$int_{0}^{pi}frac{x dx}{1+ e sin x}=Kfrac{arccos e}{sqrt{1-e^{2}}}$
$begingroup$
$$int_{0}^{pi}frac{x dx}{1+ e sin x}=Kfrac{arccos e}{sqrt{1-e^{2}}}, (e^{2}lt1)$$
Find value of $K$ ?
I have solved till this step .
$$int_{0}^{pi}frac{x dx}{1+ e sin x}=frac{1}{2}
int_{0}^{pi}frac{ pi dx}{1+ e sin x}$$
calculus integration algebra-precalculus definite-integrals
$endgroup$
add a comment |
$begingroup$
$$int_{0}^{pi}frac{x dx}{1+ e sin x}=Kfrac{arccos e}{sqrt{1-e^{2}}}, (e^{2}lt1)$$
Find value of $K$ ?
I have solved till this step .
$$int_{0}^{pi}frac{x dx}{1+ e sin x}=frac{1}{2}
int_{0}^{pi}frac{ pi dx}{1+ e sin x}$$
calculus integration algebra-precalculus definite-integrals
$endgroup$
1
$begingroup$
Have you tried using $sin x= frac {2tan (x/2)}{1+tan^2(x/2)}$?
$endgroup$
– Thomas Shelby
Feb 2 at 3:20
1
$begingroup$
Just for clarification: $e$ is a variable?
$endgroup$
– clathratus
Feb 2 at 3:45
1
$begingroup$
Also: how did you show that $$int_0^pi frac{xdx}{1+esin x}=fracpi2int_0^pifrac{dx}{1+esin x}$$ ?
$endgroup$
– clathratus
Feb 2 at 3:47
1
$begingroup$
Assuming $K$ is a constant, substitute in $e=0$ and you can determine the value of $K$.
$endgroup$
– Szeto
Feb 2 at 3:55
1
$begingroup$
Okay I got that $K=pi$. Check out my answer to see how.
$endgroup$
– clathratus
Feb 2 at 5:06
add a comment |
$begingroup$
$$int_{0}^{pi}frac{x dx}{1+ e sin x}=Kfrac{arccos e}{sqrt{1-e^{2}}}, (e^{2}lt1)$$
Find value of $K$ ?
I have solved till this step .
$$int_{0}^{pi}frac{x dx}{1+ e sin x}=frac{1}{2}
int_{0}^{pi}frac{ pi dx}{1+ e sin x}$$
calculus integration algebra-precalculus definite-integrals
$endgroup$
$$int_{0}^{pi}frac{x dx}{1+ e sin x}=Kfrac{arccos e}{sqrt{1-e^{2}}}, (e^{2}lt1)$$
Find value of $K$ ?
I have solved till this step .
$$int_{0}^{pi}frac{x dx}{1+ e sin x}=frac{1}{2}
int_{0}^{pi}frac{ pi dx}{1+ e sin x}$$
calculus integration algebra-precalculus definite-integrals
calculus integration algebra-precalculus definite-integrals
edited Feb 2 at 3:36
Thomas Shelby
4,7362727
4,7362727
asked Feb 2 at 3:14


sejysejy
1589
1589
1
$begingroup$
Have you tried using $sin x= frac {2tan (x/2)}{1+tan^2(x/2)}$?
$endgroup$
– Thomas Shelby
Feb 2 at 3:20
1
$begingroup$
Just for clarification: $e$ is a variable?
$endgroup$
– clathratus
Feb 2 at 3:45
1
$begingroup$
Also: how did you show that $$int_0^pi frac{xdx}{1+esin x}=fracpi2int_0^pifrac{dx}{1+esin x}$$ ?
$endgroup$
– clathratus
Feb 2 at 3:47
1
$begingroup$
Assuming $K$ is a constant, substitute in $e=0$ and you can determine the value of $K$.
$endgroup$
– Szeto
Feb 2 at 3:55
1
$begingroup$
Okay I got that $K=pi$. Check out my answer to see how.
$endgroup$
– clathratus
Feb 2 at 5:06
add a comment |
1
$begingroup$
Have you tried using $sin x= frac {2tan (x/2)}{1+tan^2(x/2)}$?
$endgroup$
– Thomas Shelby
Feb 2 at 3:20
1
$begingroup$
Just for clarification: $e$ is a variable?
$endgroup$
– clathratus
Feb 2 at 3:45
1
$begingroup$
Also: how did you show that $$int_0^pi frac{xdx}{1+esin x}=fracpi2int_0^pifrac{dx}{1+esin x}$$ ?
$endgroup$
– clathratus
Feb 2 at 3:47
1
$begingroup$
Assuming $K$ is a constant, substitute in $e=0$ and you can determine the value of $K$.
$endgroup$
– Szeto
Feb 2 at 3:55
1
$begingroup$
Okay I got that $K=pi$. Check out my answer to see how.
$endgroup$
– clathratus
Feb 2 at 5:06
1
1
$begingroup$
Have you tried using $sin x= frac {2tan (x/2)}{1+tan^2(x/2)}$?
$endgroup$
– Thomas Shelby
Feb 2 at 3:20
$begingroup$
Have you tried using $sin x= frac {2tan (x/2)}{1+tan^2(x/2)}$?
$endgroup$
– Thomas Shelby
Feb 2 at 3:20
1
1
$begingroup$
Just for clarification: $e$ is a variable?
$endgroup$
– clathratus
Feb 2 at 3:45
$begingroup$
Just for clarification: $e$ is a variable?
$endgroup$
– clathratus
Feb 2 at 3:45
1
1
$begingroup$
Also: how did you show that $$int_0^pi frac{xdx}{1+esin x}=fracpi2int_0^pifrac{dx}{1+esin x}$$ ?
$endgroup$
– clathratus
Feb 2 at 3:47
$begingroup$
Also: how did you show that $$int_0^pi frac{xdx}{1+esin x}=fracpi2int_0^pifrac{dx}{1+esin x}$$ ?
$endgroup$
– clathratus
Feb 2 at 3:47
1
1
$begingroup$
Assuming $K$ is a constant, substitute in $e=0$ and you can determine the value of $K$.
$endgroup$
– Szeto
Feb 2 at 3:55
$begingroup$
Assuming $K$ is a constant, substitute in $e=0$ and you can determine the value of $K$.
$endgroup$
– Szeto
Feb 2 at 3:55
1
1
$begingroup$
Okay I got that $K=pi$. Check out my answer to see how.
$endgroup$
– clathratus
Feb 2 at 5:06
$begingroup$
Okay I got that $K=pi$. Check out my answer to see how.
$endgroup$
– clathratus
Feb 2 at 5:06
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
We have
$$begin{split}
int_{0}^{pi}frac{x dx}{1+ e sin x} &= int_{0}^{frac pi 2}frac{x dx}{1+ e sin x} + int_{frac pi 2}^{pi}frac{x dx}{1+ e sin x}\
&= int_{0}^{frac pi 2}frac{x dx}{1+ e sin x} + int_{0}^{frac pi 2}frac{(pi - s) ds}{1+ e sin s} ,,,,text{ (with } s=pi-xtext{)}\
&= piint_{0}^{frac pi 2}frac{dx}{1+ e sin x}
end{split}$$
Now, using $u=tan frac x 2$,
$$begin{split}
int_{0}^{frac pi 2}frac{dx}{1+ e sin x} &= 2int_0^{1}frac{du}{(1+efrac{2u}{1+u^2})(1+u^2)}\
&=2int_0^{1}frac{du}{(1+2eu + u^2)}\
&= frac 2 {1-e^2}int_0^{1}frac{du}{1 + frac{(u+e)^2}{1-e^2}}\
&= frac 2 {sqrt{1-e^2}}int_{frac{e}{sqrt{1-e^2}}}^{frac{1+e}{sqrt{1-e^2}}} frac{dv}{1+v^2},,,text{(with }v=frac{u+e}{sqrt{1-e^2}}text{)}\
&=frac 2 {sqrt{1-e^2}} left(arctanleft(frac{1+e}{sqrt{1-e^2}}right) - arctan left(frac{e}{sqrt{1-e^2}}right)right)\
&=frac 2 {sqrt{1-e^2}} arctanleft(frac{frac{1}{sqrt{1-e^2}}}{1+frac{1+e}{sqrt{1-e^2}}frac{e}{sqrt{1-e^2}}}right)\
&=frac 2 {sqrt{1-e^2}} arctanleft(frac{sqrt{1-e^2}}{1+e}right)\
&=frac 1 {sqrt{1-e^2}} arccos(e)
end{split}$$
Conclusion:
$$int_{0}^{pi}frac{x dx}{1+ e sin x}=frac{pi}{sqrt{1-e^2}}arccos(e)$$ and $K=pi$
$endgroup$
$begingroup$
Nice solution (+1). I like the way that you showed all the steps of algebraic manipulation.
$endgroup$
– clathratus
Feb 2 at 5:34
$begingroup$
Thanks. Google and the hint from Thomas Shelby helped me a lot.
$endgroup$
– Stefan Lafon
Feb 2 at 6:26
add a comment |
$begingroup$
$$F(a)=int_0^pifrac{xdx}{1+asin x}$$
Somehow, you have shown that
$$F(a)=fracpi2int_0^pifrac{dx}{1+asin x}$$
With which CAS seems to agree. We exploit symmetry:
$$F(a)=piint_0^{pi/2}frac{dx}{1+asin x}$$
Then we preform the substitution $t=tanfrac{x}2$, to see that
$$F(a)=2piint_0^1frac{1}{1+afrac{2t}{t^2+1}}frac{dt}{t^2+1}$$
So that
$$F(a)=2piint_0^1frac{dt}{t^2+2at+1}$$
Then we consider the integral
$$I(x;a,b,c)=intfrac{dx}{ax^2+bx+c}$$
Complete the square on the bottom
$$I(x;a,b,c)=intfrac{dx}{a(x+frac{b}{2a})^2+g}$$
Where $g=c-frac{b^2}{4a}$. I leave it as a challenge to you to use the trig sub $x+frac{b}{2a}=sqrt{frac{g}{a}}tan u$ to see that
$$I(x;a,b,c)=frac2{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}}$$
So we see that
$$F(a)=2pileft[I(1;1,2a,1)-I(0;1,2a,1)right]$$
$$F(a)=frac{2pi}{sqrt{1-a^2}}left(arctansqrt{frac{1+a}{1-a}}-arctanfrac{a}{sqrt{1-a^2}}right)$$
Which works for $a^2<1$. Amazingly this simplifies down to
$$F(a)=frac{piarccos a}{sqrt{1-a^2}}$$
So we have that $K=pi$.
$endgroup$
1
$begingroup$
Great minds think alike (+1).
$endgroup$
– Stefan Lafon
Feb 2 at 6:27
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096995%2fint-0-pi-fracx-dx1-e-sin-x-k-frac-arccos-e-sqrt1-e2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We have
$$begin{split}
int_{0}^{pi}frac{x dx}{1+ e sin x} &= int_{0}^{frac pi 2}frac{x dx}{1+ e sin x} + int_{frac pi 2}^{pi}frac{x dx}{1+ e sin x}\
&= int_{0}^{frac pi 2}frac{x dx}{1+ e sin x} + int_{0}^{frac pi 2}frac{(pi - s) ds}{1+ e sin s} ,,,,text{ (with } s=pi-xtext{)}\
&= piint_{0}^{frac pi 2}frac{dx}{1+ e sin x}
end{split}$$
Now, using $u=tan frac x 2$,
$$begin{split}
int_{0}^{frac pi 2}frac{dx}{1+ e sin x} &= 2int_0^{1}frac{du}{(1+efrac{2u}{1+u^2})(1+u^2)}\
&=2int_0^{1}frac{du}{(1+2eu + u^2)}\
&= frac 2 {1-e^2}int_0^{1}frac{du}{1 + frac{(u+e)^2}{1-e^2}}\
&= frac 2 {sqrt{1-e^2}}int_{frac{e}{sqrt{1-e^2}}}^{frac{1+e}{sqrt{1-e^2}}} frac{dv}{1+v^2},,,text{(with }v=frac{u+e}{sqrt{1-e^2}}text{)}\
&=frac 2 {sqrt{1-e^2}} left(arctanleft(frac{1+e}{sqrt{1-e^2}}right) - arctan left(frac{e}{sqrt{1-e^2}}right)right)\
&=frac 2 {sqrt{1-e^2}} arctanleft(frac{frac{1}{sqrt{1-e^2}}}{1+frac{1+e}{sqrt{1-e^2}}frac{e}{sqrt{1-e^2}}}right)\
&=frac 2 {sqrt{1-e^2}} arctanleft(frac{sqrt{1-e^2}}{1+e}right)\
&=frac 1 {sqrt{1-e^2}} arccos(e)
end{split}$$
Conclusion:
$$int_{0}^{pi}frac{x dx}{1+ e sin x}=frac{pi}{sqrt{1-e^2}}arccos(e)$$ and $K=pi$
$endgroup$
$begingroup$
Nice solution (+1). I like the way that you showed all the steps of algebraic manipulation.
$endgroup$
– clathratus
Feb 2 at 5:34
$begingroup$
Thanks. Google and the hint from Thomas Shelby helped me a lot.
$endgroup$
– Stefan Lafon
Feb 2 at 6:26
add a comment |
$begingroup$
We have
$$begin{split}
int_{0}^{pi}frac{x dx}{1+ e sin x} &= int_{0}^{frac pi 2}frac{x dx}{1+ e sin x} + int_{frac pi 2}^{pi}frac{x dx}{1+ e sin x}\
&= int_{0}^{frac pi 2}frac{x dx}{1+ e sin x} + int_{0}^{frac pi 2}frac{(pi - s) ds}{1+ e sin s} ,,,,text{ (with } s=pi-xtext{)}\
&= piint_{0}^{frac pi 2}frac{dx}{1+ e sin x}
end{split}$$
Now, using $u=tan frac x 2$,
$$begin{split}
int_{0}^{frac pi 2}frac{dx}{1+ e sin x} &= 2int_0^{1}frac{du}{(1+efrac{2u}{1+u^2})(1+u^2)}\
&=2int_0^{1}frac{du}{(1+2eu + u^2)}\
&= frac 2 {1-e^2}int_0^{1}frac{du}{1 + frac{(u+e)^2}{1-e^2}}\
&= frac 2 {sqrt{1-e^2}}int_{frac{e}{sqrt{1-e^2}}}^{frac{1+e}{sqrt{1-e^2}}} frac{dv}{1+v^2},,,text{(with }v=frac{u+e}{sqrt{1-e^2}}text{)}\
&=frac 2 {sqrt{1-e^2}} left(arctanleft(frac{1+e}{sqrt{1-e^2}}right) - arctan left(frac{e}{sqrt{1-e^2}}right)right)\
&=frac 2 {sqrt{1-e^2}} arctanleft(frac{frac{1}{sqrt{1-e^2}}}{1+frac{1+e}{sqrt{1-e^2}}frac{e}{sqrt{1-e^2}}}right)\
&=frac 2 {sqrt{1-e^2}} arctanleft(frac{sqrt{1-e^2}}{1+e}right)\
&=frac 1 {sqrt{1-e^2}} arccos(e)
end{split}$$
Conclusion:
$$int_{0}^{pi}frac{x dx}{1+ e sin x}=frac{pi}{sqrt{1-e^2}}arccos(e)$$ and $K=pi$
$endgroup$
$begingroup$
Nice solution (+1). I like the way that you showed all the steps of algebraic manipulation.
$endgroup$
– clathratus
Feb 2 at 5:34
$begingroup$
Thanks. Google and the hint from Thomas Shelby helped me a lot.
$endgroup$
– Stefan Lafon
Feb 2 at 6:26
add a comment |
$begingroup$
We have
$$begin{split}
int_{0}^{pi}frac{x dx}{1+ e sin x} &= int_{0}^{frac pi 2}frac{x dx}{1+ e sin x} + int_{frac pi 2}^{pi}frac{x dx}{1+ e sin x}\
&= int_{0}^{frac pi 2}frac{x dx}{1+ e sin x} + int_{0}^{frac pi 2}frac{(pi - s) ds}{1+ e sin s} ,,,,text{ (with } s=pi-xtext{)}\
&= piint_{0}^{frac pi 2}frac{dx}{1+ e sin x}
end{split}$$
Now, using $u=tan frac x 2$,
$$begin{split}
int_{0}^{frac pi 2}frac{dx}{1+ e sin x} &= 2int_0^{1}frac{du}{(1+efrac{2u}{1+u^2})(1+u^2)}\
&=2int_0^{1}frac{du}{(1+2eu + u^2)}\
&= frac 2 {1-e^2}int_0^{1}frac{du}{1 + frac{(u+e)^2}{1-e^2}}\
&= frac 2 {sqrt{1-e^2}}int_{frac{e}{sqrt{1-e^2}}}^{frac{1+e}{sqrt{1-e^2}}} frac{dv}{1+v^2},,,text{(with }v=frac{u+e}{sqrt{1-e^2}}text{)}\
&=frac 2 {sqrt{1-e^2}} left(arctanleft(frac{1+e}{sqrt{1-e^2}}right) - arctan left(frac{e}{sqrt{1-e^2}}right)right)\
&=frac 2 {sqrt{1-e^2}} arctanleft(frac{frac{1}{sqrt{1-e^2}}}{1+frac{1+e}{sqrt{1-e^2}}frac{e}{sqrt{1-e^2}}}right)\
&=frac 2 {sqrt{1-e^2}} arctanleft(frac{sqrt{1-e^2}}{1+e}right)\
&=frac 1 {sqrt{1-e^2}} arccos(e)
end{split}$$
Conclusion:
$$int_{0}^{pi}frac{x dx}{1+ e sin x}=frac{pi}{sqrt{1-e^2}}arccos(e)$$ and $K=pi$
$endgroup$
We have
$$begin{split}
int_{0}^{pi}frac{x dx}{1+ e sin x} &= int_{0}^{frac pi 2}frac{x dx}{1+ e sin x} + int_{frac pi 2}^{pi}frac{x dx}{1+ e sin x}\
&= int_{0}^{frac pi 2}frac{x dx}{1+ e sin x} + int_{0}^{frac pi 2}frac{(pi - s) ds}{1+ e sin s} ,,,,text{ (with } s=pi-xtext{)}\
&= piint_{0}^{frac pi 2}frac{dx}{1+ e sin x}
end{split}$$
Now, using $u=tan frac x 2$,
$$begin{split}
int_{0}^{frac pi 2}frac{dx}{1+ e sin x} &= 2int_0^{1}frac{du}{(1+efrac{2u}{1+u^2})(1+u^2)}\
&=2int_0^{1}frac{du}{(1+2eu + u^2)}\
&= frac 2 {1-e^2}int_0^{1}frac{du}{1 + frac{(u+e)^2}{1-e^2}}\
&= frac 2 {sqrt{1-e^2}}int_{frac{e}{sqrt{1-e^2}}}^{frac{1+e}{sqrt{1-e^2}}} frac{dv}{1+v^2},,,text{(with }v=frac{u+e}{sqrt{1-e^2}}text{)}\
&=frac 2 {sqrt{1-e^2}} left(arctanleft(frac{1+e}{sqrt{1-e^2}}right) - arctan left(frac{e}{sqrt{1-e^2}}right)right)\
&=frac 2 {sqrt{1-e^2}} arctanleft(frac{frac{1}{sqrt{1-e^2}}}{1+frac{1+e}{sqrt{1-e^2}}frac{e}{sqrt{1-e^2}}}right)\
&=frac 2 {sqrt{1-e^2}} arctanleft(frac{sqrt{1-e^2}}{1+e}right)\
&=frac 1 {sqrt{1-e^2}} arccos(e)
end{split}$$
Conclusion:
$$int_{0}^{pi}frac{x dx}{1+ e sin x}=frac{pi}{sqrt{1-e^2}}arccos(e)$$ and $K=pi$
edited Feb 2 at 5:03
answered Feb 2 at 4:18


Stefan LafonStefan Lafon
3,005212
3,005212
$begingroup$
Nice solution (+1). I like the way that you showed all the steps of algebraic manipulation.
$endgroup$
– clathratus
Feb 2 at 5:34
$begingroup$
Thanks. Google and the hint from Thomas Shelby helped me a lot.
$endgroup$
– Stefan Lafon
Feb 2 at 6:26
add a comment |
$begingroup$
Nice solution (+1). I like the way that you showed all the steps of algebraic manipulation.
$endgroup$
– clathratus
Feb 2 at 5:34
$begingroup$
Thanks. Google and the hint from Thomas Shelby helped me a lot.
$endgroup$
– Stefan Lafon
Feb 2 at 6:26
$begingroup$
Nice solution (+1). I like the way that you showed all the steps of algebraic manipulation.
$endgroup$
– clathratus
Feb 2 at 5:34
$begingroup$
Nice solution (+1). I like the way that you showed all the steps of algebraic manipulation.
$endgroup$
– clathratus
Feb 2 at 5:34
$begingroup$
Thanks. Google and the hint from Thomas Shelby helped me a lot.
$endgroup$
– Stefan Lafon
Feb 2 at 6:26
$begingroup$
Thanks. Google and the hint from Thomas Shelby helped me a lot.
$endgroup$
– Stefan Lafon
Feb 2 at 6:26
add a comment |
$begingroup$
$$F(a)=int_0^pifrac{xdx}{1+asin x}$$
Somehow, you have shown that
$$F(a)=fracpi2int_0^pifrac{dx}{1+asin x}$$
With which CAS seems to agree. We exploit symmetry:
$$F(a)=piint_0^{pi/2}frac{dx}{1+asin x}$$
Then we preform the substitution $t=tanfrac{x}2$, to see that
$$F(a)=2piint_0^1frac{1}{1+afrac{2t}{t^2+1}}frac{dt}{t^2+1}$$
So that
$$F(a)=2piint_0^1frac{dt}{t^2+2at+1}$$
Then we consider the integral
$$I(x;a,b,c)=intfrac{dx}{ax^2+bx+c}$$
Complete the square on the bottom
$$I(x;a,b,c)=intfrac{dx}{a(x+frac{b}{2a})^2+g}$$
Where $g=c-frac{b^2}{4a}$. I leave it as a challenge to you to use the trig sub $x+frac{b}{2a}=sqrt{frac{g}{a}}tan u$ to see that
$$I(x;a,b,c)=frac2{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}}$$
So we see that
$$F(a)=2pileft[I(1;1,2a,1)-I(0;1,2a,1)right]$$
$$F(a)=frac{2pi}{sqrt{1-a^2}}left(arctansqrt{frac{1+a}{1-a}}-arctanfrac{a}{sqrt{1-a^2}}right)$$
Which works for $a^2<1$. Amazingly this simplifies down to
$$F(a)=frac{piarccos a}{sqrt{1-a^2}}$$
So we have that $K=pi$.
$endgroup$
1
$begingroup$
Great minds think alike (+1).
$endgroup$
– Stefan Lafon
Feb 2 at 6:27
add a comment |
$begingroup$
$$F(a)=int_0^pifrac{xdx}{1+asin x}$$
Somehow, you have shown that
$$F(a)=fracpi2int_0^pifrac{dx}{1+asin x}$$
With which CAS seems to agree. We exploit symmetry:
$$F(a)=piint_0^{pi/2}frac{dx}{1+asin x}$$
Then we preform the substitution $t=tanfrac{x}2$, to see that
$$F(a)=2piint_0^1frac{1}{1+afrac{2t}{t^2+1}}frac{dt}{t^2+1}$$
So that
$$F(a)=2piint_0^1frac{dt}{t^2+2at+1}$$
Then we consider the integral
$$I(x;a,b,c)=intfrac{dx}{ax^2+bx+c}$$
Complete the square on the bottom
$$I(x;a,b,c)=intfrac{dx}{a(x+frac{b}{2a})^2+g}$$
Where $g=c-frac{b^2}{4a}$. I leave it as a challenge to you to use the trig sub $x+frac{b}{2a}=sqrt{frac{g}{a}}tan u$ to see that
$$I(x;a,b,c)=frac2{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}}$$
So we see that
$$F(a)=2pileft[I(1;1,2a,1)-I(0;1,2a,1)right]$$
$$F(a)=frac{2pi}{sqrt{1-a^2}}left(arctansqrt{frac{1+a}{1-a}}-arctanfrac{a}{sqrt{1-a^2}}right)$$
Which works for $a^2<1$. Amazingly this simplifies down to
$$F(a)=frac{piarccos a}{sqrt{1-a^2}}$$
So we have that $K=pi$.
$endgroup$
1
$begingroup$
Great minds think alike (+1).
$endgroup$
– Stefan Lafon
Feb 2 at 6:27
add a comment |
$begingroup$
$$F(a)=int_0^pifrac{xdx}{1+asin x}$$
Somehow, you have shown that
$$F(a)=fracpi2int_0^pifrac{dx}{1+asin x}$$
With which CAS seems to agree. We exploit symmetry:
$$F(a)=piint_0^{pi/2}frac{dx}{1+asin x}$$
Then we preform the substitution $t=tanfrac{x}2$, to see that
$$F(a)=2piint_0^1frac{1}{1+afrac{2t}{t^2+1}}frac{dt}{t^2+1}$$
So that
$$F(a)=2piint_0^1frac{dt}{t^2+2at+1}$$
Then we consider the integral
$$I(x;a,b,c)=intfrac{dx}{ax^2+bx+c}$$
Complete the square on the bottom
$$I(x;a,b,c)=intfrac{dx}{a(x+frac{b}{2a})^2+g}$$
Where $g=c-frac{b^2}{4a}$. I leave it as a challenge to you to use the trig sub $x+frac{b}{2a}=sqrt{frac{g}{a}}tan u$ to see that
$$I(x;a,b,c)=frac2{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}}$$
So we see that
$$F(a)=2pileft[I(1;1,2a,1)-I(0;1,2a,1)right]$$
$$F(a)=frac{2pi}{sqrt{1-a^2}}left(arctansqrt{frac{1+a}{1-a}}-arctanfrac{a}{sqrt{1-a^2}}right)$$
Which works for $a^2<1$. Amazingly this simplifies down to
$$F(a)=frac{piarccos a}{sqrt{1-a^2}}$$
So we have that $K=pi$.
$endgroup$
$$F(a)=int_0^pifrac{xdx}{1+asin x}$$
Somehow, you have shown that
$$F(a)=fracpi2int_0^pifrac{dx}{1+asin x}$$
With which CAS seems to agree. We exploit symmetry:
$$F(a)=piint_0^{pi/2}frac{dx}{1+asin x}$$
Then we preform the substitution $t=tanfrac{x}2$, to see that
$$F(a)=2piint_0^1frac{1}{1+afrac{2t}{t^2+1}}frac{dt}{t^2+1}$$
So that
$$F(a)=2piint_0^1frac{dt}{t^2+2at+1}$$
Then we consider the integral
$$I(x;a,b,c)=intfrac{dx}{ax^2+bx+c}$$
Complete the square on the bottom
$$I(x;a,b,c)=intfrac{dx}{a(x+frac{b}{2a})^2+g}$$
Where $g=c-frac{b^2}{4a}$. I leave it as a challenge to you to use the trig sub $x+frac{b}{2a}=sqrt{frac{g}{a}}tan u$ to see that
$$I(x;a,b,c)=frac2{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}}$$
So we see that
$$F(a)=2pileft[I(1;1,2a,1)-I(0;1,2a,1)right]$$
$$F(a)=frac{2pi}{sqrt{1-a^2}}left(arctansqrt{frac{1+a}{1-a}}-arctanfrac{a}{sqrt{1-a^2}}right)$$
Which works for $a^2<1$. Amazingly this simplifies down to
$$F(a)=frac{piarccos a}{sqrt{1-a^2}}$$
So we have that $K=pi$.
edited Feb 2 at 5:05
answered Feb 2 at 4:03


clathratusclathratus
5,1141439
5,1141439
1
$begingroup$
Great minds think alike (+1).
$endgroup$
– Stefan Lafon
Feb 2 at 6:27
add a comment |
1
$begingroup$
Great minds think alike (+1).
$endgroup$
– Stefan Lafon
Feb 2 at 6:27
1
1
$begingroup$
Great minds think alike (+1).
$endgroup$
– Stefan Lafon
Feb 2 at 6:27
$begingroup$
Great minds think alike (+1).
$endgroup$
– Stefan Lafon
Feb 2 at 6:27
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096995%2fint-0-pi-fracx-dx1-e-sin-x-k-frac-arccos-e-sqrt1-e2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Have you tried using $sin x= frac {2tan (x/2)}{1+tan^2(x/2)}$?
$endgroup$
– Thomas Shelby
Feb 2 at 3:20
1
$begingroup$
Just for clarification: $e$ is a variable?
$endgroup$
– clathratus
Feb 2 at 3:45
1
$begingroup$
Also: how did you show that $$int_0^pi frac{xdx}{1+esin x}=fracpi2int_0^pifrac{dx}{1+esin x}$$ ?
$endgroup$
– clathratus
Feb 2 at 3:47
1
$begingroup$
Assuming $K$ is a constant, substitute in $e=0$ and you can determine the value of $K$.
$endgroup$
– Szeto
Feb 2 at 3:55
1
$begingroup$
Okay I got that $K=pi$. Check out my answer to see how.
$endgroup$
– clathratus
Feb 2 at 5:06