Find the closure , Frontier and boundary of the following set
Find the closure , Frontier and boundary of the following set in $ mathbb{R}^2$ given by
$$ S={(0,1) cup (2,0) } cup {(x,y): |x|+|y|< 1 }$$
Answer:
The closure is given by
$Cl (A) ={(0,1) cup (2,0) } cup {(x,y): |x|+|y| leq 1 }$
But I thing the closure can be
$ {(x,y):|x|+|y| leq 1 } cup {(0,2) }$ , because $ (0,1) in {(x,y):|x|+|y| leq 1 }$.
Am I right?
Also help me with the frontier and boundary of the set.
real-analysis general-topology
|
show 1 more comment
Find the closure , Frontier and boundary of the following set in $ mathbb{R}^2$ given by
$$ S={(0,1) cup (2,0) } cup {(x,y): |x|+|y|< 1 }$$
Answer:
The closure is given by
$Cl (A) ={(0,1) cup (2,0) } cup {(x,y): |x|+|y| leq 1 }$
But I thing the closure can be
$ {(x,y):|x|+|y| leq 1 } cup {(0,2) }$ , because $ (0,1) in {(x,y):|x|+|y| leq 1 }$.
Am I right?
Also help me with the frontier and boundary of the set.
real-analysis general-topology
2
You're definitely right when it comes to the closure. As far as the bondary/frontier goes, how do you distinguish between them? I'm under the impression that they're the same thing.
– AlkaKadri
Nov 20 '18 at 0:06
@AlkaKadri, No there is a small difference between frontier of a set and boundary set as we can see from the example- "The frontier set of a closed unit ball is the empty set while the boundary of the unit closed ball is the unit circle". That is, frontier set does not include the boundary
– M. A. SARKAR
Nov 20 '18 at 0:10
1
Okay, thanks for clarifying. Note that most people use 'frontier' and 'boundary' interchangeably, but I assume you're using frontier to mean the set of boundary points not included in the set itself? i.e., $partial S setminus S$?
– AlkaKadri
Nov 20 '18 at 0:13
2
It's important to look at your definitions. Write down the definition of the exterior of a set. According to en.wikipedia.org/wiki/Interior_(topology), it's just the complement of the closure (which you've already obtained), but depending on what definition you're using there may be some more steps you have to show.
– AlkaKadri
Nov 20 '18 at 0:18
1
Your notation for $S$ is weird: you cannot take a union of two points. You mean ${(0,1)} cup {(2,0)} = {(0,1),(2,0)}$ probably.
– Henno Brandsma
Nov 20 '18 at 16:41
|
show 1 more comment
Find the closure , Frontier and boundary of the following set in $ mathbb{R}^2$ given by
$$ S={(0,1) cup (2,0) } cup {(x,y): |x|+|y|< 1 }$$
Answer:
The closure is given by
$Cl (A) ={(0,1) cup (2,0) } cup {(x,y): |x|+|y| leq 1 }$
But I thing the closure can be
$ {(x,y):|x|+|y| leq 1 } cup {(0,2) }$ , because $ (0,1) in {(x,y):|x|+|y| leq 1 }$.
Am I right?
Also help me with the frontier and boundary of the set.
real-analysis general-topology
Find the closure , Frontier and boundary of the following set in $ mathbb{R}^2$ given by
$$ S={(0,1) cup (2,0) } cup {(x,y): |x|+|y|< 1 }$$
Answer:
The closure is given by
$Cl (A) ={(0,1) cup (2,0) } cup {(x,y): |x|+|y| leq 1 }$
But I thing the closure can be
$ {(x,y):|x|+|y| leq 1 } cup {(0,2) }$ , because $ (0,1) in {(x,y):|x|+|y| leq 1 }$.
Am I right?
Also help me with the frontier and boundary of the set.
real-analysis general-topology
real-analysis general-topology
asked Nov 20 '18 at 0:02
M. A. SARKAR
2,1721619
2,1721619
2
You're definitely right when it comes to the closure. As far as the bondary/frontier goes, how do you distinguish between them? I'm under the impression that they're the same thing.
– AlkaKadri
Nov 20 '18 at 0:06
@AlkaKadri, No there is a small difference between frontier of a set and boundary set as we can see from the example- "The frontier set of a closed unit ball is the empty set while the boundary of the unit closed ball is the unit circle". That is, frontier set does not include the boundary
– M. A. SARKAR
Nov 20 '18 at 0:10
1
Okay, thanks for clarifying. Note that most people use 'frontier' and 'boundary' interchangeably, but I assume you're using frontier to mean the set of boundary points not included in the set itself? i.e., $partial S setminus S$?
– AlkaKadri
Nov 20 '18 at 0:13
2
It's important to look at your definitions. Write down the definition of the exterior of a set. According to en.wikipedia.org/wiki/Interior_(topology), it's just the complement of the closure (which you've already obtained), but depending on what definition you're using there may be some more steps you have to show.
– AlkaKadri
Nov 20 '18 at 0:18
1
Your notation for $S$ is weird: you cannot take a union of two points. You mean ${(0,1)} cup {(2,0)} = {(0,1),(2,0)}$ probably.
– Henno Brandsma
Nov 20 '18 at 16:41
|
show 1 more comment
2
You're definitely right when it comes to the closure. As far as the bondary/frontier goes, how do you distinguish between them? I'm under the impression that they're the same thing.
– AlkaKadri
Nov 20 '18 at 0:06
@AlkaKadri, No there is a small difference between frontier of a set and boundary set as we can see from the example- "The frontier set of a closed unit ball is the empty set while the boundary of the unit closed ball is the unit circle". That is, frontier set does not include the boundary
– M. A. SARKAR
Nov 20 '18 at 0:10
1
Okay, thanks for clarifying. Note that most people use 'frontier' and 'boundary' interchangeably, but I assume you're using frontier to mean the set of boundary points not included in the set itself? i.e., $partial S setminus S$?
– AlkaKadri
Nov 20 '18 at 0:13
2
It's important to look at your definitions. Write down the definition of the exterior of a set. According to en.wikipedia.org/wiki/Interior_(topology), it's just the complement of the closure (which you've already obtained), but depending on what definition you're using there may be some more steps you have to show.
– AlkaKadri
Nov 20 '18 at 0:18
1
Your notation for $S$ is weird: you cannot take a union of two points. You mean ${(0,1)} cup {(2,0)} = {(0,1),(2,0)}$ probably.
– Henno Brandsma
Nov 20 '18 at 16:41
2
2
You're definitely right when it comes to the closure. As far as the bondary/frontier goes, how do you distinguish between them? I'm under the impression that they're the same thing.
– AlkaKadri
Nov 20 '18 at 0:06
You're definitely right when it comes to the closure. As far as the bondary/frontier goes, how do you distinguish between them? I'm under the impression that they're the same thing.
– AlkaKadri
Nov 20 '18 at 0:06
@AlkaKadri, No there is a small difference between frontier of a set and boundary set as we can see from the example- "The frontier set of a closed unit ball is the empty set while the boundary of the unit closed ball is the unit circle". That is, frontier set does not include the boundary
– M. A. SARKAR
Nov 20 '18 at 0:10
@AlkaKadri, No there is a small difference between frontier of a set and boundary set as we can see from the example- "The frontier set of a closed unit ball is the empty set while the boundary of the unit closed ball is the unit circle". That is, frontier set does not include the boundary
– M. A. SARKAR
Nov 20 '18 at 0:10
1
1
Okay, thanks for clarifying. Note that most people use 'frontier' and 'boundary' interchangeably, but I assume you're using frontier to mean the set of boundary points not included in the set itself? i.e., $partial S setminus S$?
– AlkaKadri
Nov 20 '18 at 0:13
Okay, thanks for clarifying. Note that most people use 'frontier' and 'boundary' interchangeably, but I assume you're using frontier to mean the set of boundary points not included in the set itself? i.e., $partial S setminus S$?
– AlkaKadri
Nov 20 '18 at 0:13
2
2
It's important to look at your definitions. Write down the definition of the exterior of a set. According to en.wikipedia.org/wiki/Interior_(topology), it's just the complement of the closure (which you've already obtained), but depending on what definition you're using there may be some more steps you have to show.
– AlkaKadri
Nov 20 '18 at 0:18
It's important to look at your definitions. Write down the definition of the exterior of a set. According to en.wikipedia.org/wiki/Interior_(topology), it's just the complement of the closure (which you've already obtained), but depending on what definition you're using there may be some more steps you have to show.
– AlkaKadri
Nov 20 '18 at 0:18
1
1
Your notation for $S$ is weird: you cannot take a union of two points. You mean ${(0,1)} cup {(2,0)} = {(0,1),(2,0)}$ probably.
– Henno Brandsma
Nov 20 '18 at 16:41
Your notation for $S$ is weird: you cannot take a union of two points. You mean ${(0,1)} cup {(2,0)} = {(0,1),(2,0)}$ probably.
– Henno Brandsma
Nov 20 '18 at 16:41
|
show 1 more comment
1 Answer
1
active
oldest
votes
The frontier of $S$ is (probably, your example fits it, and it is a usage that occurs) $operatorname{Cl}{S}setminus S$ (all points in the closure that were not in the original set) so in this case $$operatorname{Fr}(S) = {(x,y): |x| + |y| =1}setminus {(0,1)}$$
clearly:
$$operatorname{Int}(S) = {(x,y): |x| + |y| < 1}$$
So $$operatorname{Bd}(S) =operatorname{Cl}(S) setminus operatorname{Int}(S) = {(2,0)} cup {(x,y): |x| + |y| = 1 }$$
So all these sets can be computed/determined one we know the closure and the interior.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005724%2ffind-the-closure-frontier-and-boundary-of-the-following-set%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
The frontier of $S$ is (probably, your example fits it, and it is a usage that occurs) $operatorname{Cl}{S}setminus S$ (all points in the closure that were not in the original set) so in this case $$operatorname{Fr}(S) = {(x,y): |x| + |y| =1}setminus {(0,1)}$$
clearly:
$$operatorname{Int}(S) = {(x,y): |x| + |y| < 1}$$
So $$operatorname{Bd}(S) =operatorname{Cl}(S) setminus operatorname{Int}(S) = {(2,0)} cup {(x,y): |x| + |y| = 1 }$$
So all these sets can be computed/determined one we know the closure and the interior.
add a comment |
The frontier of $S$ is (probably, your example fits it, and it is a usage that occurs) $operatorname{Cl}{S}setminus S$ (all points in the closure that were not in the original set) so in this case $$operatorname{Fr}(S) = {(x,y): |x| + |y| =1}setminus {(0,1)}$$
clearly:
$$operatorname{Int}(S) = {(x,y): |x| + |y| < 1}$$
So $$operatorname{Bd}(S) =operatorname{Cl}(S) setminus operatorname{Int}(S) = {(2,0)} cup {(x,y): |x| + |y| = 1 }$$
So all these sets can be computed/determined one we know the closure and the interior.
add a comment |
The frontier of $S$ is (probably, your example fits it, and it is a usage that occurs) $operatorname{Cl}{S}setminus S$ (all points in the closure that were not in the original set) so in this case $$operatorname{Fr}(S) = {(x,y): |x| + |y| =1}setminus {(0,1)}$$
clearly:
$$operatorname{Int}(S) = {(x,y): |x| + |y| < 1}$$
So $$operatorname{Bd}(S) =operatorname{Cl}(S) setminus operatorname{Int}(S) = {(2,0)} cup {(x,y): |x| + |y| = 1 }$$
So all these sets can be computed/determined one we know the closure and the interior.
The frontier of $S$ is (probably, your example fits it, and it is a usage that occurs) $operatorname{Cl}{S}setminus S$ (all points in the closure that were not in the original set) so in this case $$operatorname{Fr}(S) = {(x,y): |x| + |y| =1}setminus {(0,1)}$$
clearly:
$$operatorname{Int}(S) = {(x,y): |x| + |y| < 1}$$
So $$operatorname{Bd}(S) =operatorname{Cl}(S) setminus operatorname{Int}(S) = {(2,0)} cup {(x,y): |x| + |y| = 1 }$$
So all these sets can be computed/determined one we know the closure and the interior.
answered Nov 20 '18 at 17:30
Henno Brandsma
105k346113
105k346113
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005724%2ffind-the-closure-frontier-and-boundary-of-the-following-set%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
You're definitely right when it comes to the closure. As far as the bondary/frontier goes, how do you distinguish between them? I'm under the impression that they're the same thing.
– AlkaKadri
Nov 20 '18 at 0:06
@AlkaKadri, No there is a small difference between frontier of a set and boundary set as we can see from the example- "The frontier set of a closed unit ball is the empty set while the boundary of the unit closed ball is the unit circle". That is, frontier set does not include the boundary
– M. A. SARKAR
Nov 20 '18 at 0:10
1
Okay, thanks for clarifying. Note that most people use 'frontier' and 'boundary' interchangeably, but I assume you're using frontier to mean the set of boundary points not included in the set itself? i.e., $partial S setminus S$?
– AlkaKadri
Nov 20 '18 at 0:13
2
It's important to look at your definitions. Write down the definition of the exterior of a set. According to en.wikipedia.org/wiki/Interior_(topology), it's just the complement of the closure (which you've already obtained), but depending on what definition you're using there may be some more steps you have to show.
– AlkaKadri
Nov 20 '18 at 0:18
1
Your notation for $S$ is weird: you cannot take a union of two points. You mean ${(0,1)} cup {(2,0)} = {(0,1),(2,0)}$ probably.
– Henno Brandsma
Nov 20 '18 at 16:41