$int_{0}^{pi}frac{x dx}{1+ e sin x}=Kfrac{arccos e}{sqrt{1-e^{2}}}$












2












$begingroup$


$$int_{0}^{pi}frac{x dx}{1+ e sin x}=Kfrac{arccos e}{sqrt{1-e^{2}}}, (e^{2}lt1)$$



Find value of $K$ ?



I have solved till this step .



$$int_{0}^{pi}frac{x dx}{1+ e sin x}=frac{1}{2}
int_{0}^{pi}frac{ pi dx}{1+ e sin x}$$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Have you tried using $sin x= frac {2tan (x/2)}{1+tan^2(x/2)}$?
    $endgroup$
    – Thomas Shelby
    Feb 2 at 3:20








  • 1




    $begingroup$
    Just for clarification: $e$ is a variable?
    $endgroup$
    – clathratus
    Feb 2 at 3:45






  • 1




    $begingroup$
    Also: how did you show that $$int_0^pi frac{xdx}{1+esin x}=fracpi2int_0^pifrac{dx}{1+esin x}$$ ?
    $endgroup$
    – clathratus
    Feb 2 at 3:47






  • 1




    $begingroup$
    Assuming $K$ is a constant, substitute in $e=0$ and you can determine the value of $K$.
    $endgroup$
    – Szeto
    Feb 2 at 3:55






  • 1




    $begingroup$
    Okay I got that $K=pi$. Check out my answer to see how.
    $endgroup$
    – clathratus
    Feb 2 at 5:06
















2












$begingroup$


$$int_{0}^{pi}frac{x dx}{1+ e sin x}=Kfrac{arccos e}{sqrt{1-e^{2}}}, (e^{2}lt1)$$



Find value of $K$ ?



I have solved till this step .



$$int_{0}^{pi}frac{x dx}{1+ e sin x}=frac{1}{2}
int_{0}^{pi}frac{ pi dx}{1+ e sin x}$$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Have you tried using $sin x= frac {2tan (x/2)}{1+tan^2(x/2)}$?
    $endgroup$
    – Thomas Shelby
    Feb 2 at 3:20








  • 1




    $begingroup$
    Just for clarification: $e$ is a variable?
    $endgroup$
    – clathratus
    Feb 2 at 3:45






  • 1




    $begingroup$
    Also: how did you show that $$int_0^pi frac{xdx}{1+esin x}=fracpi2int_0^pifrac{dx}{1+esin x}$$ ?
    $endgroup$
    – clathratus
    Feb 2 at 3:47






  • 1




    $begingroup$
    Assuming $K$ is a constant, substitute in $e=0$ and you can determine the value of $K$.
    $endgroup$
    – Szeto
    Feb 2 at 3:55






  • 1




    $begingroup$
    Okay I got that $K=pi$. Check out my answer to see how.
    $endgroup$
    – clathratus
    Feb 2 at 5:06














2












2








2





$begingroup$


$$int_{0}^{pi}frac{x dx}{1+ e sin x}=Kfrac{arccos e}{sqrt{1-e^{2}}}, (e^{2}lt1)$$



Find value of $K$ ?



I have solved till this step .



$$int_{0}^{pi}frac{x dx}{1+ e sin x}=frac{1}{2}
int_{0}^{pi}frac{ pi dx}{1+ e sin x}$$










share|cite|improve this question











$endgroup$




$$int_{0}^{pi}frac{x dx}{1+ e sin x}=Kfrac{arccos e}{sqrt{1-e^{2}}}, (e^{2}lt1)$$



Find value of $K$ ?



I have solved till this step .



$$int_{0}^{pi}frac{x dx}{1+ e sin x}=frac{1}{2}
int_{0}^{pi}frac{ pi dx}{1+ e sin x}$$







calculus integration algebra-precalculus definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 2 at 3:36









Thomas Shelby

4,7362727




4,7362727










asked Feb 2 at 3:14









sejysejy

1589




1589








  • 1




    $begingroup$
    Have you tried using $sin x= frac {2tan (x/2)}{1+tan^2(x/2)}$?
    $endgroup$
    – Thomas Shelby
    Feb 2 at 3:20








  • 1




    $begingroup$
    Just for clarification: $e$ is a variable?
    $endgroup$
    – clathratus
    Feb 2 at 3:45






  • 1




    $begingroup$
    Also: how did you show that $$int_0^pi frac{xdx}{1+esin x}=fracpi2int_0^pifrac{dx}{1+esin x}$$ ?
    $endgroup$
    – clathratus
    Feb 2 at 3:47






  • 1




    $begingroup$
    Assuming $K$ is a constant, substitute in $e=0$ and you can determine the value of $K$.
    $endgroup$
    – Szeto
    Feb 2 at 3:55






  • 1




    $begingroup$
    Okay I got that $K=pi$. Check out my answer to see how.
    $endgroup$
    – clathratus
    Feb 2 at 5:06














  • 1




    $begingroup$
    Have you tried using $sin x= frac {2tan (x/2)}{1+tan^2(x/2)}$?
    $endgroup$
    – Thomas Shelby
    Feb 2 at 3:20








  • 1




    $begingroup$
    Just for clarification: $e$ is a variable?
    $endgroup$
    – clathratus
    Feb 2 at 3:45






  • 1




    $begingroup$
    Also: how did you show that $$int_0^pi frac{xdx}{1+esin x}=fracpi2int_0^pifrac{dx}{1+esin x}$$ ?
    $endgroup$
    – clathratus
    Feb 2 at 3:47






  • 1




    $begingroup$
    Assuming $K$ is a constant, substitute in $e=0$ and you can determine the value of $K$.
    $endgroup$
    – Szeto
    Feb 2 at 3:55






  • 1




    $begingroup$
    Okay I got that $K=pi$. Check out my answer to see how.
    $endgroup$
    – clathratus
    Feb 2 at 5:06








1




1




$begingroup$
Have you tried using $sin x= frac {2tan (x/2)}{1+tan^2(x/2)}$?
$endgroup$
– Thomas Shelby
Feb 2 at 3:20






$begingroup$
Have you tried using $sin x= frac {2tan (x/2)}{1+tan^2(x/2)}$?
$endgroup$
– Thomas Shelby
Feb 2 at 3:20






1




1




$begingroup$
Just for clarification: $e$ is a variable?
$endgroup$
– clathratus
Feb 2 at 3:45




$begingroup$
Just for clarification: $e$ is a variable?
$endgroup$
– clathratus
Feb 2 at 3:45




1




1




$begingroup$
Also: how did you show that $$int_0^pi frac{xdx}{1+esin x}=fracpi2int_0^pifrac{dx}{1+esin x}$$ ?
$endgroup$
– clathratus
Feb 2 at 3:47




$begingroup$
Also: how did you show that $$int_0^pi frac{xdx}{1+esin x}=fracpi2int_0^pifrac{dx}{1+esin x}$$ ?
$endgroup$
– clathratus
Feb 2 at 3:47




1




1




$begingroup$
Assuming $K$ is a constant, substitute in $e=0$ and you can determine the value of $K$.
$endgroup$
– Szeto
Feb 2 at 3:55




$begingroup$
Assuming $K$ is a constant, substitute in $e=0$ and you can determine the value of $K$.
$endgroup$
– Szeto
Feb 2 at 3:55




1




1




$begingroup$
Okay I got that $K=pi$. Check out my answer to see how.
$endgroup$
– clathratus
Feb 2 at 5:06




$begingroup$
Okay I got that $K=pi$. Check out my answer to see how.
$endgroup$
– clathratus
Feb 2 at 5:06










2 Answers
2






active

oldest

votes


















3












$begingroup$

We have
$$begin{split}
int_{0}^{pi}frac{x dx}{1+ e sin x} &= int_{0}^{frac pi 2}frac{x dx}{1+ e sin x} + int_{frac pi 2}^{pi}frac{x dx}{1+ e sin x}\
&= int_{0}^{frac pi 2}frac{x dx}{1+ e sin x} + int_{0}^{frac pi 2}frac{(pi - s) ds}{1+ e sin s} ,,,,text{ (with } s=pi-xtext{)}\
&= piint_{0}^{frac pi 2}frac{dx}{1+ e sin x}
end{split}$$

Now, using $u=tan frac x 2$,
$$begin{split}
int_{0}^{frac pi 2}frac{dx}{1+ e sin x} &= 2int_0^{1}frac{du}{(1+efrac{2u}{1+u^2})(1+u^2)}\
&=2int_0^{1}frac{du}{(1+2eu + u^2)}\
&= frac 2 {1-e^2}int_0^{1}frac{du}{1 + frac{(u+e)^2}{1-e^2}}\
&= frac 2 {sqrt{1-e^2}}int_{frac{e}{sqrt{1-e^2}}}^{frac{1+e}{sqrt{1-e^2}}} frac{dv}{1+v^2},,,text{(with }v=frac{u+e}{sqrt{1-e^2}}text{)}\
&=frac 2 {sqrt{1-e^2}} left(arctanleft(frac{1+e}{sqrt{1-e^2}}right) - arctan left(frac{e}{sqrt{1-e^2}}right)right)\
&=frac 2 {sqrt{1-e^2}} arctanleft(frac{frac{1}{sqrt{1-e^2}}}{1+frac{1+e}{sqrt{1-e^2}}frac{e}{sqrt{1-e^2}}}right)\
&=frac 2 {sqrt{1-e^2}} arctanleft(frac{sqrt{1-e^2}}{1+e}right)\
&=frac 1 {sqrt{1-e^2}} arccos(e)
end{split}$$

Conclusion:
$$int_{0}^{pi}frac{x dx}{1+ e sin x}=frac{pi}{sqrt{1-e^2}}arccos(e)$$ and $K=pi$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Nice solution (+1). I like the way that you showed all the steps of algebraic manipulation.
    $endgroup$
    – clathratus
    Feb 2 at 5:34










  • $begingroup$
    Thanks. Google and the hint from Thomas Shelby helped me a lot.
    $endgroup$
    – Stefan Lafon
    Feb 2 at 6:26



















2












$begingroup$

$$F(a)=int_0^pifrac{xdx}{1+asin x}$$
Somehow, you have shown that
$$F(a)=fracpi2int_0^pifrac{dx}{1+asin x}$$
With which CAS seems to agree. We exploit symmetry:
$$F(a)=piint_0^{pi/2}frac{dx}{1+asin x}$$
Then we preform the substitution $t=tanfrac{x}2$, to see that
$$F(a)=2piint_0^1frac{1}{1+afrac{2t}{t^2+1}}frac{dt}{t^2+1}$$
So that
$$F(a)=2piint_0^1frac{dt}{t^2+2at+1}$$
Then we consider the integral
$$I(x;a,b,c)=intfrac{dx}{ax^2+bx+c}$$
Complete the square on the bottom
$$I(x;a,b,c)=intfrac{dx}{a(x+frac{b}{2a})^2+g}$$
Where $g=c-frac{b^2}{4a}$. I leave it as a challenge to you to use the trig sub $x+frac{b}{2a}=sqrt{frac{g}{a}}tan u$ to see that
$$I(x;a,b,c)=frac2{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}}$$
So we see that
$$F(a)=2pileft[I(1;1,2a,1)-I(0;1,2a,1)right]$$
$$F(a)=frac{2pi}{sqrt{1-a^2}}left(arctansqrt{frac{1+a}{1-a}}-arctanfrac{a}{sqrt{1-a^2}}right)$$
Which works for $a^2<1$. Amazingly this simplifies down to
$$F(a)=frac{piarccos a}{sqrt{1-a^2}}$$
So we have that $K=pi$.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Great minds think alike (+1).
    $endgroup$
    – Stefan Lafon
    Feb 2 at 6:27












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096995%2fint-0-pi-fracx-dx1-e-sin-x-k-frac-arccos-e-sqrt1-e2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

We have
$$begin{split}
int_{0}^{pi}frac{x dx}{1+ e sin x} &= int_{0}^{frac pi 2}frac{x dx}{1+ e sin x} + int_{frac pi 2}^{pi}frac{x dx}{1+ e sin x}\
&= int_{0}^{frac pi 2}frac{x dx}{1+ e sin x} + int_{0}^{frac pi 2}frac{(pi - s) ds}{1+ e sin s} ,,,,text{ (with } s=pi-xtext{)}\
&= piint_{0}^{frac pi 2}frac{dx}{1+ e sin x}
end{split}$$

Now, using $u=tan frac x 2$,
$$begin{split}
int_{0}^{frac pi 2}frac{dx}{1+ e sin x} &= 2int_0^{1}frac{du}{(1+efrac{2u}{1+u^2})(1+u^2)}\
&=2int_0^{1}frac{du}{(1+2eu + u^2)}\
&= frac 2 {1-e^2}int_0^{1}frac{du}{1 + frac{(u+e)^2}{1-e^2}}\
&= frac 2 {sqrt{1-e^2}}int_{frac{e}{sqrt{1-e^2}}}^{frac{1+e}{sqrt{1-e^2}}} frac{dv}{1+v^2},,,text{(with }v=frac{u+e}{sqrt{1-e^2}}text{)}\
&=frac 2 {sqrt{1-e^2}} left(arctanleft(frac{1+e}{sqrt{1-e^2}}right) - arctan left(frac{e}{sqrt{1-e^2}}right)right)\
&=frac 2 {sqrt{1-e^2}} arctanleft(frac{frac{1}{sqrt{1-e^2}}}{1+frac{1+e}{sqrt{1-e^2}}frac{e}{sqrt{1-e^2}}}right)\
&=frac 2 {sqrt{1-e^2}} arctanleft(frac{sqrt{1-e^2}}{1+e}right)\
&=frac 1 {sqrt{1-e^2}} arccos(e)
end{split}$$

Conclusion:
$$int_{0}^{pi}frac{x dx}{1+ e sin x}=frac{pi}{sqrt{1-e^2}}arccos(e)$$ and $K=pi$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Nice solution (+1). I like the way that you showed all the steps of algebraic manipulation.
    $endgroup$
    – clathratus
    Feb 2 at 5:34










  • $begingroup$
    Thanks. Google and the hint from Thomas Shelby helped me a lot.
    $endgroup$
    – Stefan Lafon
    Feb 2 at 6:26
















3












$begingroup$

We have
$$begin{split}
int_{0}^{pi}frac{x dx}{1+ e sin x} &= int_{0}^{frac pi 2}frac{x dx}{1+ e sin x} + int_{frac pi 2}^{pi}frac{x dx}{1+ e sin x}\
&= int_{0}^{frac pi 2}frac{x dx}{1+ e sin x} + int_{0}^{frac pi 2}frac{(pi - s) ds}{1+ e sin s} ,,,,text{ (with } s=pi-xtext{)}\
&= piint_{0}^{frac pi 2}frac{dx}{1+ e sin x}
end{split}$$

Now, using $u=tan frac x 2$,
$$begin{split}
int_{0}^{frac pi 2}frac{dx}{1+ e sin x} &= 2int_0^{1}frac{du}{(1+efrac{2u}{1+u^2})(1+u^2)}\
&=2int_0^{1}frac{du}{(1+2eu + u^2)}\
&= frac 2 {1-e^2}int_0^{1}frac{du}{1 + frac{(u+e)^2}{1-e^2}}\
&= frac 2 {sqrt{1-e^2}}int_{frac{e}{sqrt{1-e^2}}}^{frac{1+e}{sqrt{1-e^2}}} frac{dv}{1+v^2},,,text{(with }v=frac{u+e}{sqrt{1-e^2}}text{)}\
&=frac 2 {sqrt{1-e^2}} left(arctanleft(frac{1+e}{sqrt{1-e^2}}right) - arctan left(frac{e}{sqrt{1-e^2}}right)right)\
&=frac 2 {sqrt{1-e^2}} arctanleft(frac{frac{1}{sqrt{1-e^2}}}{1+frac{1+e}{sqrt{1-e^2}}frac{e}{sqrt{1-e^2}}}right)\
&=frac 2 {sqrt{1-e^2}} arctanleft(frac{sqrt{1-e^2}}{1+e}right)\
&=frac 1 {sqrt{1-e^2}} arccos(e)
end{split}$$

Conclusion:
$$int_{0}^{pi}frac{x dx}{1+ e sin x}=frac{pi}{sqrt{1-e^2}}arccos(e)$$ and $K=pi$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Nice solution (+1). I like the way that you showed all the steps of algebraic manipulation.
    $endgroup$
    – clathratus
    Feb 2 at 5:34










  • $begingroup$
    Thanks. Google and the hint from Thomas Shelby helped me a lot.
    $endgroup$
    – Stefan Lafon
    Feb 2 at 6:26














3












3








3





$begingroup$

We have
$$begin{split}
int_{0}^{pi}frac{x dx}{1+ e sin x} &= int_{0}^{frac pi 2}frac{x dx}{1+ e sin x} + int_{frac pi 2}^{pi}frac{x dx}{1+ e sin x}\
&= int_{0}^{frac pi 2}frac{x dx}{1+ e sin x} + int_{0}^{frac pi 2}frac{(pi - s) ds}{1+ e sin s} ,,,,text{ (with } s=pi-xtext{)}\
&= piint_{0}^{frac pi 2}frac{dx}{1+ e sin x}
end{split}$$

Now, using $u=tan frac x 2$,
$$begin{split}
int_{0}^{frac pi 2}frac{dx}{1+ e sin x} &= 2int_0^{1}frac{du}{(1+efrac{2u}{1+u^2})(1+u^2)}\
&=2int_0^{1}frac{du}{(1+2eu + u^2)}\
&= frac 2 {1-e^2}int_0^{1}frac{du}{1 + frac{(u+e)^2}{1-e^2}}\
&= frac 2 {sqrt{1-e^2}}int_{frac{e}{sqrt{1-e^2}}}^{frac{1+e}{sqrt{1-e^2}}} frac{dv}{1+v^2},,,text{(with }v=frac{u+e}{sqrt{1-e^2}}text{)}\
&=frac 2 {sqrt{1-e^2}} left(arctanleft(frac{1+e}{sqrt{1-e^2}}right) - arctan left(frac{e}{sqrt{1-e^2}}right)right)\
&=frac 2 {sqrt{1-e^2}} arctanleft(frac{frac{1}{sqrt{1-e^2}}}{1+frac{1+e}{sqrt{1-e^2}}frac{e}{sqrt{1-e^2}}}right)\
&=frac 2 {sqrt{1-e^2}} arctanleft(frac{sqrt{1-e^2}}{1+e}right)\
&=frac 1 {sqrt{1-e^2}} arccos(e)
end{split}$$

Conclusion:
$$int_{0}^{pi}frac{x dx}{1+ e sin x}=frac{pi}{sqrt{1-e^2}}arccos(e)$$ and $K=pi$






share|cite|improve this answer











$endgroup$



We have
$$begin{split}
int_{0}^{pi}frac{x dx}{1+ e sin x} &= int_{0}^{frac pi 2}frac{x dx}{1+ e sin x} + int_{frac pi 2}^{pi}frac{x dx}{1+ e sin x}\
&= int_{0}^{frac pi 2}frac{x dx}{1+ e sin x} + int_{0}^{frac pi 2}frac{(pi - s) ds}{1+ e sin s} ,,,,text{ (with } s=pi-xtext{)}\
&= piint_{0}^{frac pi 2}frac{dx}{1+ e sin x}
end{split}$$

Now, using $u=tan frac x 2$,
$$begin{split}
int_{0}^{frac pi 2}frac{dx}{1+ e sin x} &= 2int_0^{1}frac{du}{(1+efrac{2u}{1+u^2})(1+u^2)}\
&=2int_0^{1}frac{du}{(1+2eu + u^2)}\
&= frac 2 {1-e^2}int_0^{1}frac{du}{1 + frac{(u+e)^2}{1-e^2}}\
&= frac 2 {sqrt{1-e^2}}int_{frac{e}{sqrt{1-e^2}}}^{frac{1+e}{sqrt{1-e^2}}} frac{dv}{1+v^2},,,text{(with }v=frac{u+e}{sqrt{1-e^2}}text{)}\
&=frac 2 {sqrt{1-e^2}} left(arctanleft(frac{1+e}{sqrt{1-e^2}}right) - arctan left(frac{e}{sqrt{1-e^2}}right)right)\
&=frac 2 {sqrt{1-e^2}} arctanleft(frac{frac{1}{sqrt{1-e^2}}}{1+frac{1+e}{sqrt{1-e^2}}frac{e}{sqrt{1-e^2}}}right)\
&=frac 2 {sqrt{1-e^2}} arctanleft(frac{sqrt{1-e^2}}{1+e}right)\
&=frac 1 {sqrt{1-e^2}} arccos(e)
end{split}$$

Conclusion:
$$int_{0}^{pi}frac{x dx}{1+ e sin x}=frac{pi}{sqrt{1-e^2}}arccos(e)$$ and $K=pi$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Feb 2 at 5:03

























answered Feb 2 at 4:18









Stefan LafonStefan Lafon

3,005212




3,005212












  • $begingroup$
    Nice solution (+1). I like the way that you showed all the steps of algebraic manipulation.
    $endgroup$
    – clathratus
    Feb 2 at 5:34










  • $begingroup$
    Thanks. Google and the hint from Thomas Shelby helped me a lot.
    $endgroup$
    – Stefan Lafon
    Feb 2 at 6:26


















  • $begingroup$
    Nice solution (+1). I like the way that you showed all the steps of algebraic manipulation.
    $endgroup$
    – clathratus
    Feb 2 at 5:34










  • $begingroup$
    Thanks. Google and the hint from Thomas Shelby helped me a lot.
    $endgroup$
    – Stefan Lafon
    Feb 2 at 6:26
















$begingroup$
Nice solution (+1). I like the way that you showed all the steps of algebraic manipulation.
$endgroup$
– clathratus
Feb 2 at 5:34




$begingroup$
Nice solution (+1). I like the way that you showed all the steps of algebraic manipulation.
$endgroup$
– clathratus
Feb 2 at 5:34












$begingroup$
Thanks. Google and the hint from Thomas Shelby helped me a lot.
$endgroup$
– Stefan Lafon
Feb 2 at 6:26




$begingroup$
Thanks. Google and the hint from Thomas Shelby helped me a lot.
$endgroup$
– Stefan Lafon
Feb 2 at 6:26











2












$begingroup$

$$F(a)=int_0^pifrac{xdx}{1+asin x}$$
Somehow, you have shown that
$$F(a)=fracpi2int_0^pifrac{dx}{1+asin x}$$
With which CAS seems to agree. We exploit symmetry:
$$F(a)=piint_0^{pi/2}frac{dx}{1+asin x}$$
Then we preform the substitution $t=tanfrac{x}2$, to see that
$$F(a)=2piint_0^1frac{1}{1+afrac{2t}{t^2+1}}frac{dt}{t^2+1}$$
So that
$$F(a)=2piint_0^1frac{dt}{t^2+2at+1}$$
Then we consider the integral
$$I(x;a,b,c)=intfrac{dx}{ax^2+bx+c}$$
Complete the square on the bottom
$$I(x;a,b,c)=intfrac{dx}{a(x+frac{b}{2a})^2+g}$$
Where $g=c-frac{b^2}{4a}$. I leave it as a challenge to you to use the trig sub $x+frac{b}{2a}=sqrt{frac{g}{a}}tan u$ to see that
$$I(x;a,b,c)=frac2{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}}$$
So we see that
$$F(a)=2pileft[I(1;1,2a,1)-I(0;1,2a,1)right]$$
$$F(a)=frac{2pi}{sqrt{1-a^2}}left(arctansqrt{frac{1+a}{1-a}}-arctanfrac{a}{sqrt{1-a^2}}right)$$
Which works for $a^2<1$. Amazingly this simplifies down to
$$F(a)=frac{piarccos a}{sqrt{1-a^2}}$$
So we have that $K=pi$.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Great minds think alike (+1).
    $endgroup$
    – Stefan Lafon
    Feb 2 at 6:27
















2












$begingroup$

$$F(a)=int_0^pifrac{xdx}{1+asin x}$$
Somehow, you have shown that
$$F(a)=fracpi2int_0^pifrac{dx}{1+asin x}$$
With which CAS seems to agree. We exploit symmetry:
$$F(a)=piint_0^{pi/2}frac{dx}{1+asin x}$$
Then we preform the substitution $t=tanfrac{x}2$, to see that
$$F(a)=2piint_0^1frac{1}{1+afrac{2t}{t^2+1}}frac{dt}{t^2+1}$$
So that
$$F(a)=2piint_0^1frac{dt}{t^2+2at+1}$$
Then we consider the integral
$$I(x;a,b,c)=intfrac{dx}{ax^2+bx+c}$$
Complete the square on the bottom
$$I(x;a,b,c)=intfrac{dx}{a(x+frac{b}{2a})^2+g}$$
Where $g=c-frac{b^2}{4a}$. I leave it as a challenge to you to use the trig sub $x+frac{b}{2a}=sqrt{frac{g}{a}}tan u$ to see that
$$I(x;a,b,c)=frac2{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}}$$
So we see that
$$F(a)=2pileft[I(1;1,2a,1)-I(0;1,2a,1)right]$$
$$F(a)=frac{2pi}{sqrt{1-a^2}}left(arctansqrt{frac{1+a}{1-a}}-arctanfrac{a}{sqrt{1-a^2}}right)$$
Which works for $a^2<1$. Amazingly this simplifies down to
$$F(a)=frac{piarccos a}{sqrt{1-a^2}}$$
So we have that $K=pi$.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Great minds think alike (+1).
    $endgroup$
    – Stefan Lafon
    Feb 2 at 6:27














2












2








2





$begingroup$

$$F(a)=int_0^pifrac{xdx}{1+asin x}$$
Somehow, you have shown that
$$F(a)=fracpi2int_0^pifrac{dx}{1+asin x}$$
With which CAS seems to agree. We exploit symmetry:
$$F(a)=piint_0^{pi/2}frac{dx}{1+asin x}$$
Then we preform the substitution $t=tanfrac{x}2$, to see that
$$F(a)=2piint_0^1frac{1}{1+afrac{2t}{t^2+1}}frac{dt}{t^2+1}$$
So that
$$F(a)=2piint_0^1frac{dt}{t^2+2at+1}$$
Then we consider the integral
$$I(x;a,b,c)=intfrac{dx}{ax^2+bx+c}$$
Complete the square on the bottom
$$I(x;a,b,c)=intfrac{dx}{a(x+frac{b}{2a})^2+g}$$
Where $g=c-frac{b^2}{4a}$. I leave it as a challenge to you to use the trig sub $x+frac{b}{2a}=sqrt{frac{g}{a}}tan u$ to see that
$$I(x;a,b,c)=frac2{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}}$$
So we see that
$$F(a)=2pileft[I(1;1,2a,1)-I(0;1,2a,1)right]$$
$$F(a)=frac{2pi}{sqrt{1-a^2}}left(arctansqrt{frac{1+a}{1-a}}-arctanfrac{a}{sqrt{1-a^2}}right)$$
Which works for $a^2<1$. Amazingly this simplifies down to
$$F(a)=frac{piarccos a}{sqrt{1-a^2}}$$
So we have that $K=pi$.






share|cite|improve this answer











$endgroup$



$$F(a)=int_0^pifrac{xdx}{1+asin x}$$
Somehow, you have shown that
$$F(a)=fracpi2int_0^pifrac{dx}{1+asin x}$$
With which CAS seems to agree. We exploit symmetry:
$$F(a)=piint_0^{pi/2}frac{dx}{1+asin x}$$
Then we preform the substitution $t=tanfrac{x}2$, to see that
$$F(a)=2piint_0^1frac{1}{1+afrac{2t}{t^2+1}}frac{dt}{t^2+1}$$
So that
$$F(a)=2piint_0^1frac{dt}{t^2+2at+1}$$
Then we consider the integral
$$I(x;a,b,c)=intfrac{dx}{ax^2+bx+c}$$
Complete the square on the bottom
$$I(x;a,b,c)=intfrac{dx}{a(x+frac{b}{2a})^2+g}$$
Where $g=c-frac{b^2}{4a}$. I leave it as a challenge to you to use the trig sub $x+frac{b}{2a}=sqrt{frac{g}{a}}tan u$ to see that
$$I(x;a,b,c)=frac2{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}}$$
So we see that
$$F(a)=2pileft[I(1;1,2a,1)-I(0;1,2a,1)right]$$
$$F(a)=frac{2pi}{sqrt{1-a^2}}left(arctansqrt{frac{1+a}{1-a}}-arctanfrac{a}{sqrt{1-a^2}}right)$$
Which works for $a^2<1$. Amazingly this simplifies down to
$$F(a)=frac{piarccos a}{sqrt{1-a^2}}$$
So we have that $K=pi$.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Feb 2 at 5:05

























answered Feb 2 at 4:03









clathratusclathratus

5,1141439




5,1141439








  • 1




    $begingroup$
    Great minds think alike (+1).
    $endgroup$
    – Stefan Lafon
    Feb 2 at 6:27














  • 1




    $begingroup$
    Great minds think alike (+1).
    $endgroup$
    – Stefan Lafon
    Feb 2 at 6:27








1




1




$begingroup$
Great minds think alike (+1).
$endgroup$
– Stefan Lafon
Feb 2 at 6:27




$begingroup$
Great minds think alike (+1).
$endgroup$
– Stefan Lafon
Feb 2 at 6:27


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096995%2fint-0-pi-fracx-dx1-e-sin-x-k-frac-arccos-e-sqrt1-e2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

Npm cannot find a required file even through it is in the searched directory