Prove that there exists a non-zero vector $v in V$ such that $v perp U$
$begingroup$
$DeclareMathOperator{dim}{dim}$In Euclidean space $(X,leftlangle cdot , cdot rightrangle )$ where $dim X < infty$. Suppose we have two subspaces $U,V subset X$ and $dim U<dim V$. Prove that there exists a non-zero vector $v in V$ such that $v perp U$.
I tried to do this task however I don't have any idea how to prove it because I have less information about $U$ and I cannot even use the condition for the perpendicularity of vectors because it does not give me anything.
Can you help me?
linear-algebra
$endgroup$
add a comment |
$begingroup$
$DeclareMathOperator{dim}{dim}$In Euclidean space $(X,leftlangle cdot , cdot rightrangle )$ where $dim X < infty$. Suppose we have two subspaces $U,V subset X$ and $dim U<dim V$. Prove that there exists a non-zero vector $v in V$ such that $v perp U$.
I tried to do this task however I don't have any idea how to prove it because I have less information about $U$ and I cannot even use the condition for the perpendicularity of vectors because it does not give me anything.
Can you help me?
linear-algebra
$endgroup$
add a comment |
$begingroup$
$DeclareMathOperator{dim}{dim}$In Euclidean space $(X,leftlangle cdot , cdot rightrangle )$ where $dim X < infty$. Suppose we have two subspaces $U,V subset X$ and $dim U<dim V$. Prove that there exists a non-zero vector $v in V$ such that $v perp U$.
I tried to do this task however I don't have any idea how to prove it because I have less information about $U$ and I cannot even use the condition for the perpendicularity of vectors because it does not give me anything.
Can you help me?
linear-algebra
$endgroup$
$DeclareMathOperator{dim}{dim}$In Euclidean space $(X,leftlangle cdot , cdot rightrangle )$ where $dim X < infty$. Suppose we have two subspaces $U,V subset X$ and $dim U<dim V$. Prove that there exists a non-zero vector $v in V$ such that $v perp U$.
I tried to do this task however I don't have any idea how to prove it because I have less information about $U$ and I cannot even use the condition for the perpendicularity of vectors because it does not give me anything.
Can you help me?
linear-algebra
linear-algebra
edited Feb 2 at 1:25
Clayton
19.6k33288
19.6k33288
asked Feb 2 at 0:53
MP3129MP3129
802211
802211
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Let $p$ be the orthogonal projection on $U$, since $dimU <dim V$, the kernel of the restriction of $p$ to $V$ is not zero ($dim V=dim ker p_{mid V}+dim Imp_{mid V}$ since $dim Imp_{mid V}<dim U$ this implies that $dim kerp_{mid V}>0$ since $dimU<dim V$), there exists $vin V$ such that $p(v)=0$, this implies that $v$ is orthogonal to $U$.
$endgroup$
add a comment |
$begingroup$
We have that $U^perp$ is a subspace of $X$ whose codimension is $dim(U)$, while the codimension of $V$ is $dim(X) - dim(V)$. Since the sum of these two codimensions is $dim(X) - dim(V) + dim(U) < dim(X)$, it follows that $U^perp cap V$ is not the trivial subspace. Therefore, if you take a nonzero member $v in U^perp cap V$, then $v in V$ and $v$ is orthogonal to $U$.
$endgroup$
add a comment |
$begingroup$
A somewhat more concrete way to see this is as follows:
since
$dim X < infty, tag 1$
we have
$dim U < infty tag 2$
as well; let
$vec e_i in U, ; 1 le i le dim U, tag 3$
be an orthonormal basis (for $U$, of course). For $vec x in X$ define
$Pvec x = displaystyle sum_1^{dim U} langle vec x, vec e_i rangle vec e_i; tag 4$
it is easy to see that
$P:X to U tag 5$
is a linear map; also, for
$vec y in U, tag 6$
we have
$vec y = displaystyle sum_1^{dim U} langle vec y, vec e_i rangle vec e_i, tag 7$
thus, since $langle vec e_i, vec e_j rangle = delta_{ij}$,
$Pvec y = displaystyle sum_{i = 1}^{dim U} left langle sum_{j = 1}^{dim U} langle vec y, vec e_j rangle vec e_j, vec e_i right rangle vec e_i = sum_1^{dim U} langle vec y, vec e_i rangle vec e_i = vec y; tag 8$
that is, $P$ fixes $U$, element-wise. Thus, in light of (5),
$vec x in X Longrightarrow P^2 vec x = P(P vec x) = P vec x, tag 9$
i.e.,
$P^2 = P, tag{10}$
a projection operator on $X$, with range $U$; a projection onto $U$. Furthermore, it is also easy to see that $P$ is self-adjoint, that is,
$vec x, vec y in X Longrightarrow langle P vec x, vec y rangle = langle vec x, P vec y rangle; tag{11}$
indeed,
$langle P vec x, vec y rangle = left langle displaystyle sum_1^{dim U} langle vec x, vec e_j rangle vec e_j, vec y right rangle = displaystyle sum_1^{dim U} langle vec x, vec e_j rangle langle vec e_j, vec y rangle = sum_1^{dim U} langle vec e_j, vec y rangle langle vec x, vec e_j rangle$
$= displaystyle sum_1^{dim U} langle vec y, vec e_j rangle langle vec e_j, vec x rangle = left langle displaystyle sum_1^{dim U} langle vec y, vec e_j rangle vec e_j, vec x right rangle = langle Pvec y, vec x rangle = langle vec x, Pvec y rangle; tag{12}$
now with (10) and (11) in hand we may resolve the primary question as follows: since $dim U < dim V$ we may choose
$vec v in V setminus U; tag{13}$
then since
$vec v notin U, tag{14}$
it follows that
$vec v ne P vec v in U; tag{15}$
thus
$vec v - Pvec v ne 0; tag{16}$
also,
$vec u in U Longrightarrow langle vec u, vec v - Pvec v rangle = langle vec u, vec v rangle - langle vec u, P vec v rangle = langle vec u, vec v rangle - langle P vec u,vec v rangle = langle vec u, vec v rangle - langle vec u, vec v rangle = 0, tag{17}$
and we conclude that
$0 ne vec v - P vec v in U^bot tag{18}$
as required.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096918%2fprove-that-there-exists-a-non-zero-vector-v-in-v-such-that-v-perp-u%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $p$ be the orthogonal projection on $U$, since $dimU <dim V$, the kernel of the restriction of $p$ to $V$ is not zero ($dim V=dim ker p_{mid V}+dim Imp_{mid V}$ since $dim Imp_{mid V}<dim U$ this implies that $dim kerp_{mid V}>0$ since $dimU<dim V$), there exists $vin V$ such that $p(v)=0$, this implies that $v$ is orthogonal to $U$.
$endgroup$
add a comment |
$begingroup$
Let $p$ be the orthogonal projection on $U$, since $dimU <dim V$, the kernel of the restriction of $p$ to $V$ is not zero ($dim V=dim ker p_{mid V}+dim Imp_{mid V}$ since $dim Imp_{mid V}<dim U$ this implies that $dim kerp_{mid V}>0$ since $dimU<dim V$), there exists $vin V$ such that $p(v)=0$, this implies that $v$ is orthogonal to $U$.
$endgroup$
add a comment |
$begingroup$
Let $p$ be the orthogonal projection on $U$, since $dimU <dim V$, the kernel of the restriction of $p$ to $V$ is not zero ($dim V=dim ker p_{mid V}+dim Imp_{mid V}$ since $dim Imp_{mid V}<dim U$ this implies that $dim kerp_{mid V}>0$ since $dimU<dim V$), there exists $vin V$ such that $p(v)=0$, this implies that $v$ is orthogonal to $U$.
$endgroup$
Let $p$ be the orthogonal projection on $U$, since $dimU <dim V$, the kernel of the restriction of $p$ to $V$ is not zero ($dim V=dim ker p_{mid V}+dim Imp_{mid V}$ since $dim Imp_{mid V}<dim U$ this implies that $dim kerp_{mid V}>0$ since $dimU<dim V$), there exists $vin V$ such that $p(v)=0$, this implies that $v$ is orthogonal to $U$.
answered Feb 2 at 0:58


Tsemo AristideTsemo Aristide
60.5k11446
60.5k11446
add a comment |
add a comment |
$begingroup$
We have that $U^perp$ is a subspace of $X$ whose codimension is $dim(U)$, while the codimension of $V$ is $dim(X) - dim(V)$. Since the sum of these two codimensions is $dim(X) - dim(V) + dim(U) < dim(X)$, it follows that $U^perp cap V$ is not the trivial subspace. Therefore, if you take a nonzero member $v in U^perp cap V$, then $v in V$ and $v$ is orthogonal to $U$.
$endgroup$
add a comment |
$begingroup$
We have that $U^perp$ is a subspace of $X$ whose codimension is $dim(U)$, while the codimension of $V$ is $dim(X) - dim(V)$. Since the sum of these two codimensions is $dim(X) - dim(V) + dim(U) < dim(X)$, it follows that $U^perp cap V$ is not the trivial subspace. Therefore, if you take a nonzero member $v in U^perp cap V$, then $v in V$ and $v$ is orthogonal to $U$.
$endgroup$
add a comment |
$begingroup$
We have that $U^perp$ is a subspace of $X$ whose codimension is $dim(U)$, while the codimension of $V$ is $dim(X) - dim(V)$. Since the sum of these two codimensions is $dim(X) - dim(V) + dim(U) < dim(X)$, it follows that $U^perp cap V$ is not the trivial subspace. Therefore, if you take a nonzero member $v in U^perp cap V$, then $v in V$ and $v$ is orthogonal to $U$.
$endgroup$
We have that $U^perp$ is a subspace of $X$ whose codimension is $dim(U)$, while the codimension of $V$ is $dim(X) - dim(V)$. Since the sum of these two codimensions is $dim(X) - dim(V) + dim(U) < dim(X)$, it follows that $U^perp cap V$ is not the trivial subspace. Therefore, if you take a nonzero member $v in U^perp cap V$, then $v in V$ and $v$ is orthogonal to $U$.
answered Feb 2 at 1:13
Daniel ScheplerDaniel Schepler
9,3341821
9,3341821
add a comment |
add a comment |
$begingroup$
A somewhat more concrete way to see this is as follows:
since
$dim X < infty, tag 1$
we have
$dim U < infty tag 2$
as well; let
$vec e_i in U, ; 1 le i le dim U, tag 3$
be an orthonormal basis (for $U$, of course). For $vec x in X$ define
$Pvec x = displaystyle sum_1^{dim U} langle vec x, vec e_i rangle vec e_i; tag 4$
it is easy to see that
$P:X to U tag 5$
is a linear map; also, for
$vec y in U, tag 6$
we have
$vec y = displaystyle sum_1^{dim U} langle vec y, vec e_i rangle vec e_i, tag 7$
thus, since $langle vec e_i, vec e_j rangle = delta_{ij}$,
$Pvec y = displaystyle sum_{i = 1}^{dim U} left langle sum_{j = 1}^{dim U} langle vec y, vec e_j rangle vec e_j, vec e_i right rangle vec e_i = sum_1^{dim U} langle vec y, vec e_i rangle vec e_i = vec y; tag 8$
that is, $P$ fixes $U$, element-wise. Thus, in light of (5),
$vec x in X Longrightarrow P^2 vec x = P(P vec x) = P vec x, tag 9$
i.e.,
$P^2 = P, tag{10}$
a projection operator on $X$, with range $U$; a projection onto $U$. Furthermore, it is also easy to see that $P$ is self-adjoint, that is,
$vec x, vec y in X Longrightarrow langle P vec x, vec y rangle = langle vec x, P vec y rangle; tag{11}$
indeed,
$langle P vec x, vec y rangle = left langle displaystyle sum_1^{dim U} langle vec x, vec e_j rangle vec e_j, vec y right rangle = displaystyle sum_1^{dim U} langle vec x, vec e_j rangle langle vec e_j, vec y rangle = sum_1^{dim U} langle vec e_j, vec y rangle langle vec x, vec e_j rangle$
$= displaystyle sum_1^{dim U} langle vec y, vec e_j rangle langle vec e_j, vec x rangle = left langle displaystyle sum_1^{dim U} langle vec y, vec e_j rangle vec e_j, vec x right rangle = langle Pvec y, vec x rangle = langle vec x, Pvec y rangle; tag{12}$
now with (10) and (11) in hand we may resolve the primary question as follows: since $dim U < dim V$ we may choose
$vec v in V setminus U; tag{13}$
then since
$vec v notin U, tag{14}$
it follows that
$vec v ne P vec v in U; tag{15}$
thus
$vec v - Pvec v ne 0; tag{16}$
also,
$vec u in U Longrightarrow langle vec u, vec v - Pvec v rangle = langle vec u, vec v rangle - langle vec u, P vec v rangle = langle vec u, vec v rangle - langle P vec u,vec v rangle = langle vec u, vec v rangle - langle vec u, vec v rangle = 0, tag{17}$
and we conclude that
$0 ne vec v - P vec v in U^bot tag{18}$
as required.
$endgroup$
add a comment |
$begingroup$
A somewhat more concrete way to see this is as follows:
since
$dim X < infty, tag 1$
we have
$dim U < infty tag 2$
as well; let
$vec e_i in U, ; 1 le i le dim U, tag 3$
be an orthonormal basis (for $U$, of course). For $vec x in X$ define
$Pvec x = displaystyle sum_1^{dim U} langle vec x, vec e_i rangle vec e_i; tag 4$
it is easy to see that
$P:X to U tag 5$
is a linear map; also, for
$vec y in U, tag 6$
we have
$vec y = displaystyle sum_1^{dim U} langle vec y, vec e_i rangle vec e_i, tag 7$
thus, since $langle vec e_i, vec e_j rangle = delta_{ij}$,
$Pvec y = displaystyle sum_{i = 1}^{dim U} left langle sum_{j = 1}^{dim U} langle vec y, vec e_j rangle vec e_j, vec e_i right rangle vec e_i = sum_1^{dim U} langle vec y, vec e_i rangle vec e_i = vec y; tag 8$
that is, $P$ fixes $U$, element-wise. Thus, in light of (5),
$vec x in X Longrightarrow P^2 vec x = P(P vec x) = P vec x, tag 9$
i.e.,
$P^2 = P, tag{10}$
a projection operator on $X$, with range $U$; a projection onto $U$. Furthermore, it is also easy to see that $P$ is self-adjoint, that is,
$vec x, vec y in X Longrightarrow langle P vec x, vec y rangle = langle vec x, P vec y rangle; tag{11}$
indeed,
$langle P vec x, vec y rangle = left langle displaystyle sum_1^{dim U} langle vec x, vec e_j rangle vec e_j, vec y right rangle = displaystyle sum_1^{dim U} langle vec x, vec e_j rangle langle vec e_j, vec y rangle = sum_1^{dim U} langle vec e_j, vec y rangle langle vec x, vec e_j rangle$
$= displaystyle sum_1^{dim U} langle vec y, vec e_j rangle langle vec e_j, vec x rangle = left langle displaystyle sum_1^{dim U} langle vec y, vec e_j rangle vec e_j, vec x right rangle = langle Pvec y, vec x rangle = langle vec x, Pvec y rangle; tag{12}$
now with (10) and (11) in hand we may resolve the primary question as follows: since $dim U < dim V$ we may choose
$vec v in V setminus U; tag{13}$
then since
$vec v notin U, tag{14}$
it follows that
$vec v ne P vec v in U; tag{15}$
thus
$vec v - Pvec v ne 0; tag{16}$
also,
$vec u in U Longrightarrow langle vec u, vec v - Pvec v rangle = langle vec u, vec v rangle - langle vec u, P vec v rangle = langle vec u, vec v rangle - langle P vec u,vec v rangle = langle vec u, vec v rangle - langle vec u, vec v rangle = 0, tag{17}$
and we conclude that
$0 ne vec v - P vec v in U^bot tag{18}$
as required.
$endgroup$
add a comment |
$begingroup$
A somewhat more concrete way to see this is as follows:
since
$dim X < infty, tag 1$
we have
$dim U < infty tag 2$
as well; let
$vec e_i in U, ; 1 le i le dim U, tag 3$
be an orthonormal basis (for $U$, of course). For $vec x in X$ define
$Pvec x = displaystyle sum_1^{dim U} langle vec x, vec e_i rangle vec e_i; tag 4$
it is easy to see that
$P:X to U tag 5$
is a linear map; also, for
$vec y in U, tag 6$
we have
$vec y = displaystyle sum_1^{dim U} langle vec y, vec e_i rangle vec e_i, tag 7$
thus, since $langle vec e_i, vec e_j rangle = delta_{ij}$,
$Pvec y = displaystyle sum_{i = 1}^{dim U} left langle sum_{j = 1}^{dim U} langle vec y, vec e_j rangle vec e_j, vec e_i right rangle vec e_i = sum_1^{dim U} langle vec y, vec e_i rangle vec e_i = vec y; tag 8$
that is, $P$ fixes $U$, element-wise. Thus, in light of (5),
$vec x in X Longrightarrow P^2 vec x = P(P vec x) = P vec x, tag 9$
i.e.,
$P^2 = P, tag{10}$
a projection operator on $X$, with range $U$; a projection onto $U$. Furthermore, it is also easy to see that $P$ is self-adjoint, that is,
$vec x, vec y in X Longrightarrow langle P vec x, vec y rangle = langle vec x, P vec y rangle; tag{11}$
indeed,
$langle P vec x, vec y rangle = left langle displaystyle sum_1^{dim U} langle vec x, vec e_j rangle vec e_j, vec y right rangle = displaystyle sum_1^{dim U} langle vec x, vec e_j rangle langle vec e_j, vec y rangle = sum_1^{dim U} langle vec e_j, vec y rangle langle vec x, vec e_j rangle$
$= displaystyle sum_1^{dim U} langle vec y, vec e_j rangle langle vec e_j, vec x rangle = left langle displaystyle sum_1^{dim U} langle vec y, vec e_j rangle vec e_j, vec x right rangle = langle Pvec y, vec x rangle = langle vec x, Pvec y rangle; tag{12}$
now with (10) and (11) in hand we may resolve the primary question as follows: since $dim U < dim V$ we may choose
$vec v in V setminus U; tag{13}$
then since
$vec v notin U, tag{14}$
it follows that
$vec v ne P vec v in U; tag{15}$
thus
$vec v - Pvec v ne 0; tag{16}$
also,
$vec u in U Longrightarrow langle vec u, vec v - Pvec v rangle = langle vec u, vec v rangle - langle vec u, P vec v rangle = langle vec u, vec v rangle - langle P vec u,vec v rangle = langle vec u, vec v rangle - langle vec u, vec v rangle = 0, tag{17}$
and we conclude that
$0 ne vec v - P vec v in U^bot tag{18}$
as required.
$endgroup$
A somewhat more concrete way to see this is as follows:
since
$dim X < infty, tag 1$
we have
$dim U < infty tag 2$
as well; let
$vec e_i in U, ; 1 le i le dim U, tag 3$
be an orthonormal basis (for $U$, of course). For $vec x in X$ define
$Pvec x = displaystyle sum_1^{dim U} langle vec x, vec e_i rangle vec e_i; tag 4$
it is easy to see that
$P:X to U tag 5$
is a linear map; also, for
$vec y in U, tag 6$
we have
$vec y = displaystyle sum_1^{dim U} langle vec y, vec e_i rangle vec e_i, tag 7$
thus, since $langle vec e_i, vec e_j rangle = delta_{ij}$,
$Pvec y = displaystyle sum_{i = 1}^{dim U} left langle sum_{j = 1}^{dim U} langle vec y, vec e_j rangle vec e_j, vec e_i right rangle vec e_i = sum_1^{dim U} langle vec y, vec e_i rangle vec e_i = vec y; tag 8$
that is, $P$ fixes $U$, element-wise. Thus, in light of (5),
$vec x in X Longrightarrow P^2 vec x = P(P vec x) = P vec x, tag 9$
i.e.,
$P^2 = P, tag{10}$
a projection operator on $X$, with range $U$; a projection onto $U$. Furthermore, it is also easy to see that $P$ is self-adjoint, that is,
$vec x, vec y in X Longrightarrow langle P vec x, vec y rangle = langle vec x, P vec y rangle; tag{11}$
indeed,
$langle P vec x, vec y rangle = left langle displaystyle sum_1^{dim U} langle vec x, vec e_j rangle vec e_j, vec y right rangle = displaystyle sum_1^{dim U} langle vec x, vec e_j rangle langle vec e_j, vec y rangle = sum_1^{dim U} langle vec e_j, vec y rangle langle vec x, vec e_j rangle$
$= displaystyle sum_1^{dim U} langle vec y, vec e_j rangle langle vec e_j, vec x rangle = left langle displaystyle sum_1^{dim U} langle vec y, vec e_j rangle vec e_j, vec x right rangle = langle Pvec y, vec x rangle = langle vec x, Pvec y rangle; tag{12}$
now with (10) and (11) in hand we may resolve the primary question as follows: since $dim U < dim V$ we may choose
$vec v in V setminus U; tag{13}$
then since
$vec v notin U, tag{14}$
it follows that
$vec v ne P vec v in U; tag{15}$
thus
$vec v - Pvec v ne 0; tag{16}$
also,
$vec u in U Longrightarrow langle vec u, vec v - Pvec v rangle = langle vec u, vec v rangle - langle vec u, P vec v rangle = langle vec u, vec v rangle - langle P vec u,vec v rangle = langle vec u, vec v rangle - langle vec u, vec v rangle = 0, tag{17}$
and we conclude that
$0 ne vec v - P vec v in U^bot tag{18}$
as required.
edited Feb 2 at 3:39
answered Feb 2 at 3:15


Robert LewisRobert Lewis
48.9k23168
48.9k23168
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096918%2fprove-that-there-exists-a-non-zero-vector-v-in-v-such-that-v-perp-u%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown