Integral $int_{-infty}^{infty} frac{sinh(x)}{x [a+cosh(x)]^2}dx$












0












$begingroup$


I have difficulties with calculating the following integral:




$$I(a)=int_{-infty}^{infty} frac{sinh(x)}{x [a+cosh(x)]^2} mathrm dx~~~~~~~,text{where } a>1$$




For the case with $a=1$ the solution is $-28 zeta'(-2)$.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Expand $frac{sinh(x)}{(a+cosh(x))^2} = sum_{k=1}^infty c_k(a) e^{-kx}$ then $int_0^infty x^{s-1} frac{sinh(x)}{(a+cosh(x))^2} dx = sum_{k=1}^infty c_k(a) k^{-s} Gamma(s)$ and $int_{-infty}^infty x^{s-1} frac{sinh(x)}{(a+cosh(x))^2} dx = 2lim_{s to 0} sum_{k=1}^infty c_k(a) k^{-s} Gamma(s)$. Things like $zeta'(-2)$ appear from the functional equation, or the residue theorem.
    $endgroup$
    – reuns
    Jan 29 at 21:14








  • 2




    $begingroup$
    What have you tried? Where did you struggle? Please show some effort you made and include it within your post with an edit :)
    $endgroup$
    – mrtaurho
    Jan 29 at 21:15










  • $begingroup$
    Actually, I've tried an expansion but a very crude one. The solution by @reuns looks impressive.
    $endgroup$
    – Gregory Rut
    Jan 29 at 21:17
















0












$begingroup$


I have difficulties with calculating the following integral:




$$I(a)=int_{-infty}^{infty} frac{sinh(x)}{x [a+cosh(x)]^2} mathrm dx~~~~~~~,text{where } a>1$$




For the case with $a=1$ the solution is $-28 zeta'(-2)$.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Expand $frac{sinh(x)}{(a+cosh(x))^2} = sum_{k=1}^infty c_k(a) e^{-kx}$ then $int_0^infty x^{s-1} frac{sinh(x)}{(a+cosh(x))^2} dx = sum_{k=1}^infty c_k(a) k^{-s} Gamma(s)$ and $int_{-infty}^infty x^{s-1} frac{sinh(x)}{(a+cosh(x))^2} dx = 2lim_{s to 0} sum_{k=1}^infty c_k(a) k^{-s} Gamma(s)$. Things like $zeta'(-2)$ appear from the functional equation, or the residue theorem.
    $endgroup$
    – reuns
    Jan 29 at 21:14








  • 2




    $begingroup$
    What have you tried? Where did you struggle? Please show some effort you made and include it within your post with an edit :)
    $endgroup$
    – mrtaurho
    Jan 29 at 21:15










  • $begingroup$
    Actually, I've tried an expansion but a very crude one. The solution by @reuns looks impressive.
    $endgroup$
    – Gregory Rut
    Jan 29 at 21:17














0












0








0





$begingroup$


I have difficulties with calculating the following integral:




$$I(a)=int_{-infty}^{infty} frac{sinh(x)}{x [a+cosh(x)]^2} mathrm dx~~~~~~~,text{where } a>1$$




For the case with $a=1$ the solution is $-28 zeta'(-2)$.










share|cite|improve this question











$endgroup$




I have difficulties with calculating the following integral:




$$I(a)=int_{-infty}^{infty} frac{sinh(x)}{x [a+cosh(x)]^2} mathrm dx~~~~~~~,text{where } a>1$$




For the case with $a=1$ the solution is $-28 zeta'(-2)$.







integration definite-integrals riemann-zeta hyperbolic-functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 30 at 0:42









Zacky

7,81511062




7,81511062










asked Jan 29 at 21:02









Gregory RutGregory Rut

1092




1092








  • 2




    $begingroup$
    Expand $frac{sinh(x)}{(a+cosh(x))^2} = sum_{k=1}^infty c_k(a) e^{-kx}$ then $int_0^infty x^{s-1} frac{sinh(x)}{(a+cosh(x))^2} dx = sum_{k=1}^infty c_k(a) k^{-s} Gamma(s)$ and $int_{-infty}^infty x^{s-1} frac{sinh(x)}{(a+cosh(x))^2} dx = 2lim_{s to 0} sum_{k=1}^infty c_k(a) k^{-s} Gamma(s)$. Things like $zeta'(-2)$ appear from the functional equation, or the residue theorem.
    $endgroup$
    – reuns
    Jan 29 at 21:14








  • 2




    $begingroup$
    What have you tried? Where did you struggle? Please show some effort you made and include it within your post with an edit :)
    $endgroup$
    – mrtaurho
    Jan 29 at 21:15










  • $begingroup$
    Actually, I've tried an expansion but a very crude one. The solution by @reuns looks impressive.
    $endgroup$
    – Gregory Rut
    Jan 29 at 21:17














  • 2




    $begingroup$
    Expand $frac{sinh(x)}{(a+cosh(x))^2} = sum_{k=1}^infty c_k(a) e^{-kx}$ then $int_0^infty x^{s-1} frac{sinh(x)}{(a+cosh(x))^2} dx = sum_{k=1}^infty c_k(a) k^{-s} Gamma(s)$ and $int_{-infty}^infty x^{s-1} frac{sinh(x)}{(a+cosh(x))^2} dx = 2lim_{s to 0} sum_{k=1}^infty c_k(a) k^{-s} Gamma(s)$. Things like $zeta'(-2)$ appear from the functional equation, or the residue theorem.
    $endgroup$
    – reuns
    Jan 29 at 21:14








  • 2




    $begingroup$
    What have you tried? Where did you struggle? Please show some effort you made and include it within your post with an edit :)
    $endgroup$
    – mrtaurho
    Jan 29 at 21:15










  • $begingroup$
    Actually, I've tried an expansion but a very crude one. The solution by @reuns looks impressive.
    $endgroup$
    – Gregory Rut
    Jan 29 at 21:17








2




2




$begingroup$
Expand $frac{sinh(x)}{(a+cosh(x))^2} = sum_{k=1}^infty c_k(a) e^{-kx}$ then $int_0^infty x^{s-1} frac{sinh(x)}{(a+cosh(x))^2} dx = sum_{k=1}^infty c_k(a) k^{-s} Gamma(s)$ and $int_{-infty}^infty x^{s-1} frac{sinh(x)}{(a+cosh(x))^2} dx = 2lim_{s to 0} sum_{k=1}^infty c_k(a) k^{-s} Gamma(s)$. Things like $zeta'(-2)$ appear from the functional equation, or the residue theorem.
$endgroup$
– reuns
Jan 29 at 21:14






$begingroup$
Expand $frac{sinh(x)}{(a+cosh(x))^2} = sum_{k=1}^infty c_k(a) e^{-kx}$ then $int_0^infty x^{s-1} frac{sinh(x)}{(a+cosh(x))^2} dx = sum_{k=1}^infty c_k(a) k^{-s} Gamma(s)$ and $int_{-infty}^infty x^{s-1} frac{sinh(x)}{(a+cosh(x))^2} dx = 2lim_{s to 0} sum_{k=1}^infty c_k(a) k^{-s} Gamma(s)$. Things like $zeta'(-2)$ appear from the functional equation, or the residue theorem.
$endgroup$
– reuns
Jan 29 at 21:14






2




2




$begingroup$
What have you tried? Where did you struggle? Please show some effort you made and include it within your post with an edit :)
$endgroup$
– mrtaurho
Jan 29 at 21:15




$begingroup$
What have you tried? Where did you struggle? Please show some effort you made and include it within your post with an edit :)
$endgroup$
– mrtaurho
Jan 29 at 21:15












$begingroup$
Actually, I've tried an expansion but a very crude one. The solution by @reuns looks impressive.
$endgroup$
– Gregory Rut
Jan 29 at 21:17




$begingroup$
Actually, I've tried an expansion but a very crude one. The solution by @reuns looks impressive.
$endgroup$
– Gregory Rut
Jan 29 at 21:17










1 Answer
1






active

oldest

votes


















4












$begingroup$

I will do the case $a=1$ in order to give some insight:$$I=int_{-infty}^{infty} frac{sinh(x)}{x (1+cosh(x))^2}dxoverset{x=ln t}=2int_0^infty frac{t-1}{(t+1)^3}frac{dt}{ln t}$$
We can consider the following integral and perform Feynman's trick:
$$I(n)=2int_0^infty frac{t^{n-1}-1}{(t+1)^3}frac{dt}{ln t}$$
$$Rightarrow frac{d}{dn}I(n)=2int_0^infty frac{t^{n-1}}{(t+1)^3}dt=2B(n,3-n)=Gamma(n)Gamma(3-n)$$
$$=(2-n)(1-n)Gamma(n)Gamma(1-n)=pifrac{(1-n)(2-n)}{sin(pi n)}$$
$$I(1)=0 Rightarrow I(2)-I(1)=I =piint_1^2 frac{(1-n)(2-n)}{sin(pi n)}dn$$
$$ overset{n-1=x}=boxed{pi int_0^1 frac{x(1-x)}{sin(pi x)}dx = frac{7zeta(3)}{pi^2 }=-28zeta'(-2)}$$
The last integral can be found here.



By the same idea one gets: $$I(a)=int_{-infty}^infty frac{sinh x}{x(a+cosh x))^2}dx=2int_0^infty frac{x^2-1}{(x^2+2ax+1)^2}frac{dx}{ln x}$$
Now consider the same parameter take a derivative with respect to it, apply a Mellin transform, and try to carry on.






share|cite|improve this answer











$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092718%2fintegral-int-infty-infty-frac-sinhxx-a-coshx2dx%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    I will do the case $a=1$ in order to give some insight:$$I=int_{-infty}^{infty} frac{sinh(x)}{x (1+cosh(x))^2}dxoverset{x=ln t}=2int_0^infty frac{t-1}{(t+1)^3}frac{dt}{ln t}$$
    We can consider the following integral and perform Feynman's trick:
    $$I(n)=2int_0^infty frac{t^{n-1}-1}{(t+1)^3}frac{dt}{ln t}$$
    $$Rightarrow frac{d}{dn}I(n)=2int_0^infty frac{t^{n-1}}{(t+1)^3}dt=2B(n,3-n)=Gamma(n)Gamma(3-n)$$
    $$=(2-n)(1-n)Gamma(n)Gamma(1-n)=pifrac{(1-n)(2-n)}{sin(pi n)}$$
    $$I(1)=0 Rightarrow I(2)-I(1)=I =piint_1^2 frac{(1-n)(2-n)}{sin(pi n)}dn$$
    $$ overset{n-1=x}=boxed{pi int_0^1 frac{x(1-x)}{sin(pi x)}dx = frac{7zeta(3)}{pi^2 }=-28zeta'(-2)}$$
    The last integral can be found here.



    By the same idea one gets: $$I(a)=int_{-infty}^infty frac{sinh x}{x(a+cosh x))^2}dx=2int_0^infty frac{x^2-1}{(x^2+2ax+1)^2}frac{dx}{ln x}$$
    Now consider the same parameter take a derivative with respect to it, apply a Mellin transform, and try to carry on.






    share|cite|improve this answer











    $endgroup$


















      4












      $begingroup$

      I will do the case $a=1$ in order to give some insight:$$I=int_{-infty}^{infty} frac{sinh(x)}{x (1+cosh(x))^2}dxoverset{x=ln t}=2int_0^infty frac{t-1}{(t+1)^3}frac{dt}{ln t}$$
      We can consider the following integral and perform Feynman's trick:
      $$I(n)=2int_0^infty frac{t^{n-1}-1}{(t+1)^3}frac{dt}{ln t}$$
      $$Rightarrow frac{d}{dn}I(n)=2int_0^infty frac{t^{n-1}}{(t+1)^3}dt=2B(n,3-n)=Gamma(n)Gamma(3-n)$$
      $$=(2-n)(1-n)Gamma(n)Gamma(1-n)=pifrac{(1-n)(2-n)}{sin(pi n)}$$
      $$I(1)=0 Rightarrow I(2)-I(1)=I =piint_1^2 frac{(1-n)(2-n)}{sin(pi n)}dn$$
      $$ overset{n-1=x}=boxed{pi int_0^1 frac{x(1-x)}{sin(pi x)}dx = frac{7zeta(3)}{pi^2 }=-28zeta'(-2)}$$
      The last integral can be found here.



      By the same idea one gets: $$I(a)=int_{-infty}^infty frac{sinh x}{x(a+cosh x))^2}dx=2int_0^infty frac{x^2-1}{(x^2+2ax+1)^2}frac{dx}{ln x}$$
      Now consider the same parameter take a derivative with respect to it, apply a Mellin transform, and try to carry on.






      share|cite|improve this answer











      $endgroup$
















        4












        4








        4





        $begingroup$

        I will do the case $a=1$ in order to give some insight:$$I=int_{-infty}^{infty} frac{sinh(x)}{x (1+cosh(x))^2}dxoverset{x=ln t}=2int_0^infty frac{t-1}{(t+1)^3}frac{dt}{ln t}$$
        We can consider the following integral and perform Feynman's trick:
        $$I(n)=2int_0^infty frac{t^{n-1}-1}{(t+1)^3}frac{dt}{ln t}$$
        $$Rightarrow frac{d}{dn}I(n)=2int_0^infty frac{t^{n-1}}{(t+1)^3}dt=2B(n,3-n)=Gamma(n)Gamma(3-n)$$
        $$=(2-n)(1-n)Gamma(n)Gamma(1-n)=pifrac{(1-n)(2-n)}{sin(pi n)}$$
        $$I(1)=0 Rightarrow I(2)-I(1)=I =piint_1^2 frac{(1-n)(2-n)}{sin(pi n)}dn$$
        $$ overset{n-1=x}=boxed{pi int_0^1 frac{x(1-x)}{sin(pi x)}dx = frac{7zeta(3)}{pi^2 }=-28zeta'(-2)}$$
        The last integral can be found here.



        By the same idea one gets: $$I(a)=int_{-infty}^infty frac{sinh x}{x(a+cosh x))^2}dx=2int_0^infty frac{x^2-1}{(x^2+2ax+1)^2}frac{dx}{ln x}$$
        Now consider the same parameter take a derivative with respect to it, apply a Mellin transform, and try to carry on.






        share|cite|improve this answer











        $endgroup$



        I will do the case $a=1$ in order to give some insight:$$I=int_{-infty}^{infty} frac{sinh(x)}{x (1+cosh(x))^2}dxoverset{x=ln t}=2int_0^infty frac{t-1}{(t+1)^3}frac{dt}{ln t}$$
        We can consider the following integral and perform Feynman's trick:
        $$I(n)=2int_0^infty frac{t^{n-1}-1}{(t+1)^3}frac{dt}{ln t}$$
        $$Rightarrow frac{d}{dn}I(n)=2int_0^infty frac{t^{n-1}}{(t+1)^3}dt=2B(n,3-n)=Gamma(n)Gamma(3-n)$$
        $$=(2-n)(1-n)Gamma(n)Gamma(1-n)=pifrac{(1-n)(2-n)}{sin(pi n)}$$
        $$I(1)=0 Rightarrow I(2)-I(1)=I =piint_1^2 frac{(1-n)(2-n)}{sin(pi n)}dn$$
        $$ overset{n-1=x}=boxed{pi int_0^1 frac{x(1-x)}{sin(pi x)}dx = frac{7zeta(3)}{pi^2 }=-28zeta'(-2)}$$
        The last integral can be found here.



        By the same idea one gets: $$I(a)=int_{-infty}^infty frac{sinh x}{x(a+cosh x))^2}dx=2int_0^infty frac{x^2-1}{(x^2+2ax+1)^2}frac{dx}{ln x}$$
        Now consider the same parameter take a derivative with respect to it, apply a Mellin transform, and try to carry on.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 30 at 15:44

























        answered Jan 30 at 0:37









        ZackyZacky

        7,81511062




        7,81511062






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092718%2fintegral-int-infty-infty-frac-sinhxx-a-coshx2dx%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

            Npm cannot find a required file even through it is in the searched directory