Compute $Eleft((B_t−1)^2int ^t_0(B_s+1)^2 dB_sright)$, where $(B_t)$ is a standard Brownian motion












0












$begingroup$


Compute $E((B_t−1)^2int ^t_0(B_s+1)^2 dB_s)$ for $t≥0$ given that $(B_t)_{t≥0}$ is a Standard Brownian Motion.



Presume we will need to compute $E((B_t+B_s)-(B_s-1))^2$ to get some independent terms but really stuck on what to do with the integral part. Thanks for any help with this question.










share|cite|improve this question











$endgroup$












  • $begingroup$
    @Did could you clarify why $E(B_{t}X_{t})=E(int_0^tY_{s}ds)$.
    $endgroup$
    – Zugzwangerz
    Jan 10 at 15:35
















0












$begingroup$


Compute $E((B_t−1)^2int ^t_0(B_s+1)^2 dB_s)$ for $t≥0$ given that $(B_t)_{t≥0}$ is a Standard Brownian Motion.



Presume we will need to compute $E((B_t+B_s)-(B_s-1))^2$ to get some independent terms but really stuck on what to do with the integral part. Thanks for any help with this question.










share|cite|improve this question











$endgroup$












  • $begingroup$
    @Did could you clarify why $E(B_{t}X_{t})=E(int_0^tY_{s}ds)$.
    $endgroup$
    – Zugzwangerz
    Jan 10 at 15:35














0












0








0





$begingroup$


Compute $E((B_t−1)^2int ^t_0(B_s+1)^2 dB_s)$ for $t≥0$ given that $(B_t)_{t≥0}$ is a Standard Brownian Motion.



Presume we will need to compute $E((B_t+B_s)-(B_s-1))^2$ to get some independent terms but really stuck on what to do with the integral part. Thanks for any help with this question.










share|cite|improve this question











$endgroup$




Compute $E((B_t−1)^2int ^t_0(B_s+1)^2 dB_s)$ for $t≥0$ given that $(B_t)_{t≥0}$ is a Standard Brownian Motion.



Presume we will need to compute $E((B_t+B_s)-(B_s-1))^2$ to get some independent terms but really stuck on what to do with the integral part. Thanks for any help with this question.







probability-theory stochastic-calculus brownian-motion






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 6 at 15:01









Did

247k23223459




247k23223459










asked Jan 6 at 14:36









ZugzwangerzZugzwangerz

203




203












  • $begingroup$
    @Did could you clarify why $E(B_{t}X_{t})=E(int_0^tY_{s}ds)$.
    $endgroup$
    – Zugzwangerz
    Jan 10 at 15:35


















  • $begingroup$
    @Did could you clarify why $E(B_{t}X_{t})=E(int_0^tY_{s}ds)$.
    $endgroup$
    – Zugzwangerz
    Jan 10 at 15:35
















$begingroup$
@Did could you clarify why $E(B_{t}X_{t})=E(int_0^tY_{s}ds)$.
$endgroup$
– Zugzwangerz
Jan 10 at 15:35




$begingroup$
@Did could you clarify why $E(B_{t}X_{t})=E(int_0^tY_{s}ds)$.
$endgroup$
– Zugzwangerz
Jan 10 at 15:35










1 Answer
1






active

oldest

votes


















2












$begingroup$

Consider the processes $$X_t=int ^t_0Y_s dB_sqquad Y_t=(B_t+1)^2$$ By repeated applications of Itô isometry, one gets:




  • $E(X_t)=0$


  • $B_tX_t=displaystyleint_0^tdB_scdotint ^t_0Y_sdB_s$ hence $$E(B_tX_t)=Eleft(int_0^tY_s dsright)=int_0^tE(Y_s)ds$$


  • $(B_t^2-t)X_t=displaystyleint_0^t2B_sdB_scdotint ^t_0Y_sdB_s$ hence $$E((B_t^2-t)X_t)=Eleft(int_0^t2B_sY_s dsright)=2int_0^tE(B_sY_s)ds$$


Finally, if one can compute $E(Y_t)$ and $E(B_tY_t)$, the proof is complete. Can you?






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Like at every other step, use Itô isometry, based on the fact that $$dlangle B,Brangle_t=dt$$ hence, for every suitable processes $(u_t)$ and $(v_t)$, $$Eleft(int_0^tu_sdB_scdotint_0^tv_sdB_sright)=Eleft(int_0^tu_sv_sdsright)$$
    $endgroup$
    – Did
    Jan 10 at 15:38










  • $begingroup$
    ((This is answering a comment formerly here but now on main, by the OP.))
    $endgroup$
    – Did
    Jan 10 at 15:38












  • $begingroup$
    ah I get it now, thank you!
    $endgroup$
    – Zugzwangerz
    Jan 10 at 15:39











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063932%2fcompute-e-leftb-t%25e2%2588%259212-int-t-0b-s12-db-s-right-where-b-t-is-a-sta%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

Consider the processes $$X_t=int ^t_0Y_s dB_sqquad Y_t=(B_t+1)^2$$ By repeated applications of Itô isometry, one gets:




  • $E(X_t)=0$


  • $B_tX_t=displaystyleint_0^tdB_scdotint ^t_0Y_sdB_s$ hence $$E(B_tX_t)=Eleft(int_0^tY_s dsright)=int_0^tE(Y_s)ds$$


  • $(B_t^2-t)X_t=displaystyleint_0^t2B_sdB_scdotint ^t_0Y_sdB_s$ hence $$E((B_t^2-t)X_t)=Eleft(int_0^t2B_sY_s dsright)=2int_0^tE(B_sY_s)ds$$


Finally, if one can compute $E(Y_t)$ and $E(B_tY_t)$, the proof is complete. Can you?






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Like at every other step, use Itô isometry, based on the fact that $$dlangle B,Brangle_t=dt$$ hence, for every suitable processes $(u_t)$ and $(v_t)$, $$Eleft(int_0^tu_sdB_scdotint_0^tv_sdB_sright)=Eleft(int_0^tu_sv_sdsright)$$
    $endgroup$
    – Did
    Jan 10 at 15:38










  • $begingroup$
    ((This is answering a comment formerly here but now on main, by the OP.))
    $endgroup$
    – Did
    Jan 10 at 15:38












  • $begingroup$
    ah I get it now, thank you!
    $endgroup$
    – Zugzwangerz
    Jan 10 at 15:39
















2












$begingroup$

Consider the processes $$X_t=int ^t_0Y_s dB_sqquad Y_t=(B_t+1)^2$$ By repeated applications of Itô isometry, one gets:




  • $E(X_t)=0$


  • $B_tX_t=displaystyleint_0^tdB_scdotint ^t_0Y_sdB_s$ hence $$E(B_tX_t)=Eleft(int_0^tY_s dsright)=int_0^tE(Y_s)ds$$


  • $(B_t^2-t)X_t=displaystyleint_0^t2B_sdB_scdotint ^t_0Y_sdB_s$ hence $$E((B_t^2-t)X_t)=Eleft(int_0^t2B_sY_s dsright)=2int_0^tE(B_sY_s)ds$$


Finally, if one can compute $E(Y_t)$ and $E(B_tY_t)$, the proof is complete. Can you?






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Like at every other step, use Itô isometry, based on the fact that $$dlangle B,Brangle_t=dt$$ hence, for every suitable processes $(u_t)$ and $(v_t)$, $$Eleft(int_0^tu_sdB_scdotint_0^tv_sdB_sright)=Eleft(int_0^tu_sv_sdsright)$$
    $endgroup$
    – Did
    Jan 10 at 15:38










  • $begingroup$
    ((This is answering a comment formerly here but now on main, by the OP.))
    $endgroup$
    – Did
    Jan 10 at 15:38












  • $begingroup$
    ah I get it now, thank you!
    $endgroup$
    – Zugzwangerz
    Jan 10 at 15:39














2












2








2





$begingroup$

Consider the processes $$X_t=int ^t_0Y_s dB_sqquad Y_t=(B_t+1)^2$$ By repeated applications of Itô isometry, one gets:




  • $E(X_t)=0$


  • $B_tX_t=displaystyleint_0^tdB_scdotint ^t_0Y_sdB_s$ hence $$E(B_tX_t)=Eleft(int_0^tY_s dsright)=int_0^tE(Y_s)ds$$


  • $(B_t^2-t)X_t=displaystyleint_0^t2B_sdB_scdotint ^t_0Y_sdB_s$ hence $$E((B_t^2-t)X_t)=Eleft(int_0^t2B_sY_s dsright)=2int_0^tE(B_sY_s)ds$$


Finally, if one can compute $E(Y_t)$ and $E(B_tY_t)$, the proof is complete. Can you?






share|cite|improve this answer









$endgroup$



Consider the processes $$X_t=int ^t_0Y_s dB_sqquad Y_t=(B_t+1)^2$$ By repeated applications of Itô isometry, one gets:




  • $E(X_t)=0$


  • $B_tX_t=displaystyleint_0^tdB_scdotint ^t_0Y_sdB_s$ hence $$E(B_tX_t)=Eleft(int_0^tY_s dsright)=int_0^tE(Y_s)ds$$


  • $(B_t^2-t)X_t=displaystyleint_0^t2B_sdB_scdotint ^t_0Y_sdB_s$ hence $$E((B_t^2-t)X_t)=Eleft(int_0^t2B_sY_s dsright)=2int_0^tE(B_sY_s)ds$$


Finally, if one can compute $E(Y_t)$ and $E(B_tY_t)$, the proof is complete. Can you?







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 6 at 14:57









DidDid

247k23223459




247k23223459












  • $begingroup$
    Like at every other step, use Itô isometry, based on the fact that $$dlangle B,Brangle_t=dt$$ hence, for every suitable processes $(u_t)$ and $(v_t)$, $$Eleft(int_0^tu_sdB_scdotint_0^tv_sdB_sright)=Eleft(int_0^tu_sv_sdsright)$$
    $endgroup$
    – Did
    Jan 10 at 15:38










  • $begingroup$
    ((This is answering a comment formerly here but now on main, by the OP.))
    $endgroup$
    – Did
    Jan 10 at 15:38












  • $begingroup$
    ah I get it now, thank you!
    $endgroup$
    – Zugzwangerz
    Jan 10 at 15:39


















  • $begingroup$
    Like at every other step, use Itô isometry, based on the fact that $$dlangle B,Brangle_t=dt$$ hence, for every suitable processes $(u_t)$ and $(v_t)$, $$Eleft(int_0^tu_sdB_scdotint_0^tv_sdB_sright)=Eleft(int_0^tu_sv_sdsright)$$
    $endgroup$
    – Did
    Jan 10 at 15:38










  • $begingroup$
    ((This is answering a comment formerly here but now on main, by the OP.))
    $endgroup$
    – Did
    Jan 10 at 15:38












  • $begingroup$
    ah I get it now, thank you!
    $endgroup$
    – Zugzwangerz
    Jan 10 at 15:39
















$begingroup$
Like at every other step, use Itô isometry, based on the fact that $$dlangle B,Brangle_t=dt$$ hence, for every suitable processes $(u_t)$ and $(v_t)$, $$Eleft(int_0^tu_sdB_scdotint_0^tv_sdB_sright)=Eleft(int_0^tu_sv_sdsright)$$
$endgroup$
– Did
Jan 10 at 15:38




$begingroup$
Like at every other step, use Itô isometry, based on the fact that $$dlangle B,Brangle_t=dt$$ hence, for every suitable processes $(u_t)$ and $(v_t)$, $$Eleft(int_0^tu_sdB_scdotint_0^tv_sdB_sright)=Eleft(int_0^tu_sv_sdsright)$$
$endgroup$
– Did
Jan 10 at 15:38












$begingroup$
((This is answering a comment formerly here but now on main, by the OP.))
$endgroup$
– Did
Jan 10 at 15:38






$begingroup$
((This is answering a comment formerly here but now on main, by the OP.))
$endgroup$
– Did
Jan 10 at 15:38














$begingroup$
ah I get it now, thank you!
$endgroup$
– Zugzwangerz
Jan 10 at 15:39




$begingroup$
ah I get it now, thank you!
$endgroup$
– Zugzwangerz
Jan 10 at 15:39


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063932%2fcompute-e-leftb-t%25e2%2588%259212-int-t-0b-s12-db-s-right-where-b-t-is-a-sta%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

How to fix TextFormField cause rebuild widget in Flutter