$lim_{nto +infty} |(2npi+1/n) sin(2npi+1/n)|$, $nin mathbb N$












-1












$begingroup$


$lim_{nto +infty} |(2npi+1/n) sin(2npi+1/n)|$, $nin mathbb N$. I tried L'Hospital which gives
$$ lim_{nto +infty}left| frac{sin(2npi+1/n)}{(2npi+1/n)^{-1}} right| = lim_{nto +infty}left| frac{cos(frac{2pi x^2+1}{x})(2pi x^2+1)^2}{x^2} right|.$$



Is the limit $+infty$? I am not sure because of the cosine term.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    When can you use the rule of L'Hospital?
    $endgroup$
    – babemcnuggets
    Feb 1 at 23:09










  • $begingroup$
    @babemcnuggets $|(2npi+1/n) sin(2npi+1/n)|$ is an indeterminate product $0 * infty$, so I change it to $frac{0}{0}$ and use L'Hospital.
    $endgroup$
    – user398843
    Feb 1 at 23:14












  • $begingroup$
    I only remember using L'Hospital for $frac{infty}{infty}$ and $frac{0}{0}$, I might be wrong..
    $endgroup$
    – babemcnuggets
    Feb 1 at 23:21










  • $begingroup$
    @babemcnuggets en.wikipedia.org/wiki/…
    $endgroup$
    – user398843
    Feb 1 at 23:23






  • 1




    $begingroup$
    @user398843 Thanks for the clarifications. Also, as I stated, note you should not try to use l'Hôpital's rule in that case. You might get the correct answer, but it's not guaranteed. Regarding your question title & text change, note that an easier way to state $n$ is a positive integer is that $n in mathbb{N}$, i.e., is a natural number.
    $endgroup$
    – John Omielan
    Feb 2 at 0:11


















-1












$begingroup$


$lim_{nto +infty} |(2npi+1/n) sin(2npi+1/n)|$, $nin mathbb N$. I tried L'Hospital which gives
$$ lim_{nto +infty}left| frac{sin(2npi+1/n)}{(2npi+1/n)^{-1}} right| = lim_{nto +infty}left| frac{cos(frac{2pi x^2+1}{x})(2pi x^2+1)^2}{x^2} right|.$$



Is the limit $+infty$? I am not sure because of the cosine term.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    When can you use the rule of L'Hospital?
    $endgroup$
    – babemcnuggets
    Feb 1 at 23:09










  • $begingroup$
    @babemcnuggets $|(2npi+1/n) sin(2npi+1/n)|$ is an indeterminate product $0 * infty$, so I change it to $frac{0}{0}$ and use L'Hospital.
    $endgroup$
    – user398843
    Feb 1 at 23:14












  • $begingroup$
    I only remember using L'Hospital for $frac{infty}{infty}$ and $frac{0}{0}$, I might be wrong..
    $endgroup$
    – babemcnuggets
    Feb 1 at 23:21










  • $begingroup$
    @babemcnuggets en.wikipedia.org/wiki/…
    $endgroup$
    – user398843
    Feb 1 at 23:23






  • 1




    $begingroup$
    @user398843 Thanks for the clarifications. Also, as I stated, note you should not try to use l'Hôpital's rule in that case. You might get the correct answer, but it's not guaranteed. Regarding your question title & text change, note that an easier way to state $n$ is a positive integer is that $n in mathbb{N}$, i.e., is a natural number.
    $endgroup$
    – John Omielan
    Feb 2 at 0:11
















-1












-1








-1


1



$begingroup$


$lim_{nto +infty} |(2npi+1/n) sin(2npi+1/n)|$, $nin mathbb N$. I tried L'Hospital which gives
$$ lim_{nto +infty}left| frac{sin(2npi+1/n)}{(2npi+1/n)^{-1}} right| = lim_{nto +infty}left| frac{cos(frac{2pi x^2+1}{x})(2pi x^2+1)^2}{x^2} right|.$$



Is the limit $+infty$? I am not sure because of the cosine term.










share|cite|improve this question











$endgroup$




$lim_{nto +infty} |(2npi+1/n) sin(2npi+1/n)|$, $nin mathbb N$. I tried L'Hospital which gives
$$ lim_{nto +infty}left| frac{sin(2npi+1/n)}{(2npi+1/n)^{-1}} right| = lim_{nto +infty}left| frac{cos(frac{2pi x^2+1}{x})(2pi x^2+1)^2}{x^2} right|.$$



Is the limit $+infty$? I am not sure because of the cosine term.







calculus proof-verification






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 2 at 0:23







user398843

















asked Feb 1 at 22:53









user398843user398843

716316




716316








  • 1




    $begingroup$
    When can you use the rule of L'Hospital?
    $endgroup$
    – babemcnuggets
    Feb 1 at 23:09










  • $begingroup$
    @babemcnuggets $|(2npi+1/n) sin(2npi+1/n)|$ is an indeterminate product $0 * infty$, so I change it to $frac{0}{0}$ and use L'Hospital.
    $endgroup$
    – user398843
    Feb 1 at 23:14












  • $begingroup$
    I only remember using L'Hospital for $frac{infty}{infty}$ and $frac{0}{0}$, I might be wrong..
    $endgroup$
    – babemcnuggets
    Feb 1 at 23:21










  • $begingroup$
    @babemcnuggets en.wikipedia.org/wiki/…
    $endgroup$
    – user398843
    Feb 1 at 23:23






  • 1




    $begingroup$
    @user398843 Thanks for the clarifications. Also, as I stated, note you should not try to use l'Hôpital's rule in that case. You might get the correct answer, but it's not guaranteed. Regarding your question title & text change, note that an easier way to state $n$ is a positive integer is that $n in mathbb{N}$, i.e., is a natural number.
    $endgroup$
    – John Omielan
    Feb 2 at 0:11
















  • 1




    $begingroup$
    When can you use the rule of L'Hospital?
    $endgroup$
    – babemcnuggets
    Feb 1 at 23:09










  • $begingroup$
    @babemcnuggets $|(2npi+1/n) sin(2npi+1/n)|$ is an indeterminate product $0 * infty$, so I change it to $frac{0}{0}$ and use L'Hospital.
    $endgroup$
    – user398843
    Feb 1 at 23:14












  • $begingroup$
    I only remember using L'Hospital for $frac{infty}{infty}$ and $frac{0}{0}$, I might be wrong..
    $endgroup$
    – babemcnuggets
    Feb 1 at 23:21










  • $begingroup$
    @babemcnuggets en.wikipedia.org/wiki/…
    $endgroup$
    – user398843
    Feb 1 at 23:23






  • 1




    $begingroup$
    @user398843 Thanks for the clarifications. Also, as I stated, note you should not try to use l'Hôpital's rule in that case. You might get the correct answer, but it's not guaranteed. Regarding your question title & text change, note that an easier way to state $n$ is a positive integer is that $n in mathbb{N}$, i.e., is a natural number.
    $endgroup$
    – John Omielan
    Feb 2 at 0:11










1




1




$begingroup$
When can you use the rule of L'Hospital?
$endgroup$
– babemcnuggets
Feb 1 at 23:09




$begingroup$
When can you use the rule of L'Hospital?
$endgroup$
– babemcnuggets
Feb 1 at 23:09












$begingroup$
@babemcnuggets $|(2npi+1/n) sin(2npi+1/n)|$ is an indeterminate product $0 * infty$, so I change it to $frac{0}{0}$ and use L'Hospital.
$endgroup$
– user398843
Feb 1 at 23:14






$begingroup$
@babemcnuggets $|(2npi+1/n) sin(2npi+1/n)|$ is an indeterminate product $0 * infty$, so I change it to $frac{0}{0}$ and use L'Hospital.
$endgroup$
– user398843
Feb 1 at 23:14














$begingroup$
I only remember using L'Hospital for $frac{infty}{infty}$ and $frac{0}{0}$, I might be wrong..
$endgroup$
– babemcnuggets
Feb 1 at 23:21




$begingroup$
I only remember using L'Hospital for $frac{infty}{infty}$ and $frac{0}{0}$, I might be wrong..
$endgroup$
– babemcnuggets
Feb 1 at 23:21












$begingroup$
@babemcnuggets en.wikipedia.org/wiki/…
$endgroup$
– user398843
Feb 1 at 23:23




$begingroup$
@babemcnuggets en.wikipedia.org/wiki/…
$endgroup$
– user398843
Feb 1 at 23:23




1




1




$begingroup$
@user398843 Thanks for the clarifications. Also, as I stated, note you should not try to use l'Hôpital's rule in that case. You might get the correct answer, but it's not guaranteed. Regarding your question title & text change, note that an easier way to state $n$ is a positive integer is that $n in mathbb{N}$, i.e., is a natural number.
$endgroup$
– John Omielan
Feb 2 at 0:11






$begingroup$
@user398843 Thanks for the clarifications. Also, as I stated, note you should not try to use l'Hôpital's rule in that case. You might get the correct answer, but it's not guaranteed. Regarding your question title & text change, note that an easier way to state $n$ is a positive integer is that $n in mathbb{N}$, i.e., is a natural number.
$endgroup$
– John Omielan
Feb 2 at 0:11












1 Answer
1






active

oldest

votes


















3












$begingroup$

Note that $sin$ has period $2pi$, so $sin(2npi+frac 1 n)=sin(frac 1 n)$. $lim (|2npi+frac 1 n)sin(frac 1 n)|=lim (|2npi+frac 1 n)(frac 1 n)|=2pi$. I have used the fact that $frac {sin, x } x to 1$ as $ x to 0$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Can we really take the limit sign into the absolute value sign? If $a_n = (-1)^n$, then $lim_{nto infty} |(-1)^n| = 1$ but $|lim_{nto infty} (-1)^n|$ does not exist. I asked this because you use $lim_{xto 0} frac{sin x}{x}$.
    $endgroup$
    – user398843
    Feb 1 at 23:45












  • $begingroup$
    @user398843 When $lim a_n$ exists we can take the limit inside. In our case the limit exists.
    $endgroup$
    – Kavi Rama Murthy
    Feb 1 at 23:47












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096825%2flim-n-to-infty-2n-pi1-n-sin2n-pi1-n-n-in-mathbb-n%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

Note that $sin$ has period $2pi$, so $sin(2npi+frac 1 n)=sin(frac 1 n)$. $lim (|2npi+frac 1 n)sin(frac 1 n)|=lim (|2npi+frac 1 n)(frac 1 n)|=2pi$. I have used the fact that $frac {sin, x } x to 1$ as $ x to 0$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Can we really take the limit sign into the absolute value sign? If $a_n = (-1)^n$, then $lim_{nto infty} |(-1)^n| = 1$ but $|lim_{nto infty} (-1)^n|$ does not exist. I asked this because you use $lim_{xto 0} frac{sin x}{x}$.
    $endgroup$
    – user398843
    Feb 1 at 23:45












  • $begingroup$
    @user398843 When $lim a_n$ exists we can take the limit inside. In our case the limit exists.
    $endgroup$
    – Kavi Rama Murthy
    Feb 1 at 23:47
















3












$begingroup$

Note that $sin$ has period $2pi$, so $sin(2npi+frac 1 n)=sin(frac 1 n)$. $lim (|2npi+frac 1 n)sin(frac 1 n)|=lim (|2npi+frac 1 n)(frac 1 n)|=2pi$. I have used the fact that $frac {sin, x } x to 1$ as $ x to 0$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Can we really take the limit sign into the absolute value sign? If $a_n = (-1)^n$, then $lim_{nto infty} |(-1)^n| = 1$ but $|lim_{nto infty} (-1)^n|$ does not exist. I asked this because you use $lim_{xto 0} frac{sin x}{x}$.
    $endgroup$
    – user398843
    Feb 1 at 23:45












  • $begingroup$
    @user398843 When $lim a_n$ exists we can take the limit inside. In our case the limit exists.
    $endgroup$
    – Kavi Rama Murthy
    Feb 1 at 23:47














3












3








3





$begingroup$

Note that $sin$ has period $2pi$, so $sin(2npi+frac 1 n)=sin(frac 1 n)$. $lim (|2npi+frac 1 n)sin(frac 1 n)|=lim (|2npi+frac 1 n)(frac 1 n)|=2pi$. I have used the fact that $frac {sin, x } x to 1$ as $ x to 0$.






share|cite|improve this answer









$endgroup$



Note that $sin$ has period $2pi$, so $sin(2npi+frac 1 n)=sin(frac 1 n)$. $lim (|2npi+frac 1 n)sin(frac 1 n)|=lim (|2npi+frac 1 n)(frac 1 n)|=2pi$. I have used the fact that $frac {sin, x } x to 1$ as $ x to 0$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Feb 1 at 23:22









Kavi Rama MurthyKavi Rama Murthy

74.3k53270




74.3k53270












  • $begingroup$
    Can we really take the limit sign into the absolute value sign? If $a_n = (-1)^n$, then $lim_{nto infty} |(-1)^n| = 1$ but $|lim_{nto infty} (-1)^n|$ does not exist. I asked this because you use $lim_{xto 0} frac{sin x}{x}$.
    $endgroup$
    – user398843
    Feb 1 at 23:45












  • $begingroup$
    @user398843 When $lim a_n$ exists we can take the limit inside. In our case the limit exists.
    $endgroup$
    – Kavi Rama Murthy
    Feb 1 at 23:47


















  • $begingroup$
    Can we really take the limit sign into the absolute value sign? If $a_n = (-1)^n$, then $lim_{nto infty} |(-1)^n| = 1$ but $|lim_{nto infty} (-1)^n|$ does not exist. I asked this because you use $lim_{xto 0} frac{sin x}{x}$.
    $endgroup$
    – user398843
    Feb 1 at 23:45












  • $begingroup$
    @user398843 When $lim a_n$ exists we can take the limit inside. In our case the limit exists.
    $endgroup$
    – Kavi Rama Murthy
    Feb 1 at 23:47
















$begingroup$
Can we really take the limit sign into the absolute value sign? If $a_n = (-1)^n$, then $lim_{nto infty} |(-1)^n| = 1$ but $|lim_{nto infty} (-1)^n|$ does not exist. I asked this because you use $lim_{xto 0} frac{sin x}{x}$.
$endgroup$
– user398843
Feb 1 at 23:45






$begingroup$
Can we really take the limit sign into the absolute value sign? If $a_n = (-1)^n$, then $lim_{nto infty} |(-1)^n| = 1$ but $|lim_{nto infty} (-1)^n|$ does not exist. I asked this because you use $lim_{xto 0} frac{sin x}{x}$.
$endgroup$
– user398843
Feb 1 at 23:45














$begingroup$
@user398843 When $lim a_n$ exists we can take the limit inside. In our case the limit exists.
$endgroup$
– Kavi Rama Murthy
Feb 1 at 23:47




$begingroup$
@user398843 When $lim a_n$ exists we can take the limit inside. In our case the limit exists.
$endgroup$
– Kavi Rama Murthy
Feb 1 at 23:47


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096825%2flim-n-to-infty-2n-pi1-n-sin2n-pi1-n-n-in-mathbb-n%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

How to fix TextFormField cause rebuild widget in Flutter