Stuck at defining the borders for a probability density function












0












$begingroup$


So I'm given a continuous random variable $X$ with a probability density function: $p(x)= frac{x+1}{2}$ when $-1 < x< 1$ and the random variable $Y=3X^{2}+1$. I need to find the probability density function for $Y$ however I'm stuck. In order in the statement $y1<y<y2$ to find $y1$ and $y2$ I need to solve the equations: $y1=3*(-1)^2+1$ and $y2 = 3*(1)^{2}+1$, both are being equaled to 4 so I only have one border.



Any ideas?










share|cite|improve this question









$endgroup$












  • $begingroup$
    $Pr [Y=y] = Pr [3X^2 +1 =y]= Pr[X= pm frac{y-1}{3}] = Pr [X= frac{y-1}{3}] + Pr[X= - frac{y-1}{3}]$. Where $y in [1,4]$
    $endgroup$
    – mm8511
    Feb 1 at 21:16








  • 1




    $begingroup$
    @mm8511 All your probabilities are $0$.
    $endgroup$
    – Kavi Rama Murthy
    Feb 1 at 23:54










  • $begingroup$
    @KaviRamaMurthy Not really, but i did forget a square root
    $endgroup$
    – mm8511
    Feb 1 at 23:57






  • 1




    $begingroup$
    @mm8511 OP is talking about random variables with densities and you are thinking of them as discrete vaiables.
    $endgroup$
    – Kavi Rama Murthy
    Feb 1 at 23:57
















0












$begingroup$


So I'm given a continuous random variable $X$ with a probability density function: $p(x)= frac{x+1}{2}$ when $-1 < x< 1$ and the random variable $Y=3X^{2}+1$. I need to find the probability density function for $Y$ however I'm stuck. In order in the statement $y1<y<y2$ to find $y1$ and $y2$ I need to solve the equations: $y1=3*(-1)^2+1$ and $y2 = 3*(1)^{2}+1$, both are being equaled to 4 so I only have one border.



Any ideas?










share|cite|improve this question









$endgroup$












  • $begingroup$
    $Pr [Y=y] = Pr [3X^2 +1 =y]= Pr[X= pm frac{y-1}{3}] = Pr [X= frac{y-1}{3}] + Pr[X= - frac{y-1}{3}]$. Where $y in [1,4]$
    $endgroup$
    – mm8511
    Feb 1 at 21:16








  • 1




    $begingroup$
    @mm8511 All your probabilities are $0$.
    $endgroup$
    – Kavi Rama Murthy
    Feb 1 at 23:54










  • $begingroup$
    @KaviRamaMurthy Not really, but i did forget a square root
    $endgroup$
    – mm8511
    Feb 1 at 23:57






  • 1




    $begingroup$
    @mm8511 OP is talking about random variables with densities and you are thinking of them as discrete vaiables.
    $endgroup$
    – Kavi Rama Murthy
    Feb 1 at 23:57














0












0








0





$begingroup$


So I'm given a continuous random variable $X$ with a probability density function: $p(x)= frac{x+1}{2}$ when $-1 < x< 1$ and the random variable $Y=3X^{2}+1$. I need to find the probability density function for $Y$ however I'm stuck. In order in the statement $y1<y<y2$ to find $y1$ and $y2$ I need to solve the equations: $y1=3*(-1)^2+1$ and $y2 = 3*(1)^{2}+1$, both are being equaled to 4 so I only have one border.



Any ideas?










share|cite|improve this question









$endgroup$




So I'm given a continuous random variable $X$ with a probability density function: $p(x)= frac{x+1}{2}$ when $-1 < x< 1$ and the random variable $Y=3X^{2}+1$. I need to find the probability density function for $Y$ however I'm stuck. In order in the statement $y1<y<y2$ to find $y1$ and $y2$ I need to solve the equations: $y1=3*(-1)^2+1$ and $y2 = 3*(1)^{2}+1$, both are being equaled to 4 so I only have one border.



Any ideas?







probability






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Feb 1 at 21:06









David MasonDavid Mason

587




587












  • $begingroup$
    $Pr [Y=y] = Pr [3X^2 +1 =y]= Pr[X= pm frac{y-1}{3}] = Pr [X= frac{y-1}{3}] + Pr[X= - frac{y-1}{3}]$. Where $y in [1,4]$
    $endgroup$
    – mm8511
    Feb 1 at 21:16








  • 1




    $begingroup$
    @mm8511 All your probabilities are $0$.
    $endgroup$
    – Kavi Rama Murthy
    Feb 1 at 23:54










  • $begingroup$
    @KaviRamaMurthy Not really, but i did forget a square root
    $endgroup$
    – mm8511
    Feb 1 at 23:57






  • 1




    $begingroup$
    @mm8511 OP is talking about random variables with densities and you are thinking of them as discrete vaiables.
    $endgroup$
    – Kavi Rama Murthy
    Feb 1 at 23:57


















  • $begingroup$
    $Pr [Y=y] = Pr [3X^2 +1 =y]= Pr[X= pm frac{y-1}{3}] = Pr [X= frac{y-1}{3}] + Pr[X= - frac{y-1}{3}]$. Where $y in [1,4]$
    $endgroup$
    – mm8511
    Feb 1 at 21:16








  • 1




    $begingroup$
    @mm8511 All your probabilities are $0$.
    $endgroup$
    – Kavi Rama Murthy
    Feb 1 at 23:54










  • $begingroup$
    @KaviRamaMurthy Not really, but i did forget a square root
    $endgroup$
    – mm8511
    Feb 1 at 23:57






  • 1




    $begingroup$
    @mm8511 OP is talking about random variables with densities and you are thinking of them as discrete vaiables.
    $endgroup$
    – Kavi Rama Murthy
    Feb 1 at 23:57
















$begingroup$
$Pr [Y=y] = Pr [3X^2 +1 =y]= Pr[X= pm frac{y-1}{3}] = Pr [X= frac{y-1}{3}] + Pr[X= - frac{y-1}{3}]$. Where $y in [1,4]$
$endgroup$
– mm8511
Feb 1 at 21:16






$begingroup$
$Pr [Y=y] = Pr [3X^2 +1 =y]= Pr[X= pm frac{y-1}{3}] = Pr [X= frac{y-1}{3}] + Pr[X= - frac{y-1}{3}]$. Where $y in [1,4]$
$endgroup$
– mm8511
Feb 1 at 21:16






1




1




$begingroup$
@mm8511 All your probabilities are $0$.
$endgroup$
– Kavi Rama Murthy
Feb 1 at 23:54




$begingroup$
@mm8511 All your probabilities are $0$.
$endgroup$
– Kavi Rama Murthy
Feb 1 at 23:54












$begingroup$
@KaviRamaMurthy Not really, but i did forget a square root
$endgroup$
– mm8511
Feb 1 at 23:57




$begingroup$
@KaviRamaMurthy Not really, but i did forget a square root
$endgroup$
– mm8511
Feb 1 at 23:57




1




1




$begingroup$
@mm8511 OP is talking about random variables with densities and you are thinking of them as discrete vaiables.
$endgroup$
– Kavi Rama Murthy
Feb 1 at 23:57




$begingroup$
@mm8511 OP is talking about random variables with densities and you are thinking of them as discrete vaiables.
$endgroup$
– Kavi Rama Murthy
Feb 1 at 23:57










2 Answers
2






active

oldest

votes


















0












$begingroup$

$P{3X^{2}+1leq y}=P{-sqrt {frac {y-1} 3} leq X leq sqrt {frac {y-1} 3}}=int_{-sqrt {frac {y-1} 3}}^{sqrt {frac {y-1} 3}} frac {1+x} 2, dx$ provided $1 <y <4$ and the probability is $1$ for $y >4$. I leave it to you to differentiate and get the density function.






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Since $|X|le 1$ a.s., we have $Y=3X^2+1in [ 3cdot 0^2+1, 3cdot 1 ^2+1]=[1,4]$ a.s. . Now let $y$ be a value in $[1,4)$ and let $epsilon>0$ be so that $[y,y+epsilon]$ is included in $[1,4]$. Then:
    $$
    begin{aligned}
    Bbb P(Yin[y,y+epsilon])
    &=
    Bbb P(yle Yle y+epsilon)
    \
    &=
    Bbb P(yle 3X^2+1le y+epsilon)
    \
    &=
    Bbb P(y-1le 3X^2le y-1+epsilon)
    \
    &=
    Bbb Pleft(frac 13(y-1)le X^2le frac 13(y-1+epsilon)right)
    \[2mm]
    &=
    Bbb Pleft(-sqrt{frac 13(y-1)}ge Xge -sqrt{frac 13(y-1+epsilon)}right)
    \
    &+
    Bbb Pleft(+sqrt{frac 13(y-1)}le Xle +sqrt{frac 13(y-1+epsilon)}right)
    \[2mm]
    &=
    int
    _{-sqrt{(y-1+epsilon)/3}}
    ^{-sqrt{(y-1)/3}}
    frac 12(x+1); dx
    \
    &+
    int
    ^{sqrt{(y-1+epsilon)/3}}
    _{sqrt{(y-1)/3}}
    frac 12(x+1); dx
    \[2mm]
    &=
    left[ frac 14(x+1)^2 right]
    _{-sqrt{(y-1+epsilon)/3}}
    ^{-sqrt{(y-1)/3}}
    +
    left[ frac 14(x+1)^2 right]
    ^{sqrt{(y-1+epsilon)/3}}
    _{sqrt{(y-1)/3}}
    \[2mm]
    \&text{and let us denote by $F(x)$ the function $(x+1)^2/4$,}
    \&text{and by $G(x)$ the function $G(x)=F(x)-F(-x)=frac 14(x^2+2x+1)-frac 14(x^2-2x+1)=x$,}
    \[2mm]
    &=
    F(+sqrt{(y-1+epsilon)/3})
    -
    F(-sqrt{(y-1+epsilon)/3})
    \
    &qquad
    -F(+sqrt{(y-1)/3})
    +
    F(-sqrt{(y-1)/3})
    \
    &=
    G(sqrt{(y-1+epsilon)/3}
    -
    G(sqrt{(y-1)/3}
    \
    &=
    sqrt{(y-1+epsilon)/3}
    -
    sqrt{(y-1)/3}
    .end{aligned}
    $$

    And now we can put the hands on the density (which exists, something based on the above computation shows it),
    it is a function
    $rho(y)$ with support in $[1,4]$, and for $y$ in this interval it is given by
    $$
    rho(y)=
    lim_{epsilonsearrow 0}frac 1{epsilon}
    Bbb P(Yin[y,y+epsilon])
    =
    fracpartial{partial epsilon}
    Big(
    sqrt{(y-1+epsilon)/3}
    Big)
    Big|_{epsilon=0}
    =frac 1{2sqrt{3(y-1)}}
    .
    $$

    I always check in such situations...



    sage: var('y');
    sage: integral( 1/2/sqrt((y-1)*3), y, 1, 4)
    1





    share|cite|improve this answer









    $endgroup$














      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096732%2fstuck-at-defining-the-borders-for-a-probability-density-function%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$

      $P{3X^{2}+1leq y}=P{-sqrt {frac {y-1} 3} leq X leq sqrt {frac {y-1} 3}}=int_{-sqrt {frac {y-1} 3}}^{sqrt {frac {y-1} 3}} frac {1+x} 2, dx$ provided $1 <y <4$ and the probability is $1$ for $y >4$. I leave it to you to differentiate and get the density function.






      share|cite|improve this answer









      $endgroup$


















        0












        $begingroup$

        $P{3X^{2}+1leq y}=P{-sqrt {frac {y-1} 3} leq X leq sqrt {frac {y-1} 3}}=int_{-sqrt {frac {y-1} 3}}^{sqrt {frac {y-1} 3}} frac {1+x} 2, dx$ provided $1 <y <4$ and the probability is $1$ for $y >4$. I leave it to you to differentiate and get the density function.






        share|cite|improve this answer









        $endgroup$
















          0












          0








          0





          $begingroup$

          $P{3X^{2}+1leq y}=P{-sqrt {frac {y-1} 3} leq X leq sqrt {frac {y-1} 3}}=int_{-sqrt {frac {y-1} 3}}^{sqrt {frac {y-1} 3}} frac {1+x} 2, dx$ provided $1 <y <4$ and the probability is $1$ for $y >4$. I leave it to you to differentiate and get the density function.






          share|cite|improve this answer









          $endgroup$



          $P{3X^{2}+1leq y}=P{-sqrt {frac {y-1} 3} leq X leq sqrt {frac {y-1} 3}}=int_{-sqrt {frac {y-1} 3}}^{sqrt {frac {y-1} 3}} frac {1+x} 2, dx$ provided $1 <y <4$ and the probability is $1$ for $y >4$. I leave it to you to differentiate and get the density function.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Feb 1 at 23:52









          Kavi Rama MurthyKavi Rama Murthy

          74.2k53270




          74.2k53270























              0












              $begingroup$

              Since $|X|le 1$ a.s., we have $Y=3X^2+1in [ 3cdot 0^2+1, 3cdot 1 ^2+1]=[1,4]$ a.s. . Now let $y$ be a value in $[1,4)$ and let $epsilon>0$ be so that $[y,y+epsilon]$ is included in $[1,4]$. Then:
              $$
              begin{aligned}
              Bbb P(Yin[y,y+epsilon])
              &=
              Bbb P(yle Yle y+epsilon)
              \
              &=
              Bbb P(yle 3X^2+1le y+epsilon)
              \
              &=
              Bbb P(y-1le 3X^2le y-1+epsilon)
              \
              &=
              Bbb Pleft(frac 13(y-1)le X^2le frac 13(y-1+epsilon)right)
              \[2mm]
              &=
              Bbb Pleft(-sqrt{frac 13(y-1)}ge Xge -sqrt{frac 13(y-1+epsilon)}right)
              \
              &+
              Bbb Pleft(+sqrt{frac 13(y-1)}le Xle +sqrt{frac 13(y-1+epsilon)}right)
              \[2mm]
              &=
              int
              _{-sqrt{(y-1+epsilon)/3}}
              ^{-sqrt{(y-1)/3}}
              frac 12(x+1); dx
              \
              &+
              int
              ^{sqrt{(y-1+epsilon)/3}}
              _{sqrt{(y-1)/3}}
              frac 12(x+1); dx
              \[2mm]
              &=
              left[ frac 14(x+1)^2 right]
              _{-sqrt{(y-1+epsilon)/3}}
              ^{-sqrt{(y-1)/3}}
              +
              left[ frac 14(x+1)^2 right]
              ^{sqrt{(y-1+epsilon)/3}}
              _{sqrt{(y-1)/3}}
              \[2mm]
              \&text{and let us denote by $F(x)$ the function $(x+1)^2/4$,}
              \&text{and by $G(x)$ the function $G(x)=F(x)-F(-x)=frac 14(x^2+2x+1)-frac 14(x^2-2x+1)=x$,}
              \[2mm]
              &=
              F(+sqrt{(y-1+epsilon)/3})
              -
              F(-sqrt{(y-1+epsilon)/3})
              \
              &qquad
              -F(+sqrt{(y-1)/3})
              +
              F(-sqrt{(y-1)/3})
              \
              &=
              G(sqrt{(y-1+epsilon)/3}
              -
              G(sqrt{(y-1)/3}
              \
              &=
              sqrt{(y-1+epsilon)/3}
              -
              sqrt{(y-1)/3}
              .end{aligned}
              $$

              And now we can put the hands on the density (which exists, something based on the above computation shows it),
              it is a function
              $rho(y)$ with support in $[1,4]$, and for $y$ in this interval it is given by
              $$
              rho(y)=
              lim_{epsilonsearrow 0}frac 1{epsilon}
              Bbb P(Yin[y,y+epsilon])
              =
              fracpartial{partial epsilon}
              Big(
              sqrt{(y-1+epsilon)/3}
              Big)
              Big|_{epsilon=0}
              =frac 1{2sqrt{3(y-1)}}
              .
              $$

              I always check in such situations...



              sage: var('y');
              sage: integral( 1/2/sqrt((y-1)*3), y, 1, 4)
              1





              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                Since $|X|le 1$ a.s., we have $Y=3X^2+1in [ 3cdot 0^2+1, 3cdot 1 ^2+1]=[1,4]$ a.s. . Now let $y$ be a value in $[1,4)$ and let $epsilon>0$ be so that $[y,y+epsilon]$ is included in $[1,4]$. Then:
                $$
                begin{aligned}
                Bbb P(Yin[y,y+epsilon])
                &=
                Bbb P(yle Yle y+epsilon)
                \
                &=
                Bbb P(yle 3X^2+1le y+epsilon)
                \
                &=
                Bbb P(y-1le 3X^2le y-1+epsilon)
                \
                &=
                Bbb Pleft(frac 13(y-1)le X^2le frac 13(y-1+epsilon)right)
                \[2mm]
                &=
                Bbb Pleft(-sqrt{frac 13(y-1)}ge Xge -sqrt{frac 13(y-1+epsilon)}right)
                \
                &+
                Bbb Pleft(+sqrt{frac 13(y-1)}le Xle +sqrt{frac 13(y-1+epsilon)}right)
                \[2mm]
                &=
                int
                _{-sqrt{(y-1+epsilon)/3}}
                ^{-sqrt{(y-1)/3}}
                frac 12(x+1); dx
                \
                &+
                int
                ^{sqrt{(y-1+epsilon)/3}}
                _{sqrt{(y-1)/3}}
                frac 12(x+1); dx
                \[2mm]
                &=
                left[ frac 14(x+1)^2 right]
                _{-sqrt{(y-1+epsilon)/3}}
                ^{-sqrt{(y-1)/3}}
                +
                left[ frac 14(x+1)^2 right]
                ^{sqrt{(y-1+epsilon)/3}}
                _{sqrt{(y-1)/3}}
                \[2mm]
                \&text{and let us denote by $F(x)$ the function $(x+1)^2/4$,}
                \&text{and by $G(x)$ the function $G(x)=F(x)-F(-x)=frac 14(x^2+2x+1)-frac 14(x^2-2x+1)=x$,}
                \[2mm]
                &=
                F(+sqrt{(y-1+epsilon)/3})
                -
                F(-sqrt{(y-1+epsilon)/3})
                \
                &qquad
                -F(+sqrt{(y-1)/3})
                +
                F(-sqrt{(y-1)/3})
                \
                &=
                G(sqrt{(y-1+epsilon)/3}
                -
                G(sqrt{(y-1)/3}
                \
                &=
                sqrt{(y-1+epsilon)/3}
                -
                sqrt{(y-1)/3}
                .end{aligned}
                $$

                And now we can put the hands on the density (which exists, something based on the above computation shows it),
                it is a function
                $rho(y)$ with support in $[1,4]$, and for $y$ in this interval it is given by
                $$
                rho(y)=
                lim_{epsilonsearrow 0}frac 1{epsilon}
                Bbb P(Yin[y,y+epsilon])
                =
                fracpartial{partial epsilon}
                Big(
                sqrt{(y-1+epsilon)/3}
                Big)
                Big|_{epsilon=0}
                =frac 1{2sqrt{3(y-1)}}
                .
                $$

                I always check in such situations...



                sage: var('y');
                sage: integral( 1/2/sqrt((y-1)*3), y, 1, 4)
                1





                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Since $|X|le 1$ a.s., we have $Y=3X^2+1in [ 3cdot 0^2+1, 3cdot 1 ^2+1]=[1,4]$ a.s. . Now let $y$ be a value in $[1,4)$ and let $epsilon>0$ be so that $[y,y+epsilon]$ is included in $[1,4]$. Then:
                  $$
                  begin{aligned}
                  Bbb P(Yin[y,y+epsilon])
                  &=
                  Bbb P(yle Yle y+epsilon)
                  \
                  &=
                  Bbb P(yle 3X^2+1le y+epsilon)
                  \
                  &=
                  Bbb P(y-1le 3X^2le y-1+epsilon)
                  \
                  &=
                  Bbb Pleft(frac 13(y-1)le X^2le frac 13(y-1+epsilon)right)
                  \[2mm]
                  &=
                  Bbb Pleft(-sqrt{frac 13(y-1)}ge Xge -sqrt{frac 13(y-1+epsilon)}right)
                  \
                  &+
                  Bbb Pleft(+sqrt{frac 13(y-1)}le Xle +sqrt{frac 13(y-1+epsilon)}right)
                  \[2mm]
                  &=
                  int
                  _{-sqrt{(y-1+epsilon)/3}}
                  ^{-sqrt{(y-1)/3}}
                  frac 12(x+1); dx
                  \
                  &+
                  int
                  ^{sqrt{(y-1+epsilon)/3}}
                  _{sqrt{(y-1)/3}}
                  frac 12(x+1); dx
                  \[2mm]
                  &=
                  left[ frac 14(x+1)^2 right]
                  _{-sqrt{(y-1+epsilon)/3}}
                  ^{-sqrt{(y-1)/3}}
                  +
                  left[ frac 14(x+1)^2 right]
                  ^{sqrt{(y-1+epsilon)/3}}
                  _{sqrt{(y-1)/3}}
                  \[2mm]
                  \&text{and let us denote by $F(x)$ the function $(x+1)^2/4$,}
                  \&text{and by $G(x)$ the function $G(x)=F(x)-F(-x)=frac 14(x^2+2x+1)-frac 14(x^2-2x+1)=x$,}
                  \[2mm]
                  &=
                  F(+sqrt{(y-1+epsilon)/3})
                  -
                  F(-sqrt{(y-1+epsilon)/3})
                  \
                  &qquad
                  -F(+sqrt{(y-1)/3})
                  +
                  F(-sqrt{(y-1)/3})
                  \
                  &=
                  G(sqrt{(y-1+epsilon)/3}
                  -
                  G(sqrt{(y-1)/3}
                  \
                  &=
                  sqrt{(y-1+epsilon)/3}
                  -
                  sqrt{(y-1)/3}
                  .end{aligned}
                  $$

                  And now we can put the hands on the density (which exists, something based on the above computation shows it),
                  it is a function
                  $rho(y)$ with support in $[1,4]$, and for $y$ in this interval it is given by
                  $$
                  rho(y)=
                  lim_{epsilonsearrow 0}frac 1{epsilon}
                  Bbb P(Yin[y,y+epsilon])
                  =
                  fracpartial{partial epsilon}
                  Big(
                  sqrt{(y-1+epsilon)/3}
                  Big)
                  Big|_{epsilon=0}
                  =frac 1{2sqrt{3(y-1)}}
                  .
                  $$

                  I always check in such situations...



                  sage: var('y');
                  sage: integral( 1/2/sqrt((y-1)*3), y, 1, 4)
                  1





                  share|cite|improve this answer









                  $endgroup$



                  Since $|X|le 1$ a.s., we have $Y=3X^2+1in [ 3cdot 0^2+1, 3cdot 1 ^2+1]=[1,4]$ a.s. . Now let $y$ be a value in $[1,4)$ and let $epsilon>0$ be so that $[y,y+epsilon]$ is included in $[1,4]$. Then:
                  $$
                  begin{aligned}
                  Bbb P(Yin[y,y+epsilon])
                  &=
                  Bbb P(yle Yle y+epsilon)
                  \
                  &=
                  Bbb P(yle 3X^2+1le y+epsilon)
                  \
                  &=
                  Bbb P(y-1le 3X^2le y-1+epsilon)
                  \
                  &=
                  Bbb Pleft(frac 13(y-1)le X^2le frac 13(y-1+epsilon)right)
                  \[2mm]
                  &=
                  Bbb Pleft(-sqrt{frac 13(y-1)}ge Xge -sqrt{frac 13(y-1+epsilon)}right)
                  \
                  &+
                  Bbb Pleft(+sqrt{frac 13(y-1)}le Xle +sqrt{frac 13(y-1+epsilon)}right)
                  \[2mm]
                  &=
                  int
                  _{-sqrt{(y-1+epsilon)/3}}
                  ^{-sqrt{(y-1)/3}}
                  frac 12(x+1); dx
                  \
                  &+
                  int
                  ^{sqrt{(y-1+epsilon)/3}}
                  _{sqrt{(y-1)/3}}
                  frac 12(x+1); dx
                  \[2mm]
                  &=
                  left[ frac 14(x+1)^2 right]
                  _{-sqrt{(y-1+epsilon)/3}}
                  ^{-sqrt{(y-1)/3}}
                  +
                  left[ frac 14(x+1)^2 right]
                  ^{sqrt{(y-1+epsilon)/3}}
                  _{sqrt{(y-1)/3}}
                  \[2mm]
                  \&text{and let us denote by $F(x)$ the function $(x+1)^2/4$,}
                  \&text{and by $G(x)$ the function $G(x)=F(x)-F(-x)=frac 14(x^2+2x+1)-frac 14(x^2-2x+1)=x$,}
                  \[2mm]
                  &=
                  F(+sqrt{(y-1+epsilon)/3})
                  -
                  F(-sqrt{(y-1+epsilon)/3})
                  \
                  &qquad
                  -F(+sqrt{(y-1)/3})
                  +
                  F(-sqrt{(y-1)/3})
                  \
                  &=
                  G(sqrt{(y-1+epsilon)/3}
                  -
                  G(sqrt{(y-1)/3}
                  \
                  &=
                  sqrt{(y-1+epsilon)/3}
                  -
                  sqrt{(y-1)/3}
                  .end{aligned}
                  $$

                  And now we can put the hands on the density (which exists, something based on the above computation shows it),
                  it is a function
                  $rho(y)$ with support in $[1,4]$, and for $y$ in this interval it is given by
                  $$
                  rho(y)=
                  lim_{epsilonsearrow 0}frac 1{epsilon}
                  Bbb P(Yin[y,y+epsilon])
                  =
                  fracpartial{partial epsilon}
                  Big(
                  sqrt{(y-1+epsilon)/3}
                  Big)
                  Big|_{epsilon=0}
                  =frac 1{2sqrt{3(y-1)}}
                  .
                  $$

                  I always check in such situations...



                  sage: var('y');
                  sage: integral( 1/2/sqrt((y-1)*3), y, 1, 4)
                  1






                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Feb 4 at 12:12









                  dan_fuleadan_fulea

                  7,1781513




                  7,1781513






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096732%2fstuck-at-defining-the-borders-for-a-probability-density-function%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      How to fix TextFormField cause rebuild widget in Flutter

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith