notequiv 0 bmod t mathbb{F}_q[[t]]$ then you can always choose $a_{k+1} = a_k + b t_{k}, b equiv - frac{f(a_k)}{t^{k} f'(a_1)} bmod t mathbb{F}_q[[t]]$ such that $f(a_{k+1}) equiv 0 bmod t^{k+1}mathbb{F}_q[[t]]$, moreover the obtained limit $lim_{k to infty} a_k$ is the unique lift of $a_1$.
$endgroup$
– reuns
Jan 29 at 22:41
$begingroup$
Sounds good, but what do you mean with mod $...mathbb{F}_q[[t]]$? In the case of the p-adic integers I only look at mod $p$ and not $p mathbb{Q}_p$.
$endgroup$
– Sqyuli
Jan 30 at 8:03
$begingroup$
With $mathbb{Z}_p$ it works the same way replacing $t, mathbb{F}_q[[t]]$ by $p, mathbb{Z}_p$. My comment applies to any complete DVR whose uniformizer satisfies $(a+bpi^k)^n = a^n+bpi^k n a^{n-1}+O(pi^{k+1})$
$endgroup$
– reuns
Jan 30 at 10:25
2
2
$begingroup$
Sure. Let $f(X) in mathbb{F}_q[[t]][X]$, $q$ an odd prime power. Hensel lemma is just saying that if for $a_k in mathbb{F}_q[[t]]$, $f(a_k) equiv 0 bmod t^k mathbb{F}_q[[t]]$ then $f(a_k+bt^{k}) = f(a_k)+b t^{k} f'(a_k) +O(t^{2k})$ so if $f'(a_k) equiv f'(a_1) notequiv 0 bmod t mathbb{F}_q[[t]]$ then you can always choose $a_{k+1} = a_k + b t_{k}, b equiv - frac{f(a_k)}{t^{k} f'(a_1)} bmod t mathbb{F}_q[[t]]$ such that $f(a_{k+1}) equiv 0 bmod t^{k+1}mathbb{F}_q[[t]]$, moreover the obtained limit $lim_{k to infty} a_k$ is the unique lift of $a_1$.
$endgroup$
– reuns
Jan 29 at 22:41
$begingroup$
Sure. Let $f(X) in mathbb{F}_q[[t]][X]$, $q$ an odd prime power. Hensel lemma is just saying that if for $a_k in mathbb{F}_q[[t]]$, $f(a_k) equiv 0 bmod t^k mathbb{F}_q[[t]]$ then $f(a_k+bt^{k}) = f(a_k)+b t^{k} f'(a_k) +O(t^{2k})$ so if $f'(a_k) equiv f'(a_1) notequiv 0 bmod t mathbb{F}_q[[t]]$ then you can always choose $a_{k+1} = a_k + b t_{k}, b equiv - frac{f(a_k)}{t^{k} f'(a_1)} bmod t mathbb{F}_q[[t]]$ such that $f(a_{k+1}) equiv 0 bmod t^{k+1}mathbb{F}_q[[t]]$, moreover the obtained limit $lim_{k to infty} a_k$ is the unique lift of $a_1$.
$endgroup$
– reuns
Jan 29 at 22:41
$begingroup$
Sounds good, but what do you mean with mod $...mathbb{F}_q[[t]]$? In the case of the p-adic integers I only look at mod $p$ and not $p mathbb{Q}_p$.
$endgroup$
– Sqyuli
Jan 30 at 8:03
$begingroup$
Sounds good, but what do you mean with mod $...mathbb{F}_q[[t]]$? In the case of the p-adic integers I only look at mod $p$ and not $p mathbb{Q}_p$.
$endgroup$
– Sqyuli
Jan 30 at 8:03
$begingroup$
With $mathbb{Z}_p$ it works the same way replacing $t, mathbb{F}_q[[t]]$ by $p, mathbb{Z}_p$. My comment applies to any complete DVR whose uniformizer satisfies $(a+bpi^k)^n = a^n+bpi^k n a^{n-1}+O(pi^{k+1})$
$endgroup$
– reuns
Jan 30 at 10:25
$begingroup$
With $mathbb{Z}_p$ it works the same way replacing $t, mathbb{F}_q[[t]]$ by $p, mathbb{Z}_p$. My comment applies to any complete DVR whose uniformizer satisfies $(a+bpi^k)^n = a^n+bpi^k n a^{n-1}+O(pi^{k+1})$
$endgroup$
– reuns
Jan 30 at 10:25
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092764%2fhensels-lemma-for-the-completion-of-mathbbf-qt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092764%2fhensels-lemma-for-the-completion-of-mathbbf-qt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Sure. Let $f(X) in mathbb{F}_q[[t]][X]$, $q$ an odd prime power. Hensel lemma is just saying that if for $a_k in mathbb{F}_q[[t]]$, $f(a_k) equiv 0 bmod t^k mathbb{F}_q[[t]]$ then $f(a_k+bt^{k}) = f(a_k)+b t^{k} f'(a_k) +O(t^{2k})$ so if $f'(a_k) equiv f'(a_1) notequiv 0 bmod t mathbb{F}_q[[t]]$ then you can always choose $a_{k+1} = a_k + b t_{k}, b equiv - frac{f(a_k)}{t^{k} f'(a_1)} bmod t mathbb{F}_q[[t]]$ such that $f(a_{k+1}) equiv 0 bmod t^{k+1}mathbb{F}_q[[t]]$, moreover the obtained limit $lim_{k to infty} a_k$ is the unique lift of $a_1$.
$endgroup$
– reuns
Jan 29 at 22:41
$begingroup$
Sounds good, but what do you mean with mod $...mathbb{F}_q[[t]]$? In the case of the p-adic integers I only look at mod $p$ and not $p mathbb{Q}_p$.
$endgroup$
– Sqyuli
Jan 30 at 8:03
$begingroup$
With $mathbb{Z}_p$ it works the same way replacing $t, mathbb{F}_q[[t]]$ by $p, mathbb{Z}_p$. My comment applies to any complete DVR whose uniformizer satisfies $(a+bpi^k)^n = a^n+bpi^k n a^{n-1}+O(pi^{k+1})$
$endgroup$
– reuns
Jan 30 at 10:25