Two circles with a common tangent
$begingroup$
Find the angle $angle BAC$ in the following picture .

My attempt : I tried to apply the relationships in the both circles between different angles and arcs in many ways but it didn't work . Also joining the point $A$ , $E$ and the line $d$ didn't help (Note that if the intersection point of the $AE$ and the line $d$ is $D$ then $BD = DC$)
geometry circles angle tangent-line
$endgroup$
add a comment |
$begingroup$
Find the angle $angle BAC$ in the following picture .

My attempt : I tried to apply the relationships in the both circles between different angles and arcs in many ways but it didn't work . Also joining the point $A$ , $E$ and the line $d$ didn't help (Note that if the intersection point of the $AE$ and the line $d$ is $D$ then $BD = DC$)
geometry circles angle tangent-line
$endgroup$
$begingroup$
Why do you think $BD=DC$? Which intersection point $D$ do you have in mind?
$endgroup$
– user376343
Feb 1 at 22:06
$begingroup$
@user376343 See this : math.stackexchange.com/questions/433236/…
$endgroup$
– S.H.W
Feb 1 at 22:07
$begingroup$
The point where $AE$ cuts $d$? Please write it in your question.
$endgroup$
– user376343
Feb 1 at 22:09
1
$begingroup$
@user376343 Thanks , I edited it .
$endgroup$
– S.H.W
Feb 1 at 22:11
add a comment |
$begingroup$
Find the angle $angle BAC$ in the following picture .

My attempt : I tried to apply the relationships in the both circles between different angles and arcs in many ways but it didn't work . Also joining the point $A$ , $E$ and the line $d$ didn't help (Note that if the intersection point of the $AE$ and the line $d$ is $D$ then $BD = DC$)
geometry circles angle tangent-line
$endgroup$
Find the angle $angle BAC$ in the following picture .

My attempt : I tried to apply the relationships in the both circles between different angles and arcs in many ways but it didn't work . Also joining the point $A$ , $E$ and the line $d$ didn't help (Note that if the intersection point of the $AE$ and the line $d$ is $D$ then $BD = DC$)
geometry circles angle tangent-line
geometry circles angle tangent-line
edited Feb 1 at 22:11
S.H.W
asked Feb 1 at 21:59
S.H.WS.H.W
98511023
98511023
$begingroup$
Why do you think $BD=DC$? Which intersection point $D$ do you have in mind?
$endgroup$
– user376343
Feb 1 at 22:06
$begingroup$
@user376343 See this : math.stackexchange.com/questions/433236/…
$endgroup$
– S.H.W
Feb 1 at 22:07
$begingroup$
The point where $AE$ cuts $d$? Please write it in your question.
$endgroup$
– user376343
Feb 1 at 22:09
1
$begingroup$
@user376343 Thanks , I edited it .
$endgroup$
– S.H.W
Feb 1 at 22:11
add a comment |
$begingroup$
Why do you think $BD=DC$? Which intersection point $D$ do you have in mind?
$endgroup$
– user376343
Feb 1 at 22:06
$begingroup$
@user376343 See this : math.stackexchange.com/questions/433236/…
$endgroup$
– S.H.W
Feb 1 at 22:07
$begingroup$
The point where $AE$ cuts $d$? Please write it in your question.
$endgroup$
– user376343
Feb 1 at 22:09
1
$begingroup$
@user376343 Thanks , I edited it .
$endgroup$
– S.H.W
Feb 1 at 22:11
$begingroup$
Why do you think $BD=DC$? Which intersection point $D$ do you have in mind?
$endgroup$
– user376343
Feb 1 at 22:06
$begingroup$
Why do you think $BD=DC$? Which intersection point $D$ do you have in mind?
$endgroup$
– user376343
Feb 1 at 22:06
$begingroup$
@user376343 See this : math.stackexchange.com/questions/433236/…
$endgroup$
– S.H.W
Feb 1 at 22:07
$begingroup$
@user376343 See this : math.stackexchange.com/questions/433236/…
$endgroup$
– S.H.W
Feb 1 at 22:07
$begingroup$
The point where $AE$ cuts $d$? Please write it in your question.
$endgroup$
– user376343
Feb 1 at 22:09
$begingroup$
The point where $AE$ cuts $d$? Please write it in your question.
$endgroup$
– user376343
Feb 1 at 22:09
1
1
$begingroup$
@user376343 Thanks , I edited it .
$endgroup$
– S.H.W
Feb 1 at 22:11
$begingroup$
@user376343 Thanks , I edited it .
$endgroup$
– S.H.W
Feb 1 at 22:11
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Note that $angle BAE = angle EBC$ because they both correspond to the circular arc $overset{frown}{BE}$
Similarly, $angle CAE = overset{frown}{CE} = angle ECB$

Now, the total internal angle of $triangle ABC$ consists ofbegin{align}
180^{circ} &= color{magenta}{angle BAC} + 30^{circ} + angle EBC + angle ECB + 40^{circ} \
&= color{magenta}{angle BAC} + 30^{circ} + color{magenta}{big(}angle BAE + angle CAEcolor{magenta}{big)} + 40^{circ} \
&= color{magenta}{2angle BAC} + 30^{circ} + 40^{circ}
end{align}
Thus the desired $displaystyleangle BAC = frac{180^{circ} - 30^{circ} - 40^{circ}}2 = 55^{circ}$
$endgroup$
$begingroup$
Brilliant! Thanks a lot.
$endgroup$
– S.H.W
Feb 2 at 3:50
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096775%2ftwo-circles-with-a-common-tangent%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that $angle BAE = angle EBC$ because they both correspond to the circular arc $overset{frown}{BE}$
Similarly, $angle CAE = overset{frown}{CE} = angle ECB$

Now, the total internal angle of $triangle ABC$ consists ofbegin{align}
180^{circ} &= color{magenta}{angle BAC} + 30^{circ} + angle EBC + angle ECB + 40^{circ} \
&= color{magenta}{angle BAC} + 30^{circ} + color{magenta}{big(}angle BAE + angle CAEcolor{magenta}{big)} + 40^{circ} \
&= color{magenta}{2angle BAC} + 30^{circ} + 40^{circ}
end{align}
Thus the desired $displaystyleangle BAC = frac{180^{circ} - 30^{circ} - 40^{circ}}2 = 55^{circ}$
$endgroup$
$begingroup$
Brilliant! Thanks a lot.
$endgroup$
– S.H.W
Feb 2 at 3:50
add a comment |
$begingroup$
Note that $angle BAE = angle EBC$ because they both correspond to the circular arc $overset{frown}{BE}$
Similarly, $angle CAE = overset{frown}{CE} = angle ECB$

Now, the total internal angle of $triangle ABC$ consists ofbegin{align}
180^{circ} &= color{magenta}{angle BAC} + 30^{circ} + angle EBC + angle ECB + 40^{circ} \
&= color{magenta}{angle BAC} + 30^{circ} + color{magenta}{big(}angle BAE + angle CAEcolor{magenta}{big)} + 40^{circ} \
&= color{magenta}{2angle BAC} + 30^{circ} + 40^{circ}
end{align}
Thus the desired $displaystyleangle BAC = frac{180^{circ} - 30^{circ} - 40^{circ}}2 = 55^{circ}$
$endgroup$
$begingroup$
Brilliant! Thanks a lot.
$endgroup$
– S.H.W
Feb 2 at 3:50
add a comment |
$begingroup$
Note that $angle BAE = angle EBC$ because they both correspond to the circular arc $overset{frown}{BE}$
Similarly, $angle CAE = overset{frown}{CE} = angle ECB$

Now, the total internal angle of $triangle ABC$ consists ofbegin{align}
180^{circ} &= color{magenta}{angle BAC} + 30^{circ} + angle EBC + angle ECB + 40^{circ} \
&= color{magenta}{angle BAC} + 30^{circ} + color{magenta}{big(}angle BAE + angle CAEcolor{magenta}{big)} + 40^{circ} \
&= color{magenta}{2angle BAC} + 30^{circ} + 40^{circ}
end{align}
Thus the desired $displaystyleangle BAC = frac{180^{circ} - 30^{circ} - 40^{circ}}2 = 55^{circ}$
$endgroup$
Note that $angle BAE = angle EBC$ because they both correspond to the circular arc $overset{frown}{BE}$
Similarly, $angle CAE = overset{frown}{CE} = angle ECB$

Now, the total internal angle of $triangle ABC$ consists ofbegin{align}
180^{circ} &= color{magenta}{angle BAC} + 30^{circ} + angle EBC + angle ECB + 40^{circ} \
&= color{magenta}{angle BAC} + 30^{circ} + color{magenta}{big(}angle BAE + angle CAEcolor{magenta}{big)} + 40^{circ} \
&= color{magenta}{2angle BAC} + 30^{circ} + 40^{circ}
end{align}
Thus the desired $displaystyleangle BAC = frac{180^{circ} - 30^{circ} - 40^{circ}}2 = 55^{circ}$
edited Feb 2 at 3:38
answered Feb 2 at 3:32
Lee David Chung LinLee David Chung Lin
4,47841242
4,47841242
$begingroup$
Brilliant! Thanks a lot.
$endgroup$
– S.H.W
Feb 2 at 3:50
add a comment |
$begingroup$
Brilliant! Thanks a lot.
$endgroup$
– S.H.W
Feb 2 at 3:50
$begingroup$
Brilliant! Thanks a lot.
$endgroup$
– S.H.W
Feb 2 at 3:50
$begingroup$
Brilliant! Thanks a lot.
$endgroup$
– S.H.W
Feb 2 at 3:50
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096775%2ftwo-circles-with-a-common-tangent%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown

$begingroup$
Why do you think $BD=DC$? Which intersection point $D$ do you have in mind?
$endgroup$
– user376343
Feb 1 at 22:06
$begingroup$
@user376343 See this : math.stackexchange.com/questions/433236/…
$endgroup$
– S.H.W
Feb 1 at 22:07
$begingroup$
The point where $AE$ cuts $d$? Please write it in your question.
$endgroup$
– user376343
Feb 1 at 22:09
1
$begingroup$
@user376343 Thanks , I edited it .
$endgroup$
– S.H.W
Feb 1 at 22:11