How do I prove this trig identity that contains 2 variables?












0












$begingroup$


$ frac{sin A cos B + cos A sin B } {cos A cos B - sin A sin B} = frac{tan A + tan B}{1 - tan A tan B}$



I've tried multiplying by the reciprocal denominator on the left side to see if I could begin to simplify it to tangent, but I'm still confused. Any help would be appreciated.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Divide the numerator and denominator on the left by $cos Acos B$, and use the fact that $tan=sin/cos$. Alternatively, replace all the tan's on the right hand side with sin's over cos's and then simplify.
    $endgroup$
    – Barry Cipra
    Jan 29 at 21:20












  • $begingroup$
    Can you use that $tan(A)=frac{sin(A)}{cos(A)}?$ If yes, just do it in the RHS and put everything in terms of sin and cos in the RHS.
    $endgroup$
    – Phicar
    Jan 29 at 21:20
















0












$begingroup$


$ frac{sin A cos B + cos A sin B } {cos A cos B - sin A sin B} = frac{tan A + tan B}{1 - tan A tan B}$



I've tried multiplying by the reciprocal denominator on the left side to see if I could begin to simplify it to tangent, but I'm still confused. Any help would be appreciated.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Divide the numerator and denominator on the left by $cos Acos B$, and use the fact that $tan=sin/cos$. Alternatively, replace all the tan's on the right hand side with sin's over cos's and then simplify.
    $endgroup$
    – Barry Cipra
    Jan 29 at 21:20












  • $begingroup$
    Can you use that $tan(A)=frac{sin(A)}{cos(A)}?$ If yes, just do it in the RHS and put everything in terms of sin and cos in the RHS.
    $endgroup$
    – Phicar
    Jan 29 at 21:20














0












0








0


0



$begingroup$


$ frac{sin A cos B + cos A sin B } {cos A cos B - sin A sin B} = frac{tan A + tan B}{1 - tan A tan B}$



I've tried multiplying by the reciprocal denominator on the left side to see if I could begin to simplify it to tangent, but I'm still confused. Any help would be appreciated.










share|cite|improve this question











$endgroup$




$ frac{sin A cos B + cos A sin B } {cos A cos B - sin A sin B} = frac{tan A + tan B}{1 - tan A tan B}$



I've tried multiplying by the reciprocal denominator on the left side to see if I could begin to simplify it to tangent, but I'm still confused. Any help would be appreciated.







trigonometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 29 at 21:26









abc...

3,237739




3,237739










asked Jan 29 at 21:14









thefirstplanehomethefirstplanehome

41




41








  • 1




    $begingroup$
    Divide the numerator and denominator on the left by $cos Acos B$, and use the fact that $tan=sin/cos$. Alternatively, replace all the tan's on the right hand side with sin's over cos's and then simplify.
    $endgroup$
    – Barry Cipra
    Jan 29 at 21:20












  • $begingroup$
    Can you use that $tan(A)=frac{sin(A)}{cos(A)}?$ If yes, just do it in the RHS and put everything in terms of sin and cos in the RHS.
    $endgroup$
    – Phicar
    Jan 29 at 21:20














  • 1




    $begingroup$
    Divide the numerator and denominator on the left by $cos Acos B$, and use the fact that $tan=sin/cos$. Alternatively, replace all the tan's on the right hand side with sin's over cos's and then simplify.
    $endgroup$
    – Barry Cipra
    Jan 29 at 21:20












  • $begingroup$
    Can you use that $tan(A)=frac{sin(A)}{cos(A)}?$ If yes, just do it in the RHS and put everything in terms of sin and cos in the RHS.
    $endgroup$
    – Phicar
    Jan 29 at 21:20








1




1




$begingroup$
Divide the numerator and denominator on the left by $cos Acos B$, and use the fact that $tan=sin/cos$. Alternatively, replace all the tan's on the right hand side with sin's over cos's and then simplify.
$endgroup$
– Barry Cipra
Jan 29 at 21:20






$begingroup$
Divide the numerator and denominator on the left by $cos Acos B$, and use the fact that $tan=sin/cos$. Alternatively, replace all the tan's on the right hand side with sin's over cos's and then simplify.
$endgroup$
– Barry Cipra
Jan 29 at 21:20














$begingroup$
Can you use that $tan(A)=frac{sin(A)}{cos(A)}?$ If yes, just do it in the RHS and put everything in terms of sin and cos in the RHS.
$endgroup$
– Phicar
Jan 29 at 21:20




$begingroup$
Can you use that $tan(A)=frac{sin(A)}{cos(A)}?$ If yes, just do it in the RHS and put everything in terms of sin and cos in the RHS.
$endgroup$
– Phicar
Jan 29 at 21:20










3 Answers
3






active

oldest

votes


















1












$begingroup$

$LHS=frac{sin(A+B)}{cos(A+B)}=tan (A+B)=RHS $ by the composite angle formula for $tan$.






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    LHS=$frac{sin(A+B)}{cos(A+B)}=tan(A+B)=frac{tan A+tan B}{1-tan A tan B}$=RHS



    Compound angle formulae of $sin, cos$ and $tan$ are used.






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      On the right hand side, put those tangents in terms of $sin$ and $cos$, and then multiply through to clear the denominators:
      $$frac{tan A+tan B}{1-tan Atan B} = frac{frac{sin A}{cos A}+frac{sin B}{cos B}}{1-frac{sin Asin B}{cos Acos B}} = frac{sin Acos Bfrac{cos A}{cos A}+sin Bcos Afrac{cos B}{cos B}}{cos Acos B-sin Asin Bfrac{cos Acos B}{cos Acos B}}=frac{sin Acos B+sin Bcos A}{cos Acos B-sin Asin B}$$
      Done.



      These are, of course, two ways of expressing $tan(A+B)$.






      share|cite|improve this answer









      $endgroup$














        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092731%2fhow-do-i-prove-this-trig-identity-that-contains-2-variables%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        1












        $begingroup$

        $LHS=frac{sin(A+B)}{cos(A+B)}=tan (A+B)=RHS $ by the composite angle formula for $tan$.






        share|cite|improve this answer









        $endgroup$


















          1












          $begingroup$

          $LHS=frac{sin(A+B)}{cos(A+B)}=tan (A+B)=RHS $ by the composite angle formula for $tan$.






          share|cite|improve this answer









          $endgroup$
















            1












            1








            1





            $begingroup$

            $LHS=frac{sin(A+B)}{cos(A+B)}=tan (A+B)=RHS $ by the composite angle formula for $tan$.






            share|cite|improve this answer









            $endgroup$



            $LHS=frac{sin(A+B)}{cos(A+B)}=tan (A+B)=RHS $ by the composite angle formula for $tan$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 29 at 21:33









            Chris CusterChris Custer

            14.3k3827




            14.3k3827























                0












                $begingroup$

                LHS=$frac{sin(A+B)}{cos(A+B)}=tan(A+B)=frac{tan A+tan B}{1-tan A tan B}$=RHS



                Compound angle formulae of $sin, cos$ and $tan$ are used.






                share|cite|improve this answer









                $endgroup$


















                  0












                  $begingroup$

                  LHS=$frac{sin(A+B)}{cos(A+B)}=tan(A+B)=frac{tan A+tan B}{1-tan A tan B}$=RHS



                  Compound angle formulae of $sin, cos$ and $tan$ are used.






                  share|cite|improve this answer









                  $endgroup$
















                    0












                    0








                    0





                    $begingroup$

                    LHS=$frac{sin(A+B)}{cos(A+B)}=tan(A+B)=frac{tan A+tan B}{1-tan A tan B}$=RHS



                    Compound angle formulae of $sin, cos$ and $tan$ are used.






                    share|cite|improve this answer









                    $endgroup$



                    LHS=$frac{sin(A+B)}{cos(A+B)}=tan(A+B)=frac{tan A+tan B}{1-tan A tan B}$=RHS



                    Compound angle formulae of $sin, cos$ and $tan$ are used.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 29 at 21:28









                    abc...abc...

                    3,237739




                    3,237739























                        0












                        $begingroup$

                        On the right hand side, put those tangents in terms of $sin$ and $cos$, and then multiply through to clear the denominators:
                        $$frac{tan A+tan B}{1-tan Atan B} = frac{frac{sin A}{cos A}+frac{sin B}{cos B}}{1-frac{sin Asin B}{cos Acos B}} = frac{sin Acos Bfrac{cos A}{cos A}+sin Bcos Afrac{cos B}{cos B}}{cos Acos B-sin Asin Bfrac{cos Acos B}{cos Acos B}}=frac{sin Acos B+sin Bcos A}{cos Acos B-sin Asin B}$$
                        Done.



                        These are, of course, two ways of expressing $tan(A+B)$.






                        share|cite|improve this answer









                        $endgroup$


















                          0












                          $begingroup$

                          On the right hand side, put those tangents in terms of $sin$ and $cos$, and then multiply through to clear the denominators:
                          $$frac{tan A+tan B}{1-tan Atan B} = frac{frac{sin A}{cos A}+frac{sin B}{cos B}}{1-frac{sin Asin B}{cos Acos B}} = frac{sin Acos Bfrac{cos A}{cos A}+sin Bcos Afrac{cos B}{cos B}}{cos Acos B-sin Asin Bfrac{cos Acos B}{cos Acos B}}=frac{sin Acos B+sin Bcos A}{cos Acos B-sin Asin B}$$
                          Done.



                          These are, of course, two ways of expressing $tan(A+B)$.






                          share|cite|improve this answer









                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            On the right hand side, put those tangents in terms of $sin$ and $cos$, and then multiply through to clear the denominators:
                            $$frac{tan A+tan B}{1-tan Atan B} = frac{frac{sin A}{cos A}+frac{sin B}{cos B}}{1-frac{sin Asin B}{cos Acos B}} = frac{sin Acos Bfrac{cos A}{cos A}+sin Bcos Afrac{cos B}{cos B}}{cos Acos B-sin Asin Bfrac{cos Acos B}{cos Acos B}}=frac{sin Acos B+sin Bcos A}{cos Acos B-sin Asin B}$$
                            Done.



                            These are, of course, two ways of expressing $tan(A+B)$.






                            share|cite|improve this answer









                            $endgroup$



                            On the right hand side, put those tangents in terms of $sin$ and $cos$, and then multiply through to clear the denominators:
                            $$frac{tan A+tan B}{1-tan Atan B} = frac{frac{sin A}{cos A}+frac{sin B}{cos B}}{1-frac{sin Asin B}{cos Acos B}} = frac{sin Acos Bfrac{cos A}{cos A}+sin Bcos Afrac{cos B}{cos B}}{cos Acos B-sin Asin Bfrac{cos Acos B}{cos Acos B}}=frac{sin Acos B+sin Bcos A}{cos Acos B-sin Asin B}$$
                            Done.



                            These are, of course, two ways of expressing $tan(A+B)$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 29 at 21:41









                            jmerryjmerry

                            16.9k11633




                            16.9k11633






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092731%2fhow-do-i-prove-this-trig-identity-that-contains-2-variables%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                MongoDB - Not Authorized To Execute Command

                                How to fix TextFormField cause rebuild widget in Flutter

                                in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith