Integral $int_{-infty}^{infty} frac{sinh(x)}{x [a+cosh(x)]^2}dx$
$begingroup$
I have difficulties with calculating the following integral:
$$I(a)=int_{-infty}^{infty} frac{sinh(x)}{x [a+cosh(x)]^2} mathrm dx~~~~~~~,text{where } a>1$$
For the case with $a=1$ the solution is $-28 zeta'(-2)$.
integration definite-integrals riemann-zeta hyperbolic-functions
$endgroup$
add a comment |
$begingroup$
I have difficulties with calculating the following integral:
$$I(a)=int_{-infty}^{infty} frac{sinh(x)}{x [a+cosh(x)]^2} mathrm dx~~~~~~~,text{where } a>1$$
For the case with $a=1$ the solution is $-28 zeta'(-2)$.
integration definite-integrals riemann-zeta hyperbolic-functions
$endgroup$
2
$begingroup$
Expand $frac{sinh(x)}{(a+cosh(x))^2} = sum_{k=1}^infty c_k(a) e^{-kx}$ then $int_0^infty x^{s-1} frac{sinh(x)}{(a+cosh(x))^2} dx = sum_{k=1}^infty c_k(a) k^{-s} Gamma(s)$ and $int_{-infty}^infty x^{s-1} frac{sinh(x)}{(a+cosh(x))^2} dx = 2lim_{s to 0} sum_{k=1}^infty c_k(a) k^{-s} Gamma(s)$. Things like $zeta'(-2)$ appear from the functional equation, or the residue theorem.
$endgroup$
– reuns
Jan 29 at 21:14
2
$begingroup$
What have you tried? Where did you struggle? Please show some effort you made and include it within your post with an edit :)
$endgroup$
– mrtaurho
Jan 29 at 21:15
$begingroup$
Actually, I've tried an expansion but a very crude one. The solution by @reuns looks impressive.
$endgroup$
– Gregory Rut
Jan 29 at 21:17
add a comment |
$begingroup$
I have difficulties with calculating the following integral:
$$I(a)=int_{-infty}^{infty} frac{sinh(x)}{x [a+cosh(x)]^2} mathrm dx~~~~~~~,text{where } a>1$$
For the case with $a=1$ the solution is $-28 zeta'(-2)$.
integration definite-integrals riemann-zeta hyperbolic-functions
$endgroup$
I have difficulties with calculating the following integral:
$$I(a)=int_{-infty}^{infty} frac{sinh(x)}{x [a+cosh(x)]^2} mathrm dx~~~~~~~,text{where } a>1$$
For the case with $a=1$ the solution is $-28 zeta'(-2)$.
integration definite-integrals riemann-zeta hyperbolic-functions
integration definite-integrals riemann-zeta hyperbolic-functions
edited Jan 30 at 0:42


Zacky
7,81511062
7,81511062
asked Jan 29 at 21:02
Gregory RutGregory Rut
1092
1092
2
$begingroup$
Expand $frac{sinh(x)}{(a+cosh(x))^2} = sum_{k=1}^infty c_k(a) e^{-kx}$ then $int_0^infty x^{s-1} frac{sinh(x)}{(a+cosh(x))^2} dx = sum_{k=1}^infty c_k(a) k^{-s} Gamma(s)$ and $int_{-infty}^infty x^{s-1} frac{sinh(x)}{(a+cosh(x))^2} dx = 2lim_{s to 0} sum_{k=1}^infty c_k(a) k^{-s} Gamma(s)$. Things like $zeta'(-2)$ appear from the functional equation, or the residue theorem.
$endgroup$
– reuns
Jan 29 at 21:14
2
$begingroup$
What have you tried? Where did you struggle? Please show some effort you made and include it within your post with an edit :)
$endgroup$
– mrtaurho
Jan 29 at 21:15
$begingroup$
Actually, I've tried an expansion but a very crude one. The solution by @reuns looks impressive.
$endgroup$
– Gregory Rut
Jan 29 at 21:17
add a comment |
2
$begingroup$
Expand $frac{sinh(x)}{(a+cosh(x))^2} = sum_{k=1}^infty c_k(a) e^{-kx}$ then $int_0^infty x^{s-1} frac{sinh(x)}{(a+cosh(x))^2} dx = sum_{k=1}^infty c_k(a) k^{-s} Gamma(s)$ and $int_{-infty}^infty x^{s-1} frac{sinh(x)}{(a+cosh(x))^2} dx = 2lim_{s to 0} sum_{k=1}^infty c_k(a) k^{-s} Gamma(s)$. Things like $zeta'(-2)$ appear from the functional equation, or the residue theorem.
$endgroup$
– reuns
Jan 29 at 21:14
2
$begingroup$
What have you tried? Where did you struggle? Please show some effort you made and include it within your post with an edit :)
$endgroup$
– mrtaurho
Jan 29 at 21:15
$begingroup$
Actually, I've tried an expansion but a very crude one. The solution by @reuns looks impressive.
$endgroup$
– Gregory Rut
Jan 29 at 21:17
2
2
$begingroup$
Expand $frac{sinh(x)}{(a+cosh(x))^2} = sum_{k=1}^infty c_k(a) e^{-kx}$ then $int_0^infty x^{s-1} frac{sinh(x)}{(a+cosh(x))^2} dx = sum_{k=1}^infty c_k(a) k^{-s} Gamma(s)$ and $int_{-infty}^infty x^{s-1} frac{sinh(x)}{(a+cosh(x))^2} dx = 2lim_{s to 0} sum_{k=1}^infty c_k(a) k^{-s} Gamma(s)$. Things like $zeta'(-2)$ appear from the functional equation, or the residue theorem.
$endgroup$
– reuns
Jan 29 at 21:14
$begingroup$
Expand $frac{sinh(x)}{(a+cosh(x))^2} = sum_{k=1}^infty c_k(a) e^{-kx}$ then $int_0^infty x^{s-1} frac{sinh(x)}{(a+cosh(x))^2} dx = sum_{k=1}^infty c_k(a) k^{-s} Gamma(s)$ and $int_{-infty}^infty x^{s-1} frac{sinh(x)}{(a+cosh(x))^2} dx = 2lim_{s to 0} sum_{k=1}^infty c_k(a) k^{-s} Gamma(s)$. Things like $zeta'(-2)$ appear from the functional equation, or the residue theorem.
$endgroup$
– reuns
Jan 29 at 21:14
2
2
$begingroup$
What have you tried? Where did you struggle? Please show some effort you made and include it within your post with an edit :)
$endgroup$
– mrtaurho
Jan 29 at 21:15
$begingroup$
What have you tried? Where did you struggle? Please show some effort you made and include it within your post with an edit :)
$endgroup$
– mrtaurho
Jan 29 at 21:15
$begingroup$
Actually, I've tried an expansion but a very crude one. The solution by @reuns looks impressive.
$endgroup$
– Gregory Rut
Jan 29 at 21:17
$begingroup$
Actually, I've tried an expansion but a very crude one. The solution by @reuns looks impressive.
$endgroup$
– Gregory Rut
Jan 29 at 21:17
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I will do the case $a=1$ in order to give some insight:$$I=int_{-infty}^{infty} frac{sinh(x)}{x (1+cosh(x))^2}dxoverset{x=ln t}=2int_0^infty frac{t-1}{(t+1)^3}frac{dt}{ln t}$$
We can consider the following integral and perform Feynman's trick:
$$I(n)=2int_0^infty frac{t^{n-1}-1}{(t+1)^3}frac{dt}{ln t}$$
$$Rightarrow frac{d}{dn}I(n)=2int_0^infty frac{t^{n-1}}{(t+1)^3}dt=2B(n,3-n)=Gamma(n)Gamma(3-n)$$
$$=(2-n)(1-n)Gamma(n)Gamma(1-n)=pifrac{(1-n)(2-n)}{sin(pi n)}$$
$$I(1)=0 Rightarrow I(2)-I(1)=I =piint_1^2 frac{(1-n)(2-n)}{sin(pi n)}dn$$
$$ overset{n-1=x}=boxed{pi int_0^1 frac{x(1-x)}{sin(pi x)}dx = frac{7zeta(3)}{pi^2 }=-28zeta'(-2)}$$
The last integral can be found here.
By the same idea one gets: $$I(a)=int_{-infty}^infty frac{sinh x}{x(a+cosh x))^2}dx=2int_0^infty frac{x^2-1}{(x^2+2ax+1)^2}frac{dx}{ln x}$$
Now consider the same parameter take a derivative with respect to it, apply a Mellin transform, and try to carry on.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092718%2fintegral-int-infty-infty-frac-sinhxx-a-coshx2dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I will do the case $a=1$ in order to give some insight:$$I=int_{-infty}^{infty} frac{sinh(x)}{x (1+cosh(x))^2}dxoverset{x=ln t}=2int_0^infty frac{t-1}{(t+1)^3}frac{dt}{ln t}$$
We can consider the following integral and perform Feynman's trick:
$$I(n)=2int_0^infty frac{t^{n-1}-1}{(t+1)^3}frac{dt}{ln t}$$
$$Rightarrow frac{d}{dn}I(n)=2int_0^infty frac{t^{n-1}}{(t+1)^3}dt=2B(n,3-n)=Gamma(n)Gamma(3-n)$$
$$=(2-n)(1-n)Gamma(n)Gamma(1-n)=pifrac{(1-n)(2-n)}{sin(pi n)}$$
$$I(1)=0 Rightarrow I(2)-I(1)=I =piint_1^2 frac{(1-n)(2-n)}{sin(pi n)}dn$$
$$ overset{n-1=x}=boxed{pi int_0^1 frac{x(1-x)}{sin(pi x)}dx = frac{7zeta(3)}{pi^2 }=-28zeta'(-2)}$$
The last integral can be found here.
By the same idea one gets: $$I(a)=int_{-infty}^infty frac{sinh x}{x(a+cosh x))^2}dx=2int_0^infty frac{x^2-1}{(x^2+2ax+1)^2}frac{dx}{ln x}$$
Now consider the same parameter take a derivative with respect to it, apply a Mellin transform, and try to carry on.
$endgroup$
add a comment |
$begingroup$
I will do the case $a=1$ in order to give some insight:$$I=int_{-infty}^{infty} frac{sinh(x)}{x (1+cosh(x))^2}dxoverset{x=ln t}=2int_0^infty frac{t-1}{(t+1)^3}frac{dt}{ln t}$$
We can consider the following integral and perform Feynman's trick:
$$I(n)=2int_0^infty frac{t^{n-1}-1}{(t+1)^3}frac{dt}{ln t}$$
$$Rightarrow frac{d}{dn}I(n)=2int_0^infty frac{t^{n-1}}{(t+1)^3}dt=2B(n,3-n)=Gamma(n)Gamma(3-n)$$
$$=(2-n)(1-n)Gamma(n)Gamma(1-n)=pifrac{(1-n)(2-n)}{sin(pi n)}$$
$$I(1)=0 Rightarrow I(2)-I(1)=I =piint_1^2 frac{(1-n)(2-n)}{sin(pi n)}dn$$
$$ overset{n-1=x}=boxed{pi int_0^1 frac{x(1-x)}{sin(pi x)}dx = frac{7zeta(3)}{pi^2 }=-28zeta'(-2)}$$
The last integral can be found here.
By the same idea one gets: $$I(a)=int_{-infty}^infty frac{sinh x}{x(a+cosh x))^2}dx=2int_0^infty frac{x^2-1}{(x^2+2ax+1)^2}frac{dx}{ln x}$$
Now consider the same parameter take a derivative with respect to it, apply a Mellin transform, and try to carry on.
$endgroup$
add a comment |
$begingroup$
I will do the case $a=1$ in order to give some insight:$$I=int_{-infty}^{infty} frac{sinh(x)}{x (1+cosh(x))^2}dxoverset{x=ln t}=2int_0^infty frac{t-1}{(t+1)^3}frac{dt}{ln t}$$
We can consider the following integral and perform Feynman's trick:
$$I(n)=2int_0^infty frac{t^{n-1}-1}{(t+1)^3}frac{dt}{ln t}$$
$$Rightarrow frac{d}{dn}I(n)=2int_0^infty frac{t^{n-1}}{(t+1)^3}dt=2B(n,3-n)=Gamma(n)Gamma(3-n)$$
$$=(2-n)(1-n)Gamma(n)Gamma(1-n)=pifrac{(1-n)(2-n)}{sin(pi n)}$$
$$I(1)=0 Rightarrow I(2)-I(1)=I =piint_1^2 frac{(1-n)(2-n)}{sin(pi n)}dn$$
$$ overset{n-1=x}=boxed{pi int_0^1 frac{x(1-x)}{sin(pi x)}dx = frac{7zeta(3)}{pi^2 }=-28zeta'(-2)}$$
The last integral can be found here.
By the same idea one gets: $$I(a)=int_{-infty}^infty frac{sinh x}{x(a+cosh x))^2}dx=2int_0^infty frac{x^2-1}{(x^2+2ax+1)^2}frac{dx}{ln x}$$
Now consider the same parameter take a derivative with respect to it, apply a Mellin transform, and try to carry on.
$endgroup$
I will do the case $a=1$ in order to give some insight:$$I=int_{-infty}^{infty} frac{sinh(x)}{x (1+cosh(x))^2}dxoverset{x=ln t}=2int_0^infty frac{t-1}{(t+1)^3}frac{dt}{ln t}$$
We can consider the following integral and perform Feynman's trick:
$$I(n)=2int_0^infty frac{t^{n-1}-1}{(t+1)^3}frac{dt}{ln t}$$
$$Rightarrow frac{d}{dn}I(n)=2int_0^infty frac{t^{n-1}}{(t+1)^3}dt=2B(n,3-n)=Gamma(n)Gamma(3-n)$$
$$=(2-n)(1-n)Gamma(n)Gamma(1-n)=pifrac{(1-n)(2-n)}{sin(pi n)}$$
$$I(1)=0 Rightarrow I(2)-I(1)=I =piint_1^2 frac{(1-n)(2-n)}{sin(pi n)}dn$$
$$ overset{n-1=x}=boxed{pi int_0^1 frac{x(1-x)}{sin(pi x)}dx = frac{7zeta(3)}{pi^2 }=-28zeta'(-2)}$$
The last integral can be found here.
By the same idea one gets: $$I(a)=int_{-infty}^infty frac{sinh x}{x(a+cosh x))^2}dx=2int_0^infty frac{x^2-1}{(x^2+2ax+1)^2}frac{dx}{ln x}$$
Now consider the same parameter take a derivative with respect to it, apply a Mellin transform, and try to carry on.
edited Jan 30 at 15:44
answered Jan 30 at 0:37


ZackyZacky
7,81511062
7,81511062
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092718%2fintegral-int-infty-infty-frac-sinhxx-a-coshx2dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Expand $frac{sinh(x)}{(a+cosh(x))^2} = sum_{k=1}^infty c_k(a) e^{-kx}$ then $int_0^infty x^{s-1} frac{sinh(x)}{(a+cosh(x))^2} dx = sum_{k=1}^infty c_k(a) k^{-s} Gamma(s)$ and $int_{-infty}^infty x^{s-1} frac{sinh(x)}{(a+cosh(x))^2} dx = 2lim_{s to 0} sum_{k=1}^infty c_k(a) k^{-s} Gamma(s)$. Things like $zeta'(-2)$ appear from the functional equation, or the residue theorem.
$endgroup$
– reuns
Jan 29 at 21:14
2
$begingroup$
What have you tried? Where did you struggle? Please show some effort you made and include it within your post with an edit :)
$endgroup$
– mrtaurho
Jan 29 at 21:15
$begingroup$
Actually, I've tried an expansion but a very crude one. The solution by @reuns looks impressive.
$endgroup$
– Gregory Rut
Jan 29 at 21:17