Prove that there exists a non-zero vector $v in V$ such that $v perp U$












2












$begingroup$



$DeclareMathOperator{dim}{dim}$In Euclidean space $(X,leftlangle cdot , cdot rightrangle )$ where $dim X < infty$. Suppose we have two subspaces $U,V subset X$ and $dim U<dim V$. Prove that there exists a non-zero vector $v in V$ such that $v perp U$.




I tried to do this task however I don't have any idea how to prove it because I have less information about $U$ and I cannot even use the condition for the perpendicularity of vectors because it does not give me anything.



Can you help me?










share|cite|improve this question











$endgroup$

















    2












    $begingroup$



    $DeclareMathOperator{dim}{dim}$In Euclidean space $(X,leftlangle cdot , cdot rightrangle )$ where $dim X < infty$. Suppose we have two subspaces $U,V subset X$ and $dim U<dim V$. Prove that there exists a non-zero vector $v in V$ such that $v perp U$.




    I tried to do this task however I don't have any idea how to prove it because I have less information about $U$ and I cannot even use the condition for the perpendicularity of vectors because it does not give me anything.



    Can you help me?










    share|cite|improve this question











    $endgroup$















      2












      2








      2


      1



      $begingroup$



      $DeclareMathOperator{dim}{dim}$In Euclidean space $(X,leftlangle cdot , cdot rightrangle )$ where $dim X < infty$. Suppose we have two subspaces $U,V subset X$ and $dim U<dim V$. Prove that there exists a non-zero vector $v in V$ such that $v perp U$.




      I tried to do this task however I don't have any idea how to prove it because I have less information about $U$ and I cannot even use the condition for the perpendicularity of vectors because it does not give me anything.



      Can you help me?










      share|cite|improve this question











      $endgroup$





      $DeclareMathOperator{dim}{dim}$In Euclidean space $(X,leftlangle cdot , cdot rightrangle )$ where $dim X < infty$. Suppose we have two subspaces $U,V subset X$ and $dim U<dim V$. Prove that there exists a non-zero vector $v in V$ such that $v perp U$.




      I tried to do this task however I don't have any idea how to prove it because I have less information about $U$ and I cannot even use the condition for the perpendicularity of vectors because it does not give me anything.



      Can you help me?







      linear-algebra






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Feb 2 at 1:25









      Clayton

      19.6k33288




      19.6k33288










      asked Feb 2 at 0:53









      MP3129MP3129

      802211




      802211






















          3 Answers
          3






          active

          oldest

          votes


















          2












          $begingroup$

          Let $p$ be the orthogonal projection on $U$, since $dimU <dim V$, the kernel of the restriction of $p$ to $V$ is not zero ($dim V=dim ker p_{mid V}+dim Imp_{mid V}$ since $dim Imp_{mid V}<dim U$ this implies that $dim kerp_{mid V}>0$ since $dimU<dim V$), there exists $vin V$ such that $p(v)=0$, this implies that $v$ is orthogonal to $U$.






          share|cite|improve this answer









          $endgroup$





















            2












            $begingroup$

            We have that $U^perp$ is a subspace of $X$ whose codimension is $dim(U)$, while the codimension of $V$ is $dim(X) - dim(V)$. Since the sum of these two codimensions is $dim(X) - dim(V) + dim(U) < dim(X)$, it follows that $U^perp cap V$ is not the trivial subspace. Therefore, if you take a nonzero member $v in U^perp cap V$, then $v in V$ and $v$ is orthogonal to $U$.






            share|cite|improve this answer









            $endgroup$





















              2












              $begingroup$

              A somewhat more concrete way to see this is as follows:



              since



              $dim X < infty, tag 1$



              we have



              $dim U < infty tag 2$



              as well; let



              $vec e_i in U, ; 1 le i le dim U, tag 3$



              be an orthonormal basis (for $U$, of course). For $vec x in X$ define



              $Pvec x = displaystyle sum_1^{dim U} langle vec x, vec e_i rangle vec e_i; tag 4$



              it is easy to see that



              $P:X to U tag 5$



              is a linear map; also, for



              $vec y in U, tag 6$



              we have



              $vec y = displaystyle sum_1^{dim U} langle vec y, vec e_i rangle vec e_i, tag 7$



              thus, since $langle vec e_i, vec e_j rangle = delta_{ij}$,



              $Pvec y = displaystyle sum_{i = 1}^{dim U} left langle sum_{j = 1}^{dim U} langle vec y, vec e_j rangle vec e_j, vec e_i right rangle vec e_i = sum_1^{dim U} langle vec y, vec e_i rangle vec e_i = vec y; tag 8$



              that is, $P$ fixes $U$, element-wise. Thus, in light of (5),



              $vec x in X Longrightarrow P^2 vec x = P(P vec x) = P vec x, tag 9$



              i.e.,



              $P^2 = P, tag{10}$



              a projection operator on $X$, with range $U$; a projection onto $U$. Furthermore, it is also easy to see that $P$ is self-adjoint, that is,



              $vec x, vec y in X Longrightarrow langle P vec x, vec y rangle = langle vec x, P vec y rangle; tag{11}$



              indeed,



              $langle P vec x, vec y rangle = left langle displaystyle sum_1^{dim U} langle vec x, vec e_j rangle vec e_j, vec y right rangle = displaystyle sum_1^{dim U} langle vec x, vec e_j rangle langle vec e_j, vec y rangle = sum_1^{dim U} langle vec e_j, vec y rangle langle vec x, vec e_j rangle$
              $= displaystyle sum_1^{dim U} langle vec y, vec e_j rangle langle vec e_j, vec x rangle = left langle displaystyle sum_1^{dim U} langle vec y, vec e_j rangle vec e_j, vec x right rangle = langle Pvec y, vec x rangle = langle vec x, Pvec y rangle; tag{12}$



              now with (10) and (11) in hand we may resolve the primary question as follows: since $dim U < dim V$ we may choose



              $vec v in V setminus U; tag{13}$



              then since



              $vec v notin U, tag{14}$



              it follows that



              $vec v ne P vec v in U; tag{15}$



              thus



              $vec v - Pvec v ne 0; tag{16}$



              also,



              $vec u in U Longrightarrow langle vec u, vec v - Pvec v rangle = langle vec u, vec v rangle - langle vec u, P vec v rangle = langle vec u, vec v rangle - langle P vec u,vec v rangle = langle vec u, vec v rangle - langle vec u, vec v rangle = 0, tag{17}$



              and we conclude that



              $0 ne vec v - P vec v in U^bot tag{18}$



              as required.






              share|cite|improve this answer











              $endgroup$














                Your Answer








                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096918%2fprove-that-there-exists-a-non-zero-vector-v-in-v-such-that-v-perp-u%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                2












                $begingroup$

                Let $p$ be the orthogonal projection on $U$, since $dimU <dim V$, the kernel of the restriction of $p$ to $V$ is not zero ($dim V=dim ker p_{mid V}+dim Imp_{mid V}$ since $dim Imp_{mid V}<dim U$ this implies that $dim kerp_{mid V}>0$ since $dimU<dim V$), there exists $vin V$ such that $p(v)=0$, this implies that $v$ is orthogonal to $U$.






                share|cite|improve this answer









                $endgroup$


















                  2












                  $begingroup$

                  Let $p$ be the orthogonal projection on $U$, since $dimU <dim V$, the kernel of the restriction of $p$ to $V$ is not zero ($dim V=dim ker p_{mid V}+dim Imp_{mid V}$ since $dim Imp_{mid V}<dim U$ this implies that $dim kerp_{mid V}>0$ since $dimU<dim V$), there exists $vin V$ such that $p(v)=0$, this implies that $v$ is orthogonal to $U$.






                  share|cite|improve this answer









                  $endgroup$
















                    2












                    2








                    2





                    $begingroup$

                    Let $p$ be the orthogonal projection on $U$, since $dimU <dim V$, the kernel of the restriction of $p$ to $V$ is not zero ($dim V=dim ker p_{mid V}+dim Imp_{mid V}$ since $dim Imp_{mid V}<dim U$ this implies that $dim kerp_{mid V}>0$ since $dimU<dim V$), there exists $vin V$ such that $p(v)=0$, this implies that $v$ is orthogonal to $U$.






                    share|cite|improve this answer









                    $endgroup$



                    Let $p$ be the orthogonal projection on $U$, since $dimU <dim V$, the kernel of the restriction of $p$ to $V$ is not zero ($dim V=dim ker p_{mid V}+dim Imp_{mid V}$ since $dim Imp_{mid V}<dim U$ this implies that $dim kerp_{mid V}>0$ since $dimU<dim V$), there exists $vin V$ such that $p(v)=0$, this implies that $v$ is orthogonal to $U$.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Feb 2 at 0:58









                    Tsemo AristideTsemo Aristide

                    60.5k11446




                    60.5k11446























                        2












                        $begingroup$

                        We have that $U^perp$ is a subspace of $X$ whose codimension is $dim(U)$, while the codimension of $V$ is $dim(X) - dim(V)$. Since the sum of these two codimensions is $dim(X) - dim(V) + dim(U) < dim(X)$, it follows that $U^perp cap V$ is not the trivial subspace. Therefore, if you take a nonzero member $v in U^perp cap V$, then $v in V$ and $v$ is orthogonal to $U$.






                        share|cite|improve this answer









                        $endgroup$


















                          2












                          $begingroup$

                          We have that $U^perp$ is a subspace of $X$ whose codimension is $dim(U)$, while the codimension of $V$ is $dim(X) - dim(V)$. Since the sum of these two codimensions is $dim(X) - dim(V) + dim(U) < dim(X)$, it follows that $U^perp cap V$ is not the trivial subspace. Therefore, if you take a nonzero member $v in U^perp cap V$, then $v in V$ and $v$ is orthogonal to $U$.






                          share|cite|improve this answer









                          $endgroup$
















                            2












                            2








                            2





                            $begingroup$

                            We have that $U^perp$ is a subspace of $X$ whose codimension is $dim(U)$, while the codimension of $V$ is $dim(X) - dim(V)$. Since the sum of these two codimensions is $dim(X) - dim(V) + dim(U) < dim(X)$, it follows that $U^perp cap V$ is not the trivial subspace. Therefore, if you take a nonzero member $v in U^perp cap V$, then $v in V$ and $v$ is orthogonal to $U$.






                            share|cite|improve this answer









                            $endgroup$



                            We have that $U^perp$ is a subspace of $X$ whose codimension is $dim(U)$, while the codimension of $V$ is $dim(X) - dim(V)$. Since the sum of these two codimensions is $dim(X) - dim(V) + dim(U) < dim(X)$, it follows that $U^perp cap V$ is not the trivial subspace. Therefore, if you take a nonzero member $v in U^perp cap V$, then $v in V$ and $v$ is orthogonal to $U$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Feb 2 at 1:13









                            Daniel ScheplerDaniel Schepler

                            9,3341821




                            9,3341821























                                2












                                $begingroup$

                                A somewhat more concrete way to see this is as follows:



                                since



                                $dim X < infty, tag 1$



                                we have



                                $dim U < infty tag 2$



                                as well; let



                                $vec e_i in U, ; 1 le i le dim U, tag 3$



                                be an orthonormal basis (for $U$, of course). For $vec x in X$ define



                                $Pvec x = displaystyle sum_1^{dim U} langle vec x, vec e_i rangle vec e_i; tag 4$



                                it is easy to see that



                                $P:X to U tag 5$



                                is a linear map; also, for



                                $vec y in U, tag 6$



                                we have



                                $vec y = displaystyle sum_1^{dim U} langle vec y, vec e_i rangle vec e_i, tag 7$



                                thus, since $langle vec e_i, vec e_j rangle = delta_{ij}$,



                                $Pvec y = displaystyle sum_{i = 1}^{dim U} left langle sum_{j = 1}^{dim U} langle vec y, vec e_j rangle vec e_j, vec e_i right rangle vec e_i = sum_1^{dim U} langle vec y, vec e_i rangle vec e_i = vec y; tag 8$



                                that is, $P$ fixes $U$, element-wise. Thus, in light of (5),



                                $vec x in X Longrightarrow P^2 vec x = P(P vec x) = P vec x, tag 9$



                                i.e.,



                                $P^2 = P, tag{10}$



                                a projection operator on $X$, with range $U$; a projection onto $U$. Furthermore, it is also easy to see that $P$ is self-adjoint, that is,



                                $vec x, vec y in X Longrightarrow langle P vec x, vec y rangle = langle vec x, P vec y rangle; tag{11}$



                                indeed,



                                $langle P vec x, vec y rangle = left langle displaystyle sum_1^{dim U} langle vec x, vec e_j rangle vec e_j, vec y right rangle = displaystyle sum_1^{dim U} langle vec x, vec e_j rangle langle vec e_j, vec y rangle = sum_1^{dim U} langle vec e_j, vec y rangle langle vec x, vec e_j rangle$
                                $= displaystyle sum_1^{dim U} langle vec y, vec e_j rangle langle vec e_j, vec x rangle = left langle displaystyle sum_1^{dim U} langle vec y, vec e_j rangle vec e_j, vec x right rangle = langle Pvec y, vec x rangle = langle vec x, Pvec y rangle; tag{12}$



                                now with (10) and (11) in hand we may resolve the primary question as follows: since $dim U < dim V$ we may choose



                                $vec v in V setminus U; tag{13}$



                                then since



                                $vec v notin U, tag{14}$



                                it follows that



                                $vec v ne P vec v in U; tag{15}$



                                thus



                                $vec v - Pvec v ne 0; tag{16}$



                                also,



                                $vec u in U Longrightarrow langle vec u, vec v - Pvec v rangle = langle vec u, vec v rangle - langle vec u, P vec v rangle = langle vec u, vec v rangle - langle P vec u,vec v rangle = langle vec u, vec v rangle - langle vec u, vec v rangle = 0, tag{17}$



                                and we conclude that



                                $0 ne vec v - P vec v in U^bot tag{18}$



                                as required.






                                share|cite|improve this answer











                                $endgroup$


















                                  2












                                  $begingroup$

                                  A somewhat more concrete way to see this is as follows:



                                  since



                                  $dim X < infty, tag 1$



                                  we have



                                  $dim U < infty tag 2$



                                  as well; let



                                  $vec e_i in U, ; 1 le i le dim U, tag 3$



                                  be an orthonormal basis (for $U$, of course). For $vec x in X$ define



                                  $Pvec x = displaystyle sum_1^{dim U} langle vec x, vec e_i rangle vec e_i; tag 4$



                                  it is easy to see that



                                  $P:X to U tag 5$



                                  is a linear map; also, for



                                  $vec y in U, tag 6$



                                  we have



                                  $vec y = displaystyle sum_1^{dim U} langle vec y, vec e_i rangle vec e_i, tag 7$



                                  thus, since $langle vec e_i, vec e_j rangle = delta_{ij}$,



                                  $Pvec y = displaystyle sum_{i = 1}^{dim U} left langle sum_{j = 1}^{dim U} langle vec y, vec e_j rangle vec e_j, vec e_i right rangle vec e_i = sum_1^{dim U} langle vec y, vec e_i rangle vec e_i = vec y; tag 8$



                                  that is, $P$ fixes $U$, element-wise. Thus, in light of (5),



                                  $vec x in X Longrightarrow P^2 vec x = P(P vec x) = P vec x, tag 9$



                                  i.e.,



                                  $P^2 = P, tag{10}$



                                  a projection operator on $X$, with range $U$; a projection onto $U$. Furthermore, it is also easy to see that $P$ is self-adjoint, that is,



                                  $vec x, vec y in X Longrightarrow langle P vec x, vec y rangle = langle vec x, P vec y rangle; tag{11}$



                                  indeed,



                                  $langle P vec x, vec y rangle = left langle displaystyle sum_1^{dim U} langle vec x, vec e_j rangle vec e_j, vec y right rangle = displaystyle sum_1^{dim U} langle vec x, vec e_j rangle langle vec e_j, vec y rangle = sum_1^{dim U} langle vec e_j, vec y rangle langle vec x, vec e_j rangle$
                                  $= displaystyle sum_1^{dim U} langle vec y, vec e_j rangle langle vec e_j, vec x rangle = left langle displaystyle sum_1^{dim U} langle vec y, vec e_j rangle vec e_j, vec x right rangle = langle Pvec y, vec x rangle = langle vec x, Pvec y rangle; tag{12}$



                                  now with (10) and (11) in hand we may resolve the primary question as follows: since $dim U < dim V$ we may choose



                                  $vec v in V setminus U; tag{13}$



                                  then since



                                  $vec v notin U, tag{14}$



                                  it follows that



                                  $vec v ne P vec v in U; tag{15}$



                                  thus



                                  $vec v - Pvec v ne 0; tag{16}$



                                  also,



                                  $vec u in U Longrightarrow langle vec u, vec v - Pvec v rangle = langle vec u, vec v rangle - langle vec u, P vec v rangle = langle vec u, vec v rangle - langle P vec u,vec v rangle = langle vec u, vec v rangle - langle vec u, vec v rangle = 0, tag{17}$



                                  and we conclude that



                                  $0 ne vec v - P vec v in U^bot tag{18}$



                                  as required.






                                  share|cite|improve this answer











                                  $endgroup$
















                                    2












                                    2








                                    2





                                    $begingroup$

                                    A somewhat more concrete way to see this is as follows:



                                    since



                                    $dim X < infty, tag 1$



                                    we have



                                    $dim U < infty tag 2$



                                    as well; let



                                    $vec e_i in U, ; 1 le i le dim U, tag 3$



                                    be an orthonormal basis (for $U$, of course). For $vec x in X$ define



                                    $Pvec x = displaystyle sum_1^{dim U} langle vec x, vec e_i rangle vec e_i; tag 4$



                                    it is easy to see that



                                    $P:X to U tag 5$



                                    is a linear map; also, for



                                    $vec y in U, tag 6$



                                    we have



                                    $vec y = displaystyle sum_1^{dim U} langle vec y, vec e_i rangle vec e_i, tag 7$



                                    thus, since $langle vec e_i, vec e_j rangle = delta_{ij}$,



                                    $Pvec y = displaystyle sum_{i = 1}^{dim U} left langle sum_{j = 1}^{dim U} langle vec y, vec e_j rangle vec e_j, vec e_i right rangle vec e_i = sum_1^{dim U} langle vec y, vec e_i rangle vec e_i = vec y; tag 8$



                                    that is, $P$ fixes $U$, element-wise. Thus, in light of (5),



                                    $vec x in X Longrightarrow P^2 vec x = P(P vec x) = P vec x, tag 9$



                                    i.e.,



                                    $P^2 = P, tag{10}$



                                    a projection operator on $X$, with range $U$; a projection onto $U$. Furthermore, it is also easy to see that $P$ is self-adjoint, that is,



                                    $vec x, vec y in X Longrightarrow langle P vec x, vec y rangle = langle vec x, P vec y rangle; tag{11}$



                                    indeed,



                                    $langle P vec x, vec y rangle = left langle displaystyle sum_1^{dim U} langle vec x, vec e_j rangle vec e_j, vec y right rangle = displaystyle sum_1^{dim U} langle vec x, vec e_j rangle langle vec e_j, vec y rangle = sum_1^{dim U} langle vec e_j, vec y rangle langle vec x, vec e_j rangle$
                                    $= displaystyle sum_1^{dim U} langle vec y, vec e_j rangle langle vec e_j, vec x rangle = left langle displaystyle sum_1^{dim U} langle vec y, vec e_j rangle vec e_j, vec x right rangle = langle Pvec y, vec x rangle = langle vec x, Pvec y rangle; tag{12}$



                                    now with (10) and (11) in hand we may resolve the primary question as follows: since $dim U < dim V$ we may choose



                                    $vec v in V setminus U; tag{13}$



                                    then since



                                    $vec v notin U, tag{14}$



                                    it follows that



                                    $vec v ne P vec v in U; tag{15}$



                                    thus



                                    $vec v - Pvec v ne 0; tag{16}$



                                    also,



                                    $vec u in U Longrightarrow langle vec u, vec v - Pvec v rangle = langle vec u, vec v rangle - langle vec u, P vec v rangle = langle vec u, vec v rangle - langle P vec u,vec v rangle = langle vec u, vec v rangle - langle vec u, vec v rangle = 0, tag{17}$



                                    and we conclude that



                                    $0 ne vec v - P vec v in U^bot tag{18}$



                                    as required.






                                    share|cite|improve this answer











                                    $endgroup$



                                    A somewhat more concrete way to see this is as follows:



                                    since



                                    $dim X < infty, tag 1$



                                    we have



                                    $dim U < infty tag 2$



                                    as well; let



                                    $vec e_i in U, ; 1 le i le dim U, tag 3$



                                    be an orthonormal basis (for $U$, of course). For $vec x in X$ define



                                    $Pvec x = displaystyle sum_1^{dim U} langle vec x, vec e_i rangle vec e_i; tag 4$



                                    it is easy to see that



                                    $P:X to U tag 5$



                                    is a linear map; also, for



                                    $vec y in U, tag 6$



                                    we have



                                    $vec y = displaystyle sum_1^{dim U} langle vec y, vec e_i rangle vec e_i, tag 7$



                                    thus, since $langle vec e_i, vec e_j rangle = delta_{ij}$,



                                    $Pvec y = displaystyle sum_{i = 1}^{dim U} left langle sum_{j = 1}^{dim U} langle vec y, vec e_j rangle vec e_j, vec e_i right rangle vec e_i = sum_1^{dim U} langle vec y, vec e_i rangle vec e_i = vec y; tag 8$



                                    that is, $P$ fixes $U$, element-wise. Thus, in light of (5),



                                    $vec x in X Longrightarrow P^2 vec x = P(P vec x) = P vec x, tag 9$



                                    i.e.,



                                    $P^2 = P, tag{10}$



                                    a projection operator on $X$, with range $U$; a projection onto $U$. Furthermore, it is also easy to see that $P$ is self-adjoint, that is,



                                    $vec x, vec y in X Longrightarrow langle P vec x, vec y rangle = langle vec x, P vec y rangle; tag{11}$



                                    indeed,



                                    $langle P vec x, vec y rangle = left langle displaystyle sum_1^{dim U} langle vec x, vec e_j rangle vec e_j, vec y right rangle = displaystyle sum_1^{dim U} langle vec x, vec e_j rangle langle vec e_j, vec y rangle = sum_1^{dim U} langle vec e_j, vec y rangle langle vec x, vec e_j rangle$
                                    $= displaystyle sum_1^{dim U} langle vec y, vec e_j rangle langle vec e_j, vec x rangle = left langle displaystyle sum_1^{dim U} langle vec y, vec e_j rangle vec e_j, vec x right rangle = langle Pvec y, vec x rangle = langle vec x, Pvec y rangle; tag{12}$



                                    now with (10) and (11) in hand we may resolve the primary question as follows: since $dim U < dim V$ we may choose



                                    $vec v in V setminus U; tag{13}$



                                    then since



                                    $vec v notin U, tag{14}$



                                    it follows that



                                    $vec v ne P vec v in U; tag{15}$



                                    thus



                                    $vec v - Pvec v ne 0; tag{16}$



                                    also,



                                    $vec u in U Longrightarrow langle vec u, vec v - Pvec v rangle = langle vec u, vec v rangle - langle vec u, P vec v rangle = langle vec u, vec v rangle - langle P vec u,vec v rangle = langle vec u, vec v rangle - langle vec u, vec v rangle = 0, tag{17}$



                                    and we conclude that



                                    $0 ne vec v - P vec v in U^bot tag{18}$



                                    as required.







                                    share|cite|improve this answer














                                    share|cite|improve this answer



                                    share|cite|improve this answer








                                    edited Feb 2 at 3:39

























                                    answered Feb 2 at 3:15









                                    Robert LewisRobert Lewis

                                    48.9k23168




                                    48.9k23168






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096918%2fprove-that-there-exists-a-non-zero-vector-v-in-v-such-that-v-perp-u%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        MongoDB - Not Authorized To Execute Command

                                        How to fix TextFormField cause rebuild widget in Flutter

                                        Npm cannot find a required file even through it is in the searched directory