How do I prove this trig identity that contains 2 variables?
$begingroup$
$ frac{sin A cos B + cos A sin B } {cos A cos B - sin A sin B} = frac{tan A + tan B}{1 - tan A tan B}$
I've tried multiplying by the reciprocal denominator on the left side to see if I could begin to simplify it to tangent, but I'm still confused. Any help would be appreciated.
trigonometry
$endgroup$
add a comment |
$begingroup$
$ frac{sin A cos B + cos A sin B } {cos A cos B - sin A sin B} = frac{tan A + tan B}{1 - tan A tan B}$
I've tried multiplying by the reciprocal denominator on the left side to see if I could begin to simplify it to tangent, but I'm still confused. Any help would be appreciated.
trigonometry
$endgroup$
1
$begingroup$
Divide the numerator and denominator on the left by $cos Acos B$, and use the fact that $tan=sin/cos$. Alternatively, replace all the tan's on the right hand side with sin's over cos's and then simplify.
$endgroup$
– Barry Cipra
Jan 29 at 21:20
$begingroup$
Can you use that $tan(A)=frac{sin(A)}{cos(A)}?$ If yes, just do it in the RHS and put everything in terms of sin and cos in the RHS.
$endgroup$
– Phicar
Jan 29 at 21:20
add a comment |
$begingroup$
$ frac{sin A cos B + cos A sin B } {cos A cos B - sin A sin B} = frac{tan A + tan B}{1 - tan A tan B}$
I've tried multiplying by the reciprocal denominator on the left side to see if I could begin to simplify it to tangent, but I'm still confused. Any help would be appreciated.
trigonometry
$endgroup$
$ frac{sin A cos B + cos A sin B } {cos A cos B - sin A sin B} = frac{tan A + tan B}{1 - tan A tan B}$
I've tried multiplying by the reciprocal denominator on the left side to see if I could begin to simplify it to tangent, but I'm still confused. Any help would be appreciated.
trigonometry
trigonometry
edited Jan 29 at 21:26


abc...
3,237739
3,237739
asked Jan 29 at 21:14


thefirstplanehomethefirstplanehome
41
41
1
$begingroup$
Divide the numerator and denominator on the left by $cos Acos B$, and use the fact that $tan=sin/cos$. Alternatively, replace all the tan's on the right hand side with sin's over cos's and then simplify.
$endgroup$
– Barry Cipra
Jan 29 at 21:20
$begingroup$
Can you use that $tan(A)=frac{sin(A)}{cos(A)}?$ If yes, just do it in the RHS and put everything in terms of sin and cos in the RHS.
$endgroup$
– Phicar
Jan 29 at 21:20
add a comment |
1
$begingroup$
Divide the numerator and denominator on the left by $cos Acos B$, and use the fact that $tan=sin/cos$. Alternatively, replace all the tan's on the right hand side with sin's over cos's and then simplify.
$endgroup$
– Barry Cipra
Jan 29 at 21:20
$begingroup$
Can you use that $tan(A)=frac{sin(A)}{cos(A)}?$ If yes, just do it in the RHS and put everything in terms of sin and cos in the RHS.
$endgroup$
– Phicar
Jan 29 at 21:20
1
1
$begingroup$
Divide the numerator and denominator on the left by $cos Acos B$, and use the fact that $tan=sin/cos$. Alternatively, replace all the tan's on the right hand side with sin's over cos's and then simplify.
$endgroup$
– Barry Cipra
Jan 29 at 21:20
$begingroup$
Divide the numerator and denominator on the left by $cos Acos B$, and use the fact that $tan=sin/cos$. Alternatively, replace all the tan's on the right hand side with sin's over cos's and then simplify.
$endgroup$
– Barry Cipra
Jan 29 at 21:20
$begingroup$
Can you use that $tan(A)=frac{sin(A)}{cos(A)}?$ If yes, just do it in the RHS and put everything in terms of sin and cos in the RHS.
$endgroup$
– Phicar
Jan 29 at 21:20
$begingroup$
Can you use that $tan(A)=frac{sin(A)}{cos(A)}?$ If yes, just do it in the RHS and put everything in terms of sin and cos in the RHS.
$endgroup$
– Phicar
Jan 29 at 21:20
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
$LHS=frac{sin(A+B)}{cos(A+B)}=tan (A+B)=RHS $ by the composite angle formula for $tan$.
$endgroup$
add a comment |
$begingroup$
LHS=$frac{sin(A+B)}{cos(A+B)}=tan(A+B)=frac{tan A+tan B}{1-tan A tan B}$=RHS
Compound angle formulae of $sin, cos$ and $tan$ are used.
$endgroup$
add a comment |
$begingroup$
On the right hand side, put those tangents in terms of $sin$ and $cos$, and then multiply through to clear the denominators:
$$frac{tan A+tan B}{1-tan Atan B} = frac{frac{sin A}{cos A}+frac{sin B}{cos B}}{1-frac{sin Asin B}{cos Acos B}} = frac{sin Acos Bfrac{cos A}{cos A}+sin Bcos Afrac{cos B}{cos B}}{cos Acos B-sin Asin Bfrac{cos Acos B}{cos Acos B}}=frac{sin Acos B+sin Bcos A}{cos Acos B-sin Asin B}$$
Done.
These are, of course, two ways of expressing $tan(A+B)$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092731%2fhow-do-i-prove-this-trig-identity-that-contains-2-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$LHS=frac{sin(A+B)}{cos(A+B)}=tan (A+B)=RHS $ by the composite angle formula for $tan$.
$endgroup$
add a comment |
$begingroup$
$LHS=frac{sin(A+B)}{cos(A+B)}=tan (A+B)=RHS $ by the composite angle formula for $tan$.
$endgroup$
add a comment |
$begingroup$
$LHS=frac{sin(A+B)}{cos(A+B)}=tan (A+B)=RHS $ by the composite angle formula for $tan$.
$endgroup$
$LHS=frac{sin(A+B)}{cos(A+B)}=tan (A+B)=RHS $ by the composite angle formula for $tan$.
answered Jan 29 at 21:33
Chris CusterChris Custer
14.3k3827
14.3k3827
add a comment |
add a comment |
$begingroup$
LHS=$frac{sin(A+B)}{cos(A+B)}=tan(A+B)=frac{tan A+tan B}{1-tan A tan B}$=RHS
Compound angle formulae of $sin, cos$ and $tan$ are used.
$endgroup$
add a comment |
$begingroup$
LHS=$frac{sin(A+B)}{cos(A+B)}=tan(A+B)=frac{tan A+tan B}{1-tan A tan B}$=RHS
Compound angle formulae of $sin, cos$ and $tan$ are used.
$endgroup$
add a comment |
$begingroup$
LHS=$frac{sin(A+B)}{cos(A+B)}=tan(A+B)=frac{tan A+tan B}{1-tan A tan B}$=RHS
Compound angle formulae of $sin, cos$ and $tan$ are used.
$endgroup$
LHS=$frac{sin(A+B)}{cos(A+B)}=tan(A+B)=frac{tan A+tan B}{1-tan A tan B}$=RHS
Compound angle formulae of $sin, cos$ and $tan$ are used.
answered Jan 29 at 21:28


abc...abc...
3,237739
3,237739
add a comment |
add a comment |
$begingroup$
On the right hand side, put those tangents in terms of $sin$ and $cos$, and then multiply through to clear the denominators:
$$frac{tan A+tan B}{1-tan Atan B} = frac{frac{sin A}{cos A}+frac{sin B}{cos B}}{1-frac{sin Asin B}{cos Acos B}} = frac{sin Acos Bfrac{cos A}{cos A}+sin Bcos Afrac{cos B}{cos B}}{cos Acos B-sin Asin Bfrac{cos Acos B}{cos Acos B}}=frac{sin Acos B+sin Bcos A}{cos Acos B-sin Asin B}$$
Done.
These are, of course, two ways of expressing $tan(A+B)$.
$endgroup$
add a comment |
$begingroup$
On the right hand side, put those tangents in terms of $sin$ and $cos$, and then multiply through to clear the denominators:
$$frac{tan A+tan B}{1-tan Atan B} = frac{frac{sin A}{cos A}+frac{sin B}{cos B}}{1-frac{sin Asin B}{cos Acos B}} = frac{sin Acos Bfrac{cos A}{cos A}+sin Bcos Afrac{cos B}{cos B}}{cos Acos B-sin Asin Bfrac{cos Acos B}{cos Acos B}}=frac{sin Acos B+sin Bcos A}{cos Acos B-sin Asin B}$$
Done.
These are, of course, two ways of expressing $tan(A+B)$.
$endgroup$
add a comment |
$begingroup$
On the right hand side, put those tangents in terms of $sin$ and $cos$, and then multiply through to clear the denominators:
$$frac{tan A+tan B}{1-tan Atan B} = frac{frac{sin A}{cos A}+frac{sin B}{cos B}}{1-frac{sin Asin B}{cos Acos B}} = frac{sin Acos Bfrac{cos A}{cos A}+sin Bcos Afrac{cos B}{cos B}}{cos Acos B-sin Asin Bfrac{cos Acos B}{cos Acos B}}=frac{sin Acos B+sin Bcos A}{cos Acos B-sin Asin B}$$
Done.
These are, of course, two ways of expressing $tan(A+B)$.
$endgroup$
On the right hand side, put those tangents in terms of $sin$ and $cos$, and then multiply through to clear the denominators:
$$frac{tan A+tan B}{1-tan Atan B} = frac{frac{sin A}{cos A}+frac{sin B}{cos B}}{1-frac{sin Asin B}{cos Acos B}} = frac{sin Acos Bfrac{cos A}{cos A}+sin Bcos Afrac{cos B}{cos B}}{cos Acos B-sin Asin Bfrac{cos Acos B}{cos Acos B}}=frac{sin Acos B+sin Bcos A}{cos Acos B-sin Asin B}$$
Done.
These are, of course, two ways of expressing $tan(A+B)$.
answered Jan 29 at 21:41


jmerryjmerry
16.9k11633
16.9k11633
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092731%2fhow-do-i-prove-this-trig-identity-that-contains-2-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Divide the numerator and denominator on the left by $cos Acos B$, and use the fact that $tan=sin/cos$. Alternatively, replace all the tan's on the right hand side with sin's over cos's and then simplify.
$endgroup$
– Barry Cipra
Jan 29 at 21:20
$begingroup$
Can you use that $tan(A)=frac{sin(A)}{cos(A)}?$ If yes, just do it in the RHS and put everything in terms of sin and cos in the RHS.
$endgroup$
– Phicar
Jan 29 at 21:20