Two circles with a common tangent












1












$begingroup$


Find the angle $angle BAC$ in the following picture .



enter image description here



My attempt : I tried to apply the relationships in the both circles between different angles and arcs in many ways but it didn't work . Also joining the point $A$ , $E$ and the line $d$ didn't help (Note that if the intersection point of the $AE$ and the line $d$ is $D$ then $BD = DC$)










share|cite|improve this question











$endgroup$












  • $begingroup$
    Why do you think $BD=DC$? Which intersection point $D$ do you have in mind?
    $endgroup$
    – user376343
    Feb 1 at 22:06










  • $begingroup$
    @user376343 See this : math.stackexchange.com/questions/433236/…
    $endgroup$
    – S.H.W
    Feb 1 at 22:07










  • $begingroup$
    The point where $AE$ cuts $d$? Please write it in your question.
    $endgroup$
    – user376343
    Feb 1 at 22:09






  • 1




    $begingroup$
    @user376343 Thanks , I edited it .
    $endgroup$
    – S.H.W
    Feb 1 at 22:11
















1












$begingroup$


Find the angle $angle BAC$ in the following picture .



enter image description here



My attempt : I tried to apply the relationships in the both circles between different angles and arcs in many ways but it didn't work . Also joining the point $A$ , $E$ and the line $d$ didn't help (Note that if the intersection point of the $AE$ and the line $d$ is $D$ then $BD = DC$)










share|cite|improve this question











$endgroup$












  • $begingroup$
    Why do you think $BD=DC$? Which intersection point $D$ do you have in mind?
    $endgroup$
    – user376343
    Feb 1 at 22:06










  • $begingroup$
    @user376343 See this : math.stackexchange.com/questions/433236/…
    $endgroup$
    – S.H.W
    Feb 1 at 22:07










  • $begingroup$
    The point where $AE$ cuts $d$? Please write it in your question.
    $endgroup$
    – user376343
    Feb 1 at 22:09






  • 1




    $begingroup$
    @user376343 Thanks , I edited it .
    $endgroup$
    – S.H.W
    Feb 1 at 22:11














1












1








1


2



$begingroup$


Find the angle $angle BAC$ in the following picture .



enter image description here



My attempt : I tried to apply the relationships in the both circles between different angles and arcs in many ways but it didn't work . Also joining the point $A$ , $E$ and the line $d$ didn't help (Note that if the intersection point of the $AE$ and the line $d$ is $D$ then $BD = DC$)










share|cite|improve this question











$endgroup$




Find the angle $angle BAC$ in the following picture .



enter image description here



My attempt : I tried to apply the relationships in the both circles between different angles and arcs in many ways but it didn't work . Also joining the point $A$ , $E$ and the line $d$ didn't help (Note that if the intersection point of the $AE$ and the line $d$ is $D$ then $BD = DC$)







geometry circles angle tangent-line






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 1 at 22:11







S.H.W

















asked Feb 1 at 21:59









S.H.WS.H.W

98511023




98511023












  • $begingroup$
    Why do you think $BD=DC$? Which intersection point $D$ do you have in mind?
    $endgroup$
    – user376343
    Feb 1 at 22:06










  • $begingroup$
    @user376343 See this : math.stackexchange.com/questions/433236/…
    $endgroup$
    – S.H.W
    Feb 1 at 22:07










  • $begingroup$
    The point where $AE$ cuts $d$? Please write it in your question.
    $endgroup$
    – user376343
    Feb 1 at 22:09






  • 1




    $begingroup$
    @user376343 Thanks , I edited it .
    $endgroup$
    – S.H.W
    Feb 1 at 22:11


















  • $begingroup$
    Why do you think $BD=DC$? Which intersection point $D$ do you have in mind?
    $endgroup$
    – user376343
    Feb 1 at 22:06










  • $begingroup$
    @user376343 See this : math.stackexchange.com/questions/433236/…
    $endgroup$
    – S.H.W
    Feb 1 at 22:07










  • $begingroup$
    The point where $AE$ cuts $d$? Please write it in your question.
    $endgroup$
    – user376343
    Feb 1 at 22:09






  • 1




    $begingroup$
    @user376343 Thanks , I edited it .
    $endgroup$
    – S.H.W
    Feb 1 at 22:11
















$begingroup$
Why do you think $BD=DC$? Which intersection point $D$ do you have in mind?
$endgroup$
– user376343
Feb 1 at 22:06




$begingroup$
Why do you think $BD=DC$? Which intersection point $D$ do you have in mind?
$endgroup$
– user376343
Feb 1 at 22:06












$begingroup$
@user376343 See this : math.stackexchange.com/questions/433236/…
$endgroup$
– S.H.W
Feb 1 at 22:07




$begingroup$
@user376343 See this : math.stackexchange.com/questions/433236/…
$endgroup$
– S.H.W
Feb 1 at 22:07












$begingroup$
The point where $AE$ cuts $d$? Please write it in your question.
$endgroup$
– user376343
Feb 1 at 22:09




$begingroup$
The point where $AE$ cuts $d$? Please write it in your question.
$endgroup$
– user376343
Feb 1 at 22:09




1




1




$begingroup$
@user376343 Thanks , I edited it .
$endgroup$
– S.H.W
Feb 1 at 22:11




$begingroup$
@user376343 Thanks , I edited it .
$endgroup$
– S.H.W
Feb 1 at 22:11










1 Answer
1






active

oldest

votes


















1












$begingroup$

Note that $angle BAE = angle EBC$ because they both correspond to the circular arc $overset{frown}{BE}$



Similarly, $angle CAE = overset{frown}{CE} = angle ECB$





Now, the total internal angle of $triangle ABC$ consists ofbegin{align}
180^{circ} &= color{magenta}{angle BAC} + 30^{circ} + angle EBC + angle ECB + 40^{circ} \
&= color{magenta}{angle BAC} + 30^{circ} + color{magenta}{big(}angle BAE + angle CAEcolor{magenta}{big)} + 40^{circ} \
&= color{magenta}{2angle BAC} + 30^{circ} + 40^{circ}
end{align}

Thus the desired $displaystyleangle BAC = frac{180^{circ} - 30^{circ} - 40^{circ}}2 = 55^{circ}$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Brilliant! Thanks a lot.
    $endgroup$
    – S.H.W
    Feb 2 at 3:50












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096775%2ftwo-circles-with-a-common-tangent%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Note that $angle BAE = angle EBC$ because they both correspond to the circular arc $overset{frown}{BE}$



Similarly, $angle CAE = overset{frown}{CE} = angle ECB$





Now, the total internal angle of $triangle ABC$ consists ofbegin{align}
180^{circ} &= color{magenta}{angle BAC} + 30^{circ} + angle EBC + angle ECB + 40^{circ} \
&= color{magenta}{angle BAC} + 30^{circ} + color{magenta}{big(}angle BAE + angle CAEcolor{magenta}{big)} + 40^{circ} \
&= color{magenta}{2angle BAC} + 30^{circ} + 40^{circ}
end{align}

Thus the desired $displaystyleangle BAC = frac{180^{circ} - 30^{circ} - 40^{circ}}2 = 55^{circ}$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Brilliant! Thanks a lot.
    $endgroup$
    – S.H.W
    Feb 2 at 3:50
















1












$begingroup$

Note that $angle BAE = angle EBC$ because they both correspond to the circular arc $overset{frown}{BE}$



Similarly, $angle CAE = overset{frown}{CE} = angle ECB$





Now, the total internal angle of $triangle ABC$ consists ofbegin{align}
180^{circ} &= color{magenta}{angle BAC} + 30^{circ} + angle EBC + angle ECB + 40^{circ} \
&= color{magenta}{angle BAC} + 30^{circ} + color{magenta}{big(}angle BAE + angle CAEcolor{magenta}{big)} + 40^{circ} \
&= color{magenta}{2angle BAC} + 30^{circ} + 40^{circ}
end{align}

Thus the desired $displaystyleangle BAC = frac{180^{circ} - 30^{circ} - 40^{circ}}2 = 55^{circ}$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Brilliant! Thanks a lot.
    $endgroup$
    – S.H.W
    Feb 2 at 3:50














1












1








1





$begingroup$

Note that $angle BAE = angle EBC$ because they both correspond to the circular arc $overset{frown}{BE}$



Similarly, $angle CAE = overset{frown}{CE} = angle ECB$





Now, the total internal angle of $triangle ABC$ consists ofbegin{align}
180^{circ} &= color{magenta}{angle BAC} + 30^{circ} + angle EBC + angle ECB + 40^{circ} \
&= color{magenta}{angle BAC} + 30^{circ} + color{magenta}{big(}angle BAE + angle CAEcolor{magenta}{big)} + 40^{circ} \
&= color{magenta}{2angle BAC} + 30^{circ} + 40^{circ}
end{align}

Thus the desired $displaystyleangle BAC = frac{180^{circ} - 30^{circ} - 40^{circ}}2 = 55^{circ}$






share|cite|improve this answer











$endgroup$



Note that $angle BAE = angle EBC$ because they both correspond to the circular arc $overset{frown}{BE}$



Similarly, $angle CAE = overset{frown}{CE} = angle ECB$





Now, the total internal angle of $triangle ABC$ consists ofbegin{align}
180^{circ} &= color{magenta}{angle BAC} + 30^{circ} + angle EBC + angle ECB + 40^{circ} \
&= color{magenta}{angle BAC} + 30^{circ} + color{magenta}{big(}angle BAE + angle CAEcolor{magenta}{big)} + 40^{circ} \
&= color{magenta}{2angle BAC} + 30^{circ} + 40^{circ}
end{align}

Thus the desired $displaystyleangle BAC = frac{180^{circ} - 30^{circ} - 40^{circ}}2 = 55^{circ}$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Feb 2 at 3:38

























answered Feb 2 at 3:32









Lee David Chung LinLee David Chung Lin

4,47841242




4,47841242












  • $begingroup$
    Brilliant! Thanks a lot.
    $endgroup$
    – S.H.W
    Feb 2 at 3:50


















  • $begingroup$
    Brilliant! Thanks a lot.
    $endgroup$
    – S.H.W
    Feb 2 at 3:50
















$begingroup$
Brilliant! Thanks a lot.
$endgroup$
– S.H.W
Feb 2 at 3:50




$begingroup$
Brilliant! Thanks a lot.
$endgroup$
– S.H.W
Feb 2 at 3:50


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096775%2ftwo-circles-with-a-common-tangent%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to fix TextFormField cause rebuild widget in Flutter

JavaFX. Displaying an image from byte[]

Error binding properties and functions in emscripten