Stuck at defining the borders for a probability density function
$begingroup$
So I'm given a continuous random variable $X$ with a probability density function: $p(x)= frac{x+1}{2}$ when $-1 < x< 1$ and the random variable $Y=3X^{2}+1$. I need to find the probability density function for $Y$ however I'm stuck. In order in the statement $y1<y<y2$ to find $y1$ and $y2$ I need to solve the equations: $y1=3*(-1)^2+1$ and $y2 = 3*(1)^{2}+1$, both are being equaled to 4 so I only have one border.
Any ideas?
probability
$endgroup$
add a comment |
$begingroup$
So I'm given a continuous random variable $X$ with a probability density function: $p(x)= frac{x+1}{2}$ when $-1 < x< 1$ and the random variable $Y=3X^{2}+1$. I need to find the probability density function for $Y$ however I'm stuck. In order in the statement $y1<y<y2$ to find $y1$ and $y2$ I need to solve the equations: $y1=3*(-1)^2+1$ and $y2 = 3*(1)^{2}+1$, both are being equaled to 4 so I only have one border.
Any ideas?
probability
$endgroup$
$begingroup$
$Pr [Y=y] = Pr [3X^2 +1 =y]= Pr[X= pm frac{y-1}{3}] = Pr [X= frac{y-1}{3}] + Pr[X= - frac{y-1}{3}]$. Where $y in [1,4]$
$endgroup$
– mm8511
Feb 1 at 21:16
1
$begingroup$
@mm8511 All your probabilities are $0$.
$endgroup$
– Kavi Rama Murthy
Feb 1 at 23:54
$begingroup$
@KaviRamaMurthy Not really, but i did forget a square root
$endgroup$
– mm8511
Feb 1 at 23:57
1
$begingroup$
@mm8511 OP is talking about random variables with densities and you are thinking of them as discrete vaiables.
$endgroup$
– Kavi Rama Murthy
Feb 1 at 23:57
add a comment |
$begingroup$
So I'm given a continuous random variable $X$ with a probability density function: $p(x)= frac{x+1}{2}$ when $-1 < x< 1$ and the random variable $Y=3X^{2}+1$. I need to find the probability density function for $Y$ however I'm stuck. In order in the statement $y1<y<y2$ to find $y1$ and $y2$ I need to solve the equations: $y1=3*(-1)^2+1$ and $y2 = 3*(1)^{2}+1$, both are being equaled to 4 so I only have one border.
Any ideas?
probability
$endgroup$
So I'm given a continuous random variable $X$ with a probability density function: $p(x)= frac{x+1}{2}$ when $-1 < x< 1$ and the random variable $Y=3X^{2}+1$. I need to find the probability density function for $Y$ however I'm stuck. In order in the statement $y1<y<y2$ to find $y1$ and $y2$ I need to solve the equations: $y1=3*(-1)^2+1$ and $y2 = 3*(1)^{2}+1$, both are being equaled to 4 so I only have one border.
Any ideas?
probability
probability
asked Feb 1 at 21:06
David MasonDavid Mason
587
587
$begingroup$
$Pr [Y=y] = Pr [3X^2 +1 =y]= Pr[X= pm frac{y-1}{3}] = Pr [X= frac{y-1}{3}] + Pr[X= - frac{y-1}{3}]$. Where $y in [1,4]$
$endgroup$
– mm8511
Feb 1 at 21:16
1
$begingroup$
@mm8511 All your probabilities are $0$.
$endgroup$
– Kavi Rama Murthy
Feb 1 at 23:54
$begingroup$
@KaviRamaMurthy Not really, but i did forget a square root
$endgroup$
– mm8511
Feb 1 at 23:57
1
$begingroup$
@mm8511 OP is talking about random variables with densities and you are thinking of them as discrete vaiables.
$endgroup$
– Kavi Rama Murthy
Feb 1 at 23:57
add a comment |
$begingroup$
$Pr [Y=y] = Pr [3X^2 +1 =y]= Pr[X= pm frac{y-1}{3}] = Pr [X= frac{y-1}{3}] + Pr[X= - frac{y-1}{3}]$. Where $y in [1,4]$
$endgroup$
– mm8511
Feb 1 at 21:16
1
$begingroup$
@mm8511 All your probabilities are $0$.
$endgroup$
– Kavi Rama Murthy
Feb 1 at 23:54
$begingroup$
@KaviRamaMurthy Not really, but i did forget a square root
$endgroup$
– mm8511
Feb 1 at 23:57
1
$begingroup$
@mm8511 OP is talking about random variables with densities and you are thinking of them as discrete vaiables.
$endgroup$
– Kavi Rama Murthy
Feb 1 at 23:57
$begingroup$
$Pr [Y=y] = Pr [3X^2 +1 =y]= Pr[X= pm frac{y-1}{3}] = Pr [X= frac{y-1}{3}] + Pr[X= - frac{y-1}{3}]$. Where $y in [1,4]$
$endgroup$
– mm8511
Feb 1 at 21:16
$begingroup$
$Pr [Y=y] = Pr [3X^2 +1 =y]= Pr[X= pm frac{y-1}{3}] = Pr [X= frac{y-1}{3}] + Pr[X= - frac{y-1}{3}]$. Where $y in [1,4]$
$endgroup$
– mm8511
Feb 1 at 21:16
1
1
$begingroup$
@mm8511 All your probabilities are $0$.
$endgroup$
– Kavi Rama Murthy
Feb 1 at 23:54
$begingroup$
@mm8511 All your probabilities are $0$.
$endgroup$
– Kavi Rama Murthy
Feb 1 at 23:54
$begingroup$
@KaviRamaMurthy Not really, but i did forget a square root
$endgroup$
– mm8511
Feb 1 at 23:57
$begingroup$
@KaviRamaMurthy Not really, but i did forget a square root
$endgroup$
– mm8511
Feb 1 at 23:57
1
1
$begingroup$
@mm8511 OP is talking about random variables with densities and you are thinking of them as discrete vaiables.
$endgroup$
– Kavi Rama Murthy
Feb 1 at 23:57
$begingroup$
@mm8511 OP is talking about random variables with densities and you are thinking of them as discrete vaiables.
$endgroup$
– Kavi Rama Murthy
Feb 1 at 23:57
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$P{3X^{2}+1leq y}=P{-sqrt {frac {y-1} 3} leq X leq sqrt {frac {y-1} 3}}=int_{-sqrt {frac {y-1} 3}}^{sqrt {frac {y-1} 3}} frac {1+x} 2, dx$ provided $1 <y <4$ and the probability is $1$ for $y >4$. I leave it to you to differentiate and get the density function.
$endgroup$
add a comment |
$begingroup$
Since $|X|le 1$ a.s., we have $Y=3X^2+1in [ 3cdot 0^2+1, 3cdot 1 ^2+1]=[1,4]$ a.s. . Now let $y$ be a value in $[1,4)$ and let $epsilon>0$ be so that $[y,y+epsilon]$ is included in $[1,4]$. Then:
$$
begin{aligned}
Bbb P(Yin[y,y+epsilon])
&=
Bbb P(yle Yle y+epsilon)
\
&=
Bbb P(yle 3X^2+1le y+epsilon)
\
&=
Bbb P(y-1le 3X^2le y-1+epsilon)
\
&=
Bbb Pleft(frac 13(y-1)le X^2le frac 13(y-1+epsilon)right)
\[2mm]
&=
Bbb Pleft(-sqrt{frac 13(y-1)}ge Xge -sqrt{frac 13(y-1+epsilon)}right)
\
&+
Bbb Pleft(+sqrt{frac 13(y-1)}le Xle +sqrt{frac 13(y-1+epsilon)}right)
\[2mm]
&=
int
_{-sqrt{(y-1+epsilon)/3}}
^{-sqrt{(y-1)/3}}
frac 12(x+1); dx
\
&+
int
^{sqrt{(y-1+epsilon)/3}}
_{sqrt{(y-1)/3}}
frac 12(x+1); dx
\[2mm]
&=
left[ frac 14(x+1)^2 right]
_{-sqrt{(y-1+epsilon)/3}}
^{-sqrt{(y-1)/3}}
+
left[ frac 14(x+1)^2 right]
^{sqrt{(y-1+epsilon)/3}}
_{sqrt{(y-1)/3}}
\[2mm]
\&text{and let us denote by $F(x)$ the function $(x+1)^2/4$,}
\&text{and by $G(x)$ the function $G(x)=F(x)-F(-x)=frac 14(x^2+2x+1)-frac 14(x^2-2x+1)=x$,}
\[2mm]
&=
F(+sqrt{(y-1+epsilon)/3})
-
F(-sqrt{(y-1+epsilon)/3})
\
&qquad
-F(+sqrt{(y-1)/3})
+
F(-sqrt{(y-1)/3})
\
&=
G(sqrt{(y-1+epsilon)/3}
-
G(sqrt{(y-1)/3}
\
&=
sqrt{(y-1+epsilon)/3}
-
sqrt{(y-1)/3}
.end{aligned}
$$
And now we can put the hands on the density (which exists, something based on the above computation shows it),
it is a function
$rho(y)$ with support in $[1,4]$, and for $y$ in this interval it is given by
$$
rho(y)=
lim_{epsilonsearrow 0}frac 1{epsilon}
Bbb P(Yin[y,y+epsilon])
=
fracpartial{partial epsilon}
Big(
sqrt{(y-1+epsilon)/3}
Big)
Big|_{epsilon=0}
=frac 1{2sqrt{3(y-1)}}
.
$$
I always check in such situations...
sage: var('y');
sage: integral( 1/2/sqrt((y-1)*3), y, 1, 4)
1
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096732%2fstuck-at-defining-the-borders-for-a-probability-density-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$P{3X^{2}+1leq y}=P{-sqrt {frac {y-1} 3} leq X leq sqrt {frac {y-1} 3}}=int_{-sqrt {frac {y-1} 3}}^{sqrt {frac {y-1} 3}} frac {1+x} 2, dx$ provided $1 <y <4$ and the probability is $1$ for $y >4$. I leave it to you to differentiate and get the density function.
$endgroup$
add a comment |
$begingroup$
$P{3X^{2}+1leq y}=P{-sqrt {frac {y-1} 3} leq X leq sqrt {frac {y-1} 3}}=int_{-sqrt {frac {y-1} 3}}^{sqrt {frac {y-1} 3}} frac {1+x} 2, dx$ provided $1 <y <4$ and the probability is $1$ for $y >4$. I leave it to you to differentiate and get the density function.
$endgroup$
add a comment |
$begingroup$
$P{3X^{2}+1leq y}=P{-sqrt {frac {y-1} 3} leq X leq sqrt {frac {y-1} 3}}=int_{-sqrt {frac {y-1} 3}}^{sqrt {frac {y-1} 3}} frac {1+x} 2, dx$ provided $1 <y <4$ and the probability is $1$ for $y >4$. I leave it to you to differentiate and get the density function.
$endgroup$
$P{3X^{2}+1leq y}=P{-sqrt {frac {y-1} 3} leq X leq sqrt {frac {y-1} 3}}=int_{-sqrt {frac {y-1} 3}}^{sqrt {frac {y-1} 3}} frac {1+x} 2, dx$ provided $1 <y <4$ and the probability is $1$ for $y >4$. I leave it to you to differentiate and get the density function.
answered Feb 1 at 23:52


Kavi Rama MurthyKavi Rama Murthy
74.2k53270
74.2k53270
add a comment |
add a comment |
$begingroup$
Since $|X|le 1$ a.s., we have $Y=3X^2+1in [ 3cdot 0^2+1, 3cdot 1 ^2+1]=[1,4]$ a.s. . Now let $y$ be a value in $[1,4)$ and let $epsilon>0$ be so that $[y,y+epsilon]$ is included in $[1,4]$. Then:
$$
begin{aligned}
Bbb P(Yin[y,y+epsilon])
&=
Bbb P(yle Yle y+epsilon)
\
&=
Bbb P(yle 3X^2+1le y+epsilon)
\
&=
Bbb P(y-1le 3X^2le y-1+epsilon)
\
&=
Bbb Pleft(frac 13(y-1)le X^2le frac 13(y-1+epsilon)right)
\[2mm]
&=
Bbb Pleft(-sqrt{frac 13(y-1)}ge Xge -sqrt{frac 13(y-1+epsilon)}right)
\
&+
Bbb Pleft(+sqrt{frac 13(y-1)}le Xle +sqrt{frac 13(y-1+epsilon)}right)
\[2mm]
&=
int
_{-sqrt{(y-1+epsilon)/3}}
^{-sqrt{(y-1)/3}}
frac 12(x+1); dx
\
&+
int
^{sqrt{(y-1+epsilon)/3}}
_{sqrt{(y-1)/3}}
frac 12(x+1); dx
\[2mm]
&=
left[ frac 14(x+1)^2 right]
_{-sqrt{(y-1+epsilon)/3}}
^{-sqrt{(y-1)/3}}
+
left[ frac 14(x+1)^2 right]
^{sqrt{(y-1+epsilon)/3}}
_{sqrt{(y-1)/3}}
\[2mm]
\&text{and let us denote by $F(x)$ the function $(x+1)^2/4$,}
\&text{and by $G(x)$ the function $G(x)=F(x)-F(-x)=frac 14(x^2+2x+1)-frac 14(x^2-2x+1)=x$,}
\[2mm]
&=
F(+sqrt{(y-1+epsilon)/3})
-
F(-sqrt{(y-1+epsilon)/3})
\
&qquad
-F(+sqrt{(y-1)/3})
+
F(-sqrt{(y-1)/3})
\
&=
G(sqrt{(y-1+epsilon)/3}
-
G(sqrt{(y-1)/3}
\
&=
sqrt{(y-1+epsilon)/3}
-
sqrt{(y-1)/3}
.end{aligned}
$$
And now we can put the hands on the density (which exists, something based on the above computation shows it),
it is a function
$rho(y)$ with support in $[1,4]$, and for $y$ in this interval it is given by
$$
rho(y)=
lim_{epsilonsearrow 0}frac 1{epsilon}
Bbb P(Yin[y,y+epsilon])
=
fracpartial{partial epsilon}
Big(
sqrt{(y-1+epsilon)/3}
Big)
Big|_{epsilon=0}
=frac 1{2sqrt{3(y-1)}}
.
$$
I always check in such situations...
sage: var('y');
sage: integral( 1/2/sqrt((y-1)*3), y, 1, 4)
1
$endgroup$
add a comment |
$begingroup$
Since $|X|le 1$ a.s., we have $Y=3X^2+1in [ 3cdot 0^2+1, 3cdot 1 ^2+1]=[1,4]$ a.s. . Now let $y$ be a value in $[1,4)$ and let $epsilon>0$ be so that $[y,y+epsilon]$ is included in $[1,4]$. Then:
$$
begin{aligned}
Bbb P(Yin[y,y+epsilon])
&=
Bbb P(yle Yle y+epsilon)
\
&=
Bbb P(yle 3X^2+1le y+epsilon)
\
&=
Bbb P(y-1le 3X^2le y-1+epsilon)
\
&=
Bbb Pleft(frac 13(y-1)le X^2le frac 13(y-1+epsilon)right)
\[2mm]
&=
Bbb Pleft(-sqrt{frac 13(y-1)}ge Xge -sqrt{frac 13(y-1+epsilon)}right)
\
&+
Bbb Pleft(+sqrt{frac 13(y-1)}le Xle +sqrt{frac 13(y-1+epsilon)}right)
\[2mm]
&=
int
_{-sqrt{(y-1+epsilon)/3}}
^{-sqrt{(y-1)/3}}
frac 12(x+1); dx
\
&+
int
^{sqrt{(y-1+epsilon)/3}}
_{sqrt{(y-1)/3}}
frac 12(x+1); dx
\[2mm]
&=
left[ frac 14(x+1)^2 right]
_{-sqrt{(y-1+epsilon)/3}}
^{-sqrt{(y-1)/3}}
+
left[ frac 14(x+1)^2 right]
^{sqrt{(y-1+epsilon)/3}}
_{sqrt{(y-1)/3}}
\[2mm]
\&text{and let us denote by $F(x)$ the function $(x+1)^2/4$,}
\&text{and by $G(x)$ the function $G(x)=F(x)-F(-x)=frac 14(x^2+2x+1)-frac 14(x^2-2x+1)=x$,}
\[2mm]
&=
F(+sqrt{(y-1+epsilon)/3})
-
F(-sqrt{(y-1+epsilon)/3})
\
&qquad
-F(+sqrt{(y-1)/3})
+
F(-sqrt{(y-1)/3})
\
&=
G(sqrt{(y-1+epsilon)/3}
-
G(sqrt{(y-1)/3}
\
&=
sqrt{(y-1+epsilon)/3}
-
sqrt{(y-1)/3}
.end{aligned}
$$
And now we can put the hands on the density (which exists, something based on the above computation shows it),
it is a function
$rho(y)$ with support in $[1,4]$, and for $y$ in this interval it is given by
$$
rho(y)=
lim_{epsilonsearrow 0}frac 1{epsilon}
Bbb P(Yin[y,y+epsilon])
=
fracpartial{partial epsilon}
Big(
sqrt{(y-1+epsilon)/3}
Big)
Big|_{epsilon=0}
=frac 1{2sqrt{3(y-1)}}
.
$$
I always check in such situations...
sage: var('y');
sage: integral( 1/2/sqrt((y-1)*3), y, 1, 4)
1
$endgroup$
add a comment |
$begingroup$
Since $|X|le 1$ a.s., we have $Y=3X^2+1in [ 3cdot 0^2+1, 3cdot 1 ^2+1]=[1,4]$ a.s. . Now let $y$ be a value in $[1,4)$ and let $epsilon>0$ be so that $[y,y+epsilon]$ is included in $[1,4]$. Then:
$$
begin{aligned}
Bbb P(Yin[y,y+epsilon])
&=
Bbb P(yle Yle y+epsilon)
\
&=
Bbb P(yle 3X^2+1le y+epsilon)
\
&=
Bbb P(y-1le 3X^2le y-1+epsilon)
\
&=
Bbb Pleft(frac 13(y-1)le X^2le frac 13(y-1+epsilon)right)
\[2mm]
&=
Bbb Pleft(-sqrt{frac 13(y-1)}ge Xge -sqrt{frac 13(y-1+epsilon)}right)
\
&+
Bbb Pleft(+sqrt{frac 13(y-1)}le Xle +sqrt{frac 13(y-1+epsilon)}right)
\[2mm]
&=
int
_{-sqrt{(y-1+epsilon)/3}}
^{-sqrt{(y-1)/3}}
frac 12(x+1); dx
\
&+
int
^{sqrt{(y-1+epsilon)/3}}
_{sqrt{(y-1)/3}}
frac 12(x+1); dx
\[2mm]
&=
left[ frac 14(x+1)^2 right]
_{-sqrt{(y-1+epsilon)/3}}
^{-sqrt{(y-1)/3}}
+
left[ frac 14(x+1)^2 right]
^{sqrt{(y-1+epsilon)/3}}
_{sqrt{(y-1)/3}}
\[2mm]
\&text{and let us denote by $F(x)$ the function $(x+1)^2/4$,}
\&text{and by $G(x)$ the function $G(x)=F(x)-F(-x)=frac 14(x^2+2x+1)-frac 14(x^2-2x+1)=x$,}
\[2mm]
&=
F(+sqrt{(y-1+epsilon)/3})
-
F(-sqrt{(y-1+epsilon)/3})
\
&qquad
-F(+sqrt{(y-1)/3})
+
F(-sqrt{(y-1)/3})
\
&=
G(sqrt{(y-1+epsilon)/3}
-
G(sqrt{(y-1)/3}
\
&=
sqrt{(y-1+epsilon)/3}
-
sqrt{(y-1)/3}
.end{aligned}
$$
And now we can put the hands on the density (which exists, something based on the above computation shows it),
it is a function
$rho(y)$ with support in $[1,4]$, and for $y$ in this interval it is given by
$$
rho(y)=
lim_{epsilonsearrow 0}frac 1{epsilon}
Bbb P(Yin[y,y+epsilon])
=
fracpartial{partial epsilon}
Big(
sqrt{(y-1+epsilon)/3}
Big)
Big|_{epsilon=0}
=frac 1{2sqrt{3(y-1)}}
.
$$
I always check in such situations...
sage: var('y');
sage: integral( 1/2/sqrt((y-1)*3), y, 1, 4)
1
$endgroup$
Since $|X|le 1$ a.s., we have $Y=3X^2+1in [ 3cdot 0^2+1, 3cdot 1 ^2+1]=[1,4]$ a.s. . Now let $y$ be a value in $[1,4)$ and let $epsilon>0$ be so that $[y,y+epsilon]$ is included in $[1,4]$. Then:
$$
begin{aligned}
Bbb P(Yin[y,y+epsilon])
&=
Bbb P(yle Yle y+epsilon)
\
&=
Bbb P(yle 3X^2+1le y+epsilon)
\
&=
Bbb P(y-1le 3X^2le y-1+epsilon)
\
&=
Bbb Pleft(frac 13(y-1)le X^2le frac 13(y-1+epsilon)right)
\[2mm]
&=
Bbb Pleft(-sqrt{frac 13(y-1)}ge Xge -sqrt{frac 13(y-1+epsilon)}right)
\
&+
Bbb Pleft(+sqrt{frac 13(y-1)}le Xle +sqrt{frac 13(y-1+epsilon)}right)
\[2mm]
&=
int
_{-sqrt{(y-1+epsilon)/3}}
^{-sqrt{(y-1)/3}}
frac 12(x+1); dx
\
&+
int
^{sqrt{(y-1+epsilon)/3}}
_{sqrt{(y-1)/3}}
frac 12(x+1); dx
\[2mm]
&=
left[ frac 14(x+1)^2 right]
_{-sqrt{(y-1+epsilon)/3}}
^{-sqrt{(y-1)/3}}
+
left[ frac 14(x+1)^2 right]
^{sqrt{(y-1+epsilon)/3}}
_{sqrt{(y-1)/3}}
\[2mm]
\&text{and let us denote by $F(x)$ the function $(x+1)^2/4$,}
\&text{and by $G(x)$ the function $G(x)=F(x)-F(-x)=frac 14(x^2+2x+1)-frac 14(x^2-2x+1)=x$,}
\[2mm]
&=
F(+sqrt{(y-1+epsilon)/3})
-
F(-sqrt{(y-1+epsilon)/3})
\
&qquad
-F(+sqrt{(y-1)/3})
+
F(-sqrt{(y-1)/3})
\
&=
G(sqrt{(y-1+epsilon)/3}
-
G(sqrt{(y-1)/3}
\
&=
sqrt{(y-1+epsilon)/3}
-
sqrt{(y-1)/3}
.end{aligned}
$$
And now we can put the hands on the density (which exists, something based on the above computation shows it),
it is a function
$rho(y)$ with support in $[1,4]$, and for $y$ in this interval it is given by
$$
rho(y)=
lim_{epsilonsearrow 0}frac 1{epsilon}
Bbb P(Yin[y,y+epsilon])
=
fracpartial{partial epsilon}
Big(
sqrt{(y-1+epsilon)/3}
Big)
Big|_{epsilon=0}
=frac 1{2sqrt{3(y-1)}}
.
$$
I always check in such situations...
sage: var('y');
sage: integral( 1/2/sqrt((y-1)*3), y, 1, 4)
1
answered Feb 4 at 12:12
dan_fuleadan_fulea
7,1781513
7,1781513
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096732%2fstuck-at-defining-the-borders-for-a-probability-density-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$Pr [Y=y] = Pr [3X^2 +1 =y]= Pr[X= pm frac{y-1}{3}] = Pr [X= frac{y-1}{3}] + Pr[X= - frac{y-1}{3}]$. Where $y in [1,4]$
$endgroup$
– mm8511
Feb 1 at 21:16
1
$begingroup$
@mm8511 All your probabilities are $0$.
$endgroup$
– Kavi Rama Murthy
Feb 1 at 23:54
$begingroup$
@KaviRamaMurthy Not really, but i did forget a square root
$endgroup$
– mm8511
Feb 1 at 23:57
1
$begingroup$
@mm8511 OP is talking about random variables with densities and you are thinking of them as discrete vaiables.
$endgroup$
– Kavi Rama Murthy
Feb 1 at 23:57