Given that $X,Y$ are independent $N(0,1)$ , show that $frac{XY}{sqrt{X^2+Y^2}},frac{X^2-Y^2}{2sqrt{X^2+Y^2}}$...
$begingroup$
It is given that $X,Y overset{text{i.i.d.}}{sim} N(0,1)$
Show that $frac{XY}{sqrt{X^2+Y^2}},frac{X^2-Y^2}{2sqrt{X^2+Y^2}} overset{text{i.i.d.}}{sim} N(0,frac{1}{4})$
I was thinking of making polar transformations $X=r cos theta, Y=r sin theta$
Then I am getting stuck at ranges of $theta$
probability probability-distributions
$endgroup$
add a comment |
$begingroup$
It is given that $X,Y overset{text{i.i.d.}}{sim} N(0,1)$
Show that $frac{XY}{sqrt{X^2+Y^2}},frac{X^2-Y^2}{2sqrt{X^2+Y^2}} overset{text{i.i.d.}}{sim} N(0,frac{1}{4})$
I was thinking of making polar transformations $X=r cos theta, Y=r sin theta$
Then I am getting stuck at ranges of $theta$
probability probability-distributions
$endgroup$
$begingroup$
You're on the right track: don't get discouraged.
$endgroup$
– kimchi lover
Feb 12 '18 at 13:58
$begingroup$
Actually I can show each of the distributions $frac{XY}{sqrt{X^2+Y^2}}$ and the other one to be N(0,1/4) but I cannot show their independence
$endgroup$
– Legend Killer
Feb 12 '18 at 14:00
add a comment |
$begingroup$
It is given that $X,Y overset{text{i.i.d.}}{sim} N(0,1)$
Show that $frac{XY}{sqrt{X^2+Y^2}},frac{X^2-Y^2}{2sqrt{X^2+Y^2}} overset{text{i.i.d.}}{sim} N(0,frac{1}{4})$
I was thinking of making polar transformations $X=r cos theta, Y=r sin theta$
Then I am getting stuck at ranges of $theta$
probability probability-distributions
$endgroup$
It is given that $X,Y overset{text{i.i.d.}}{sim} N(0,1)$
Show that $frac{XY}{sqrt{X^2+Y^2}},frac{X^2-Y^2}{2sqrt{X^2+Y^2}} overset{text{i.i.d.}}{sim} N(0,frac{1}{4})$
I was thinking of making polar transformations $X=r cos theta, Y=r sin theta$
Then I am getting stuck at ranges of $theta$
probability probability-distributions
probability probability-distributions
edited Aug 20 '18 at 20:40
Michael Hardy
1
1
asked Feb 12 '18 at 13:55
Legend KillerLegend Killer
1,6061523
1,6061523
$begingroup$
You're on the right track: don't get discouraged.
$endgroup$
– kimchi lover
Feb 12 '18 at 13:58
$begingroup$
Actually I can show each of the distributions $frac{XY}{sqrt{X^2+Y^2}}$ and the other one to be N(0,1/4) but I cannot show their independence
$endgroup$
– Legend Killer
Feb 12 '18 at 14:00
add a comment |
$begingroup$
You're on the right track: don't get discouraged.
$endgroup$
– kimchi lover
Feb 12 '18 at 13:58
$begingroup$
Actually I can show each of the distributions $frac{XY}{sqrt{X^2+Y^2}}$ and the other one to be N(0,1/4) but I cannot show their independence
$endgroup$
– Legend Killer
Feb 12 '18 at 14:00
$begingroup$
You're on the right track: don't get discouraged.
$endgroup$
– kimchi lover
Feb 12 '18 at 13:58
$begingroup$
You're on the right track: don't get discouraged.
$endgroup$
– kimchi lover
Feb 12 '18 at 13:58
$begingroup$
Actually I can show each of the distributions $frac{XY}{sqrt{X^2+Y^2}}$ and the other one to be N(0,1/4) but I cannot show their independence
$endgroup$
– Legend Killer
Feb 12 '18 at 14:00
$begingroup$
Actually I can show each of the distributions $frac{XY}{sqrt{X^2+Y^2}}$ and the other one to be N(0,1/4) but I cannot show their independence
$endgroup$
– Legend Killer
Feb 12 '18 at 14:00
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
If you transform $(X,Y)mapsto(R,Theta)$ where $X=RcosTheta,Y=RsinTheta$,
you should end up with the joint density of $(R,Theta)$ as $f_{R,Theta}(r,theta)=dfrac{r}{2pi}e^{-r^2/2}mathbf1_{{r>0,,0<theta<2pi}}$.
This implies $R$ and $Theta$ are independent, where $R$ has the Rayleigh distribution and $Thetasimmathcal{U}(0,2pi)$.
Now changing variables $(R,Theta)mapsto(U,V)$ such that $U=Rsin(2Theta),V=Rcos(2Theta)$,
you should be able to show that $U$ and $V$ are independent $mathcal{N}(0,1)$ variables.
Note that $U=dfrac{2XY}{sqrt{X^2+Y^2}}$ and $V=dfrac{X^2-Y^2}{sqrt{X^2+Y^2}}$ are independent, which in turn means that
$dfrac{U}{2}=dfrac{XY}{sqrt{X^2+Y^2}}$ and $dfrac{V}{2}=dfrac{X^2-Y^2}{2sqrt{X^2+Y^2}}$ are independent $mathcal{N}(0,1/4)$ variables.
This is independent of the post above:
Joint density of $(X,Y)$ is $displaystyle f_{X,Y}(x,y)=frac{1}{2pi}e^{-frac{1}{2}(x^2+y^2)},quad,(x,y)inmathbb{R^2}$
We transform $(X,Y)mapsto(R,Theta)mapsto(U,V)$ where
$x=rcostheta,,y=rsintheta$ and $u=frac{r}{2}sin(2theta),,v=frac{r}{2}cos(2theta)$
$(x,y)inmathbb{R^2}implies r>0,, 0<theta<2piimplies (u,v)inmathbb{R^2}$.
Note that this transformation is not one to one.
Jacobian of the transformation is $Jleft(frac{x,y}{u,v}right) = Jleft(frac{x,y}{r,theta}right)Jleft(frac{r,theta}{u,v}right)=J_1J_2$, say.
Also, $x^2+y^2=r^2=4(u^2+v^2)$ and $|J_1||J_2|=rtimesfrac{2}{r}=2$
Now $left(U=frac{XY}{sqrt{X^2+Y^2}},V=frac{X^2-Y^2}{2sqrt{X^2+Y^2}}right)$ has the preimages $(X,Y)$ and $(-X,-Y)$.
Moreover, $X,Ystackrel{text{i.i.d.}}{sim}mathcal{N}(0,1)iff -X,-Ystackrel{text{i.i.d.}}{sim}mathcal{N}(0,1)$.
Hence the joint density of $(U,V)$ is given by $$f_{U,V}(u,v)=f_{X,Y}(g_1(u,v),h_1(u,v))|J_1||J_2| + f_{X,Y}(g_2(u,v),h_2(u,v))|J_1||J_2|$$
$$=frac{1}{2pi}e^{-frac{1}{2} 4(u^2+v^2)}|J_1||J_2|times 2$$
$$=frac{1}{sqrt{frac{1}{4}}sqrt{2pi}}expleft(-frac{u^2}{2cdotfrac{1}{4}}right)cdotfrac{1}{sqrt{frac{1}{4}}sqrt{2pi}}expleft(-frac{v^2}{2cdotfrac{1}{4}}right)quad ,(u,v)inmathbb{R^2}$$
(We have the multiplier $2$ in the second step due to the preimages of $(x,y)$ namely $(g_i(u,v),h_i(u,v))$ for $i=1,2$, 'contributing' equally to the joint density).
This implies $U$ and $V$ are independent $mathcal{N}(0,1/4)$ variables.
$endgroup$
$begingroup$
Yes,I am facing difficulty in showing $U,V $ are N(0,1)
$endgroup$
– Legend Killer
Feb 12 '18 at 14:28
$begingroup$
Ok done! Good solution!
$endgroup$
– Legend Killer
Feb 12 '18 at 14:39
$begingroup$
What about the preimages (u, -v) and (-u,v)?
$endgroup$
– Legend Killer
Feb 24 '18 at 2:13
$begingroup$
@AyanBiswas Let me modify my answer to make it clear.
$endgroup$
– StubbornAtom
Feb 24 '18 at 6:36
$begingroup$
Hi @StubbornAtom. Thank you for this link. Can you please explain as to why the transformation (x,y) -> (u,v) is not one-to-one ? Also, we are mapping from X and Y. Why have you considered -X and -Y here ?
$endgroup$
– Dwaipayan Gupta
Mar 23 '18 at 19:24
add a comment |
$begingroup$
Setting $U=dfrac{XY}{sqrt{X^2+Y^2}}, V=dfrac{X^2-Y^2}{2sqrt{X^2+Y^2}}$ and using moment generating functions:
begin{align}
M_{(U,V)}(u,v) & =mathbb{E}left[mathrm{e}^{langle,(u,v),;,(U,V),rangle}right] \[10pt]
& =iint_{mathbb{R}^2}expleft(ufrac{xy}{sqrt{x^2+y^2}}+vfrac{x^2-y^2}{2sqrt{x^2+y^2}}right)cdot f_{(X,Y)}(x,y),mathrm{d}x,mathrm{d}y.
end{align}
You can see here that $$M_{(U,V)}(u,v)=expleft(frac18(u^2+v^2)right)=expleft(frac12(u,v)
begin{pmatrix}1/4 & 0\ 0 & 1/4end{pmatrix}
(u,v)^Tright)$$
so that $(U,V)$ is normal multivariate with $mathbf{0}$ mean and diagonal covariance matrix, meaning $U, V$ are independant $mathcal{N}(0,1/4)$.
$endgroup$
add a comment |
$begingroup$
If you have already proved $frac{X Y}{sqrt{X^2 + Y^2}} $ and $frac{X^2 - Y^2}{sqrt{X^2 + Y^2}}$ are gaussian, as long as that pair of them is jointly gaussian, then you may use their property: $u,, v text{ independent} iff operatorname{cov}(u,v) = 0$.
$$ operatorname{cov} left( frac{X Y}{sqrt{X^2 + Y^2}},frac{X^2 - Y^2}{sqrt{X^2 + Y^2}} right)$$
$$ = operatorname{cov} left( frac{X Y}{sqrt{X^2 + Y^2}},frac{X^2}{sqrt{X^2 + Y^2}} right) - operatorname{cov} left( frac{X Y}{sqrt{X^2 + Y^2}},frac{Y^2}{sqrt{X^2 + Y^2}} right)$$
Now make use of the symmetry of the expressions we have:
$$ operatorname{cov}(cdots) = 0 $$
To make this more rigorous one may rewrite the covariance as follows:
$$ operatorname{cov} left( frac{X Y}{sqrt{X^2 + Y^2}},frac{X^2}{sqrt{X^2 + Y^2}} right) - operatorname{cov} left( frac{X Y}{sqrt{X^2 + Y^2}},frac{Y^2}{sqrt{X^2 + Y^2}} right) $$
$$ = E left( frac{X^3 Y}{X^2 + Y^2} right) - E left( frac{X Y^3}{X^2 + Y^2} right) $$
Now renaming $X to Y, , Y to X$ under the first expectation sign (note that this is the same as renaming variables under integral) we get the result.
Covariance method can be carried even further, following the last line and the trick $ X = -X $ ($X$ is symmetric distribution) which we apply to the second $E$:
$$ = E left( frac{X^3 Y}{X^2 + Y^2} right) - E left( frac{X Y^3}{X^2 + Y^2} right) = E left( frac{X^3 Y}{X^2 + Y^2} right) + E left( frac{X Y^3}{X^2 + Y^2} right) $$
$$ = E left( frac{X Y(X^2 + Y^2)}{X^2 + Y^2} right) = E(XY) = 0$$
The last equation is due to independence of $X, Y$ $implies 0=operatorname{cov}(X,Y)=E(XY) - E(X)E(Y)=E(XY).$
$endgroup$
3
$begingroup$
There is an error in the first sentence here. Being Gaussian and having zero covariance does NOT imply independnce. It does imply independence if they are JOINTLY Gaussian. But you haven't mentioned that.
$endgroup$
– Michael Hardy
Aug 20 '18 at 20:43
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2647442%2fgiven-that-x-y-are-independent-n0-1-show-that-fracxy-sqrtx2y2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If you transform $(X,Y)mapsto(R,Theta)$ where $X=RcosTheta,Y=RsinTheta$,
you should end up with the joint density of $(R,Theta)$ as $f_{R,Theta}(r,theta)=dfrac{r}{2pi}e^{-r^2/2}mathbf1_{{r>0,,0<theta<2pi}}$.
This implies $R$ and $Theta$ are independent, where $R$ has the Rayleigh distribution and $Thetasimmathcal{U}(0,2pi)$.
Now changing variables $(R,Theta)mapsto(U,V)$ such that $U=Rsin(2Theta),V=Rcos(2Theta)$,
you should be able to show that $U$ and $V$ are independent $mathcal{N}(0,1)$ variables.
Note that $U=dfrac{2XY}{sqrt{X^2+Y^2}}$ and $V=dfrac{X^2-Y^2}{sqrt{X^2+Y^2}}$ are independent, which in turn means that
$dfrac{U}{2}=dfrac{XY}{sqrt{X^2+Y^2}}$ and $dfrac{V}{2}=dfrac{X^2-Y^2}{2sqrt{X^2+Y^2}}$ are independent $mathcal{N}(0,1/4)$ variables.
This is independent of the post above:
Joint density of $(X,Y)$ is $displaystyle f_{X,Y}(x,y)=frac{1}{2pi}e^{-frac{1}{2}(x^2+y^2)},quad,(x,y)inmathbb{R^2}$
We transform $(X,Y)mapsto(R,Theta)mapsto(U,V)$ where
$x=rcostheta,,y=rsintheta$ and $u=frac{r}{2}sin(2theta),,v=frac{r}{2}cos(2theta)$
$(x,y)inmathbb{R^2}implies r>0,, 0<theta<2piimplies (u,v)inmathbb{R^2}$.
Note that this transformation is not one to one.
Jacobian of the transformation is $Jleft(frac{x,y}{u,v}right) = Jleft(frac{x,y}{r,theta}right)Jleft(frac{r,theta}{u,v}right)=J_1J_2$, say.
Also, $x^2+y^2=r^2=4(u^2+v^2)$ and $|J_1||J_2|=rtimesfrac{2}{r}=2$
Now $left(U=frac{XY}{sqrt{X^2+Y^2}},V=frac{X^2-Y^2}{2sqrt{X^2+Y^2}}right)$ has the preimages $(X,Y)$ and $(-X,-Y)$.
Moreover, $X,Ystackrel{text{i.i.d.}}{sim}mathcal{N}(0,1)iff -X,-Ystackrel{text{i.i.d.}}{sim}mathcal{N}(0,1)$.
Hence the joint density of $(U,V)$ is given by $$f_{U,V}(u,v)=f_{X,Y}(g_1(u,v),h_1(u,v))|J_1||J_2| + f_{X,Y}(g_2(u,v),h_2(u,v))|J_1||J_2|$$
$$=frac{1}{2pi}e^{-frac{1}{2} 4(u^2+v^2)}|J_1||J_2|times 2$$
$$=frac{1}{sqrt{frac{1}{4}}sqrt{2pi}}expleft(-frac{u^2}{2cdotfrac{1}{4}}right)cdotfrac{1}{sqrt{frac{1}{4}}sqrt{2pi}}expleft(-frac{v^2}{2cdotfrac{1}{4}}right)quad ,(u,v)inmathbb{R^2}$$
(We have the multiplier $2$ in the second step due to the preimages of $(x,y)$ namely $(g_i(u,v),h_i(u,v))$ for $i=1,2$, 'contributing' equally to the joint density).
This implies $U$ and $V$ are independent $mathcal{N}(0,1/4)$ variables.
$endgroup$
$begingroup$
Yes,I am facing difficulty in showing $U,V $ are N(0,1)
$endgroup$
– Legend Killer
Feb 12 '18 at 14:28
$begingroup$
Ok done! Good solution!
$endgroup$
– Legend Killer
Feb 12 '18 at 14:39
$begingroup$
What about the preimages (u, -v) and (-u,v)?
$endgroup$
– Legend Killer
Feb 24 '18 at 2:13
$begingroup$
@AyanBiswas Let me modify my answer to make it clear.
$endgroup$
– StubbornAtom
Feb 24 '18 at 6:36
$begingroup$
Hi @StubbornAtom. Thank you for this link. Can you please explain as to why the transformation (x,y) -> (u,v) is not one-to-one ? Also, we are mapping from X and Y. Why have you considered -X and -Y here ?
$endgroup$
– Dwaipayan Gupta
Mar 23 '18 at 19:24
add a comment |
$begingroup$
If you transform $(X,Y)mapsto(R,Theta)$ where $X=RcosTheta,Y=RsinTheta$,
you should end up with the joint density of $(R,Theta)$ as $f_{R,Theta}(r,theta)=dfrac{r}{2pi}e^{-r^2/2}mathbf1_{{r>0,,0<theta<2pi}}$.
This implies $R$ and $Theta$ are independent, where $R$ has the Rayleigh distribution and $Thetasimmathcal{U}(0,2pi)$.
Now changing variables $(R,Theta)mapsto(U,V)$ such that $U=Rsin(2Theta),V=Rcos(2Theta)$,
you should be able to show that $U$ and $V$ are independent $mathcal{N}(0,1)$ variables.
Note that $U=dfrac{2XY}{sqrt{X^2+Y^2}}$ and $V=dfrac{X^2-Y^2}{sqrt{X^2+Y^2}}$ are independent, which in turn means that
$dfrac{U}{2}=dfrac{XY}{sqrt{X^2+Y^2}}$ and $dfrac{V}{2}=dfrac{X^2-Y^2}{2sqrt{X^2+Y^2}}$ are independent $mathcal{N}(0,1/4)$ variables.
This is independent of the post above:
Joint density of $(X,Y)$ is $displaystyle f_{X,Y}(x,y)=frac{1}{2pi}e^{-frac{1}{2}(x^2+y^2)},quad,(x,y)inmathbb{R^2}$
We transform $(X,Y)mapsto(R,Theta)mapsto(U,V)$ where
$x=rcostheta,,y=rsintheta$ and $u=frac{r}{2}sin(2theta),,v=frac{r}{2}cos(2theta)$
$(x,y)inmathbb{R^2}implies r>0,, 0<theta<2piimplies (u,v)inmathbb{R^2}$.
Note that this transformation is not one to one.
Jacobian of the transformation is $Jleft(frac{x,y}{u,v}right) = Jleft(frac{x,y}{r,theta}right)Jleft(frac{r,theta}{u,v}right)=J_1J_2$, say.
Also, $x^2+y^2=r^2=4(u^2+v^2)$ and $|J_1||J_2|=rtimesfrac{2}{r}=2$
Now $left(U=frac{XY}{sqrt{X^2+Y^2}},V=frac{X^2-Y^2}{2sqrt{X^2+Y^2}}right)$ has the preimages $(X,Y)$ and $(-X,-Y)$.
Moreover, $X,Ystackrel{text{i.i.d.}}{sim}mathcal{N}(0,1)iff -X,-Ystackrel{text{i.i.d.}}{sim}mathcal{N}(0,1)$.
Hence the joint density of $(U,V)$ is given by $$f_{U,V}(u,v)=f_{X,Y}(g_1(u,v),h_1(u,v))|J_1||J_2| + f_{X,Y}(g_2(u,v),h_2(u,v))|J_1||J_2|$$
$$=frac{1}{2pi}e^{-frac{1}{2} 4(u^2+v^2)}|J_1||J_2|times 2$$
$$=frac{1}{sqrt{frac{1}{4}}sqrt{2pi}}expleft(-frac{u^2}{2cdotfrac{1}{4}}right)cdotfrac{1}{sqrt{frac{1}{4}}sqrt{2pi}}expleft(-frac{v^2}{2cdotfrac{1}{4}}right)quad ,(u,v)inmathbb{R^2}$$
(We have the multiplier $2$ in the second step due to the preimages of $(x,y)$ namely $(g_i(u,v),h_i(u,v))$ for $i=1,2$, 'contributing' equally to the joint density).
This implies $U$ and $V$ are independent $mathcal{N}(0,1/4)$ variables.
$endgroup$
$begingroup$
Yes,I am facing difficulty in showing $U,V $ are N(0,1)
$endgroup$
– Legend Killer
Feb 12 '18 at 14:28
$begingroup$
Ok done! Good solution!
$endgroup$
– Legend Killer
Feb 12 '18 at 14:39
$begingroup$
What about the preimages (u, -v) and (-u,v)?
$endgroup$
– Legend Killer
Feb 24 '18 at 2:13
$begingroup$
@AyanBiswas Let me modify my answer to make it clear.
$endgroup$
– StubbornAtom
Feb 24 '18 at 6:36
$begingroup$
Hi @StubbornAtom. Thank you for this link. Can you please explain as to why the transformation (x,y) -> (u,v) is not one-to-one ? Also, we are mapping from X and Y. Why have you considered -X and -Y here ?
$endgroup$
– Dwaipayan Gupta
Mar 23 '18 at 19:24
add a comment |
$begingroup$
If you transform $(X,Y)mapsto(R,Theta)$ where $X=RcosTheta,Y=RsinTheta$,
you should end up with the joint density of $(R,Theta)$ as $f_{R,Theta}(r,theta)=dfrac{r}{2pi}e^{-r^2/2}mathbf1_{{r>0,,0<theta<2pi}}$.
This implies $R$ and $Theta$ are independent, where $R$ has the Rayleigh distribution and $Thetasimmathcal{U}(0,2pi)$.
Now changing variables $(R,Theta)mapsto(U,V)$ such that $U=Rsin(2Theta),V=Rcos(2Theta)$,
you should be able to show that $U$ and $V$ are independent $mathcal{N}(0,1)$ variables.
Note that $U=dfrac{2XY}{sqrt{X^2+Y^2}}$ and $V=dfrac{X^2-Y^2}{sqrt{X^2+Y^2}}$ are independent, which in turn means that
$dfrac{U}{2}=dfrac{XY}{sqrt{X^2+Y^2}}$ and $dfrac{V}{2}=dfrac{X^2-Y^2}{2sqrt{X^2+Y^2}}$ are independent $mathcal{N}(0,1/4)$ variables.
This is independent of the post above:
Joint density of $(X,Y)$ is $displaystyle f_{X,Y}(x,y)=frac{1}{2pi}e^{-frac{1}{2}(x^2+y^2)},quad,(x,y)inmathbb{R^2}$
We transform $(X,Y)mapsto(R,Theta)mapsto(U,V)$ where
$x=rcostheta,,y=rsintheta$ and $u=frac{r}{2}sin(2theta),,v=frac{r}{2}cos(2theta)$
$(x,y)inmathbb{R^2}implies r>0,, 0<theta<2piimplies (u,v)inmathbb{R^2}$.
Note that this transformation is not one to one.
Jacobian of the transformation is $Jleft(frac{x,y}{u,v}right) = Jleft(frac{x,y}{r,theta}right)Jleft(frac{r,theta}{u,v}right)=J_1J_2$, say.
Also, $x^2+y^2=r^2=4(u^2+v^2)$ and $|J_1||J_2|=rtimesfrac{2}{r}=2$
Now $left(U=frac{XY}{sqrt{X^2+Y^2}},V=frac{X^2-Y^2}{2sqrt{X^2+Y^2}}right)$ has the preimages $(X,Y)$ and $(-X,-Y)$.
Moreover, $X,Ystackrel{text{i.i.d.}}{sim}mathcal{N}(0,1)iff -X,-Ystackrel{text{i.i.d.}}{sim}mathcal{N}(0,1)$.
Hence the joint density of $(U,V)$ is given by $$f_{U,V}(u,v)=f_{X,Y}(g_1(u,v),h_1(u,v))|J_1||J_2| + f_{X,Y}(g_2(u,v),h_2(u,v))|J_1||J_2|$$
$$=frac{1}{2pi}e^{-frac{1}{2} 4(u^2+v^2)}|J_1||J_2|times 2$$
$$=frac{1}{sqrt{frac{1}{4}}sqrt{2pi}}expleft(-frac{u^2}{2cdotfrac{1}{4}}right)cdotfrac{1}{sqrt{frac{1}{4}}sqrt{2pi}}expleft(-frac{v^2}{2cdotfrac{1}{4}}right)quad ,(u,v)inmathbb{R^2}$$
(We have the multiplier $2$ in the second step due to the preimages of $(x,y)$ namely $(g_i(u,v),h_i(u,v))$ for $i=1,2$, 'contributing' equally to the joint density).
This implies $U$ and $V$ are independent $mathcal{N}(0,1/4)$ variables.
$endgroup$
If you transform $(X,Y)mapsto(R,Theta)$ where $X=RcosTheta,Y=RsinTheta$,
you should end up with the joint density of $(R,Theta)$ as $f_{R,Theta}(r,theta)=dfrac{r}{2pi}e^{-r^2/2}mathbf1_{{r>0,,0<theta<2pi}}$.
This implies $R$ and $Theta$ are independent, where $R$ has the Rayleigh distribution and $Thetasimmathcal{U}(0,2pi)$.
Now changing variables $(R,Theta)mapsto(U,V)$ such that $U=Rsin(2Theta),V=Rcos(2Theta)$,
you should be able to show that $U$ and $V$ are independent $mathcal{N}(0,1)$ variables.
Note that $U=dfrac{2XY}{sqrt{X^2+Y^2}}$ and $V=dfrac{X^2-Y^2}{sqrt{X^2+Y^2}}$ are independent, which in turn means that
$dfrac{U}{2}=dfrac{XY}{sqrt{X^2+Y^2}}$ and $dfrac{V}{2}=dfrac{X^2-Y^2}{2sqrt{X^2+Y^2}}$ are independent $mathcal{N}(0,1/4)$ variables.
This is independent of the post above:
Joint density of $(X,Y)$ is $displaystyle f_{X,Y}(x,y)=frac{1}{2pi}e^{-frac{1}{2}(x^2+y^2)},quad,(x,y)inmathbb{R^2}$
We transform $(X,Y)mapsto(R,Theta)mapsto(U,V)$ where
$x=rcostheta,,y=rsintheta$ and $u=frac{r}{2}sin(2theta),,v=frac{r}{2}cos(2theta)$
$(x,y)inmathbb{R^2}implies r>0,, 0<theta<2piimplies (u,v)inmathbb{R^2}$.
Note that this transformation is not one to one.
Jacobian of the transformation is $Jleft(frac{x,y}{u,v}right) = Jleft(frac{x,y}{r,theta}right)Jleft(frac{r,theta}{u,v}right)=J_1J_2$, say.
Also, $x^2+y^2=r^2=4(u^2+v^2)$ and $|J_1||J_2|=rtimesfrac{2}{r}=2$
Now $left(U=frac{XY}{sqrt{X^2+Y^2}},V=frac{X^2-Y^2}{2sqrt{X^2+Y^2}}right)$ has the preimages $(X,Y)$ and $(-X,-Y)$.
Moreover, $X,Ystackrel{text{i.i.d.}}{sim}mathcal{N}(0,1)iff -X,-Ystackrel{text{i.i.d.}}{sim}mathcal{N}(0,1)$.
Hence the joint density of $(U,V)$ is given by $$f_{U,V}(u,v)=f_{X,Y}(g_1(u,v),h_1(u,v))|J_1||J_2| + f_{X,Y}(g_2(u,v),h_2(u,v))|J_1||J_2|$$
$$=frac{1}{2pi}e^{-frac{1}{2} 4(u^2+v^2)}|J_1||J_2|times 2$$
$$=frac{1}{sqrt{frac{1}{4}}sqrt{2pi}}expleft(-frac{u^2}{2cdotfrac{1}{4}}right)cdotfrac{1}{sqrt{frac{1}{4}}sqrt{2pi}}expleft(-frac{v^2}{2cdotfrac{1}{4}}right)quad ,(u,v)inmathbb{R^2}$$
(We have the multiplier $2$ in the second step due to the preimages of $(x,y)$ namely $(g_i(u,v),h_i(u,v))$ for $i=1,2$, 'contributing' equally to the joint density).
This implies $U$ and $V$ are independent $mathcal{N}(0,1/4)$ variables.
edited Aug 20 '18 at 20:49
Michael Hardy
1
1
answered Feb 12 '18 at 14:18
StubbornAtomStubbornAtom
5,67411138
5,67411138
$begingroup$
Yes,I am facing difficulty in showing $U,V $ are N(0,1)
$endgroup$
– Legend Killer
Feb 12 '18 at 14:28
$begingroup$
Ok done! Good solution!
$endgroup$
– Legend Killer
Feb 12 '18 at 14:39
$begingroup$
What about the preimages (u, -v) and (-u,v)?
$endgroup$
– Legend Killer
Feb 24 '18 at 2:13
$begingroup$
@AyanBiswas Let me modify my answer to make it clear.
$endgroup$
– StubbornAtom
Feb 24 '18 at 6:36
$begingroup$
Hi @StubbornAtom. Thank you for this link. Can you please explain as to why the transformation (x,y) -> (u,v) is not one-to-one ? Also, we are mapping from X and Y. Why have you considered -X and -Y here ?
$endgroup$
– Dwaipayan Gupta
Mar 23 '18 at 19:24
add a comment |
$begingroup$
Yes,I am facing difficulty in showing $U,V $ are N(0,1)
$endgroup$
– Legend Killer
Feb 12 '18 at 14:28
$begingroup$
Ok done! Good solution!
$endgroup$
– Legend Killer
Feb 12 '18 at 14:39
$begingroup$
What about the preimages (u, -v) and (-u,v)?
$endgroup$
– Legend Killer
Feb 24 '18 at 2:13
$begingroup$
@AyanBiswas Let me modify my answer to make it clear.
$endgroup$
– StubbornAtom
Feb 24 '18 at 6:36
$begingroup$
Hi @StubbornAtom. Thank you for this link. Can you please explain as to why the transformation (x,y) -> (u,v) is not one-to-one ? Also, we are mapping from X and Y. Why have you considered -X and -Y here ?
$endgroup$
– Dwaipayan Gupta
Mar 23 '18 at 19:24
$begingroup$
Yes,I am facing difficulty in showing $U,V $ are N(0,1)
$endgroup$
– Legend Killer
Feb 12 '18 at 14:28
$begingroup$
Yes,I am facing difficulty in showing $U,V $ are N(0,1)
$endgroup$
– Legend Killer
Feb 12 '18 at 14:28
$begingroup$
Ok done! Good solution!
$endgroup$
– Legend Killer
Feb 12 '18 at 14:39
$begingroup$
Ok done! Good solution!
$endgroup$
– Legend Killer
Feb 12 '18 at 14:39
$begingroup$
What about the preimages (u, -v) and (-u,v)?
$endgroup$
– Legend Killer
Feb 24 '18 at 2:13
$begingroup$
What about the preimages (u, -v) and (-u,v)?
$endgroup$
– Legend Killer
Feb 24 '18 at 2:13
$begingroup$
@AyanBiswas Let me modify my answer to make it clear.
$endgroup$
– StubbornAtom
Feb 24 '18 at 6:36
$begingroup$
@AyanBiswas Let me modify my answer to make it clear.
$endgroup$
– StubbornAtom
Feb 24 '18 at 6:36
$begingroup$
Hi @StubbornAtom. Thank you for this link. Can you please explain as to why the transformation (x,y) -> (u,v) is not one-to-one ? Also, we are mapping from X and Y. Why have you considered -X and -Y here ?
$endgroup$
– Dwaipayan Gupta
Mar 23 '18 at 19:24
$begingroup$
Hi @StubbornAtom. Thank you for this link. Can you please explain as to why the transformation (x,y) -> (u,v) is not one-to-one ? Also, we are mapping from X and Y. Why have you considered -X and -Y here ?
$endgroup$
– Dwaipayan Gupta
Mar 23 '18 at 19:24
add a comment |
$begingroup$
Setting $U=dfrac{XY}{sqrt{X^2+Y^2}}, V=dfrac{X^2-Y^2}{2sqrt{X^2+Y^2}}$ and using moment generating functions:
begin{align}
M_{(U,V)}(u,v) & =mathbb{E}left[mathrm{e}^{langle,(u,v),;,(U,V),rangle}right] \[10pt]
& =iint_{mathbb{R}^2}expleft(ufrac{xy}{sqrt{x^2+y^2}}+vfrac{x^2-y^2}{2sqrt{x^2+y^2}}right)cdot f_{(X,Y)}(x,y),mathrm{d}x,mathrm{d}y.
end{align}
You can see here that $$M_{(U,V)}(u,v)=expleft(frac18(u^2+v^2)right)=expleft(frac12(u,v)
begin{pmatrix}1/4 & 0\ 0 & 1/4end{pmatrix}
(u,v)^Tright)$$
so that $(U,V)$ is normal multivariate with $mathbf{0}$ mean and diagonal covariance matrix, meaning $U, V$ are independant $mathcal{N}(0,1/4)$.
$endgroup$
add a comment |
$begingroup$
Setting $U=dfrac{XY}{sqrt{X^2+Y^2}}, V=dfrac{X^2-Y^2}{2sqrt{X^2+Y^2}}$ and using moment generating functions:
begin{align}
M_{(U,V)}(u,v) & =mathbb{E}left[mathrm{e}^{langle,(u,v),;,(U,V),rangle}right] \[10pt]
& =iint_{mathbb{R}^2}expleft(ufrac{xy}{sqrt{x^2+y^2}}+vfrac{x^2-y^2}{2sqrt{x^2+y^2}}right)cdot f_{(X,Y)}(x,y),mathrm{d}x,mathrm{d}y.
end{align}
You can see here that $$M_{(U,V)}(u,v)=expleft(frac18(u^2+v^2)right)=expleft(frac12(u,v)
begin{pmatrix}1/4 & 0\ 0 & 1/4end{pmatrix}
(u,v)^Tright)$$
so that $(U,V)$ is normal multivariate with $mathbf{0}$ mean and diagonal covariance matrix, meaning $U, V$ are independant $mathcal{N}(0,1/4)$.
$endgroup$
add a comment |
$begingroup$
Setting $U=dfrac{XY}{sqrt{X^2+Y^2}}, V=dfrac{X^2-Y^2}{2sqrt{X^2+Y^2}}$ and using moment generating functions:
begin{align}
M_{(U,V)}(u,v) & =mathbb{E}left[mathrm{e}^{langle,(u,v),;,(U,V),rangle}right] \[10pt]
& =iint_{mathbb{R}^2}expleft(ufrac{xy}{sqrt{x^2+y^2}}+vfrac{x^2-y^2}{2sqrt{x^2+y^2}}right)cdot f_{(X,Y)}(x,y),mathrm{d}x,mathrm{d}y.
end{align}
You can see here that $$M_{(U,V)}(u,v)=expleft(frac18(u^2+v^2)right)=expleft(frac12(u,v)
begin{pmatrix}1/4 & 0\ 0 & 1/4end{pmatrix}
(u,v)^Tright)$$
so that $(U,V)$ is normal multivariate with $mathbf{0}$ mean and diagonal covariance matrix, meaning $U, V$ are independant $mathcal{N}(0,1/4)$.
$endgroup$
Setting $U=dfrac{XY}{sqrt{X^2+Y^2}}, V=dfrac{X^2-Y^2}{2sqrt{X^2+Y^2}}$ and using moment generating functions:
begin{align}
M_{(U,V)}(u,v) & =mathbb{E}left[mathrm{e}^{langle,(u,v),;,(U,V),rangle}right] \[10pt]
& =iint_{mathbb{R}^2}expleft(ufrac{xy}{sqrt{x^2+y^2}}+vfrac{x^2-y^2}{2sqrt{x^2+y^2}}right)cdot f_{(X,Y)}(x,y),mathrm{d}x,mathrm{d}y.
end{align}
You can see here that $$M_{(U,V)}(u,v)=expleft(frac18(u^2+v^2)right)=expleft(frac12(u,v)
begin{pmatrix}1/4 & 0\ 0 & 1/4end{pmatrix}
(u,v)^Tright)$$
so that $(U,V)$ is normal multivariate with $mathbf{0}$ mean and diagonal covariance matrix, meaning $U, V$ are independant $mathcal{N}(0,1/4)$.
edited Aug 20 '18 at 20:43
Michael Hardy
1
1
answered Feb 24 '18 at 21:37
dequedeque
413111
413111
add a comment |
add a comment |
$begingroup$
If you have already proved $frac{X Y}{sqrt{X^2 + Y^2}} $ and $frac{X^2 - Y^2}{sqrt{X^2 + Y^2}}$ are gaussian, as long as that pair of them is jointly gaussian, then you may use their property: $u,, v text{ independent} iff operatorname{cov}(u,v) = 0$.
$$ operatorname{cov} left( frac{X Y}{sqrt{X^2 + Y^2}},frac{X^2 - Y^2}{sqrt{X^2 + Y^2}} right)$$
$$ = operatorname{cov} left( frac{X Y}{sqrt{X^2 + Y^2}},frac{X^2}{sqrt{X^2 + Y^2}} right) - operatorname{cov} left( frac{X Y}{sqrt{X^2 + Y^2}},frac{Y^2}{sqrt{X^2 + Y^2}} right)$$
Now make use of the symmetry of the expressions we have:
$$ operatorname{cov}(cdots) = 0 $$
To make this more rigorous one may rewrite the covariance as follows:
$$ operatorname{cov} left( frac{X Y}{sqrt{X^2 + Y^2}},frac{X^2}{sqrt{X^2 + Y^2}} right) - operatorname{cov} left( frac{X Y}{sqrt{X^2 + Y^2}},frac{Y^2}{sqrt{X^2 + Y^2}} right) $$
$$ = E left( frac{X^3 Y}{X^2 + Y^2} right) - E left( frac{X Y^3}{X^2 + Y^2} right) $$
Now renaming $X to Y, , Y to X$ under the first expectation sign (note that this is the same as renaming variables under integral) we get the result.
Covariance method can be carried even further, following the last line and the trick $ X = -X $ ($X$ is symmetric distribution) which we apply to the second $E$:
$$ = E left( frac{X^3 Y}{X^2 + Y^2} right) - E left( frac{X Y^3}{X^2 + Y^2} right) = E left( frac{X^3 Y}{X^2 + Y^2} right) + E left( frac{X Y^3}{X^2 + Y^2} right) $$
$$ = E left( frac{X Y(X^2 + Y^2)}{X^2 + Y^2} right) = E(XY) = 0$$
The last equation is due to independence of $X, Y$ $implies 0=operatorname{cov}(X,Y)=E(XY) - E(X)E(Y)=E(XY).$
$endgroup$
3
$begingroup$
There is an error in the first sentence here. Being Gaussian and having zero covariance does NOT imply independnce. It does imply independence if they are JOINTLY Gaussian. But you haven't mentioned that.
$endgroup$
– Michael Hardy
Aug 20 '18 at 20:43
add a comment |
$begingroup$
If you have already proved $frac{X Y}{sqrt{X^2 + Y^2}} $ and $frac{X^2 - Y^2}{sqrt{X^2 + Y^2}}$ are gaussian, as long as that pair of them is jointly gaussian, then you may use their property: $u,, v text{ independent} iff operatorname{cov}(u,v) = 0$.
$$ operatorname{cov} left( frac{X Y}{sqrt{X^2 + Y^2}},frac{X^2 - Y^2}{sqrt{X^2 + Y^2}} right)$$
$$ = operatorname{cov} left( frac{X Y}{sqrt{X^2 + Y^2}},frac{X^2}{sqrt{X^2 + Y^2}} right) - operatorname{cov} left( frac{X Y}{sqrt{X^2 + Y^2}},frac{Y^2}{sqrt{X^2 + Y^2}} right)$$
Now make use of the symmetry of the expressions we have:
$$ operatorname{cov}(cdots) = 0 $$
To make this more rigorous one may rewrite the covariance as follows:
$$ operatorname{cov} left( frac{X Y}{sqrt{X^2 + Y^2}},frac{X^2}{sqrt{X^2 + Y^2}} right) - operatorname{cov} left( frac{X Y}{sqrt{X^2 + Y^2}},frac{Y^2}{sqrt{X^2 + Y^2}} right) $$
$$ = E left( frac{X^3 Y}{X^2 + Y^2} right) - E left( frac{X Y^3}{X^2 + Y^2} right) $$
Now renaming $X to Y, , Y to X$ under the first expectation sign (note that this is the same as renaming variables under integral) we get the result.
Covariance method can be carried even further, following the last line and the trick $ X = -X $ ($X$ is symmetric distribution) which we apply to the second $E$:
$$ = E left( frac{X^3 Y}{X^2 + Y^2} right) - E left( frac{X Y^3}{X^2 + Y^2} right) = E left( frac{X^3 Y}{X^2 + Y^2} right) + E left( frac{X Y^3}{X^2 + Y^2} right) $$
$$ = E left( frac{X Y(X^2 + Y^2)}{X^2 + Y^2} right) = E(XY) = 0$$
The last equation is due to independence of $X, Y$ $implies 0=operatorname{cov}(X,Y)=E(XY) - E(X)E(Y)=E(XY).$
$endgroup$
3
$begingroup$
There is an error in the first sentence here. Being Gaussian and having zero covariance does NOT imply independnce. It does imply independence if they are JOINTLY Gaussian. But you haven't mentioned that.
$endgroup$
– Michael Hardy
Aug 20 '18 at 20:43
add a comment |
$begingroup$
If you have already proved $frac{X Y}{sqrt{X^2 + Y^2}} $ and $frac{X^2 - Y^2}{sqrt{X^2 + Y^2}}$ are gaussian, as long as that pair of them is jointly gaussian, then you may use their property: $u,, v text{ independent} iff operatorname{cov}(u,v) = 0$.
$$ operatorname{cov} left( frac{X Y}{sqrt{X^2 + Y^2}},frac{X^2 - Y^2}{sqrt{X^2 + Y^2}} right)$$
$$ = operatorname{cov} left( frac{X Y}{sqrt{X^2 + Y^2}},frac{X^2}{sqrt{X^2 + Y^2}} right) - operatorname{cov} left( frac{X Y}{sqrt{X^2 + Y^2}},frac{Y^2}{sqrt{X^2 + Y^2}} right)$$
Now make use of the symmetry of the expressions we have:
$$ operatorname{cov}(cdots) = 0 $$
To make this more rigorous one may rewrite the covariance as follows:
$$ operatorname{cov} left( frac{X Y}{sqrt{X^2 + Y^2}},frac{X^2}{sqrt{X^2 + Y^2}} right) - operatorname{cov} left( frac{X Y}{sqrt{X^2 + Y^2}},frac{Y^2}{sqrt{X^2 + Y^2}} right) $$
$$ = E left( frac{X^3 Y}{X^2 + Y^2} right) - E left( frac{X Y^3}{X^2 + Y^2} right) $$
Now renaming $X to Y, , Y to X$ under the first expectation sign (note that this is the same as renaming variables under integral) we get the result.
Covariance method can be carried even further, following the last line and the trick $ X = -X $ ($X$ is symmetric distribution) which we apply to the second $E$:
$$ = E left( frac{X^3 Y}{X^2 + Y^2} right) - E left( frac{X Y^3}{X^2 + Y^2} right) = E left( frac{X^3 Y}{X^2 + Y^2} right) + E left( frac{X Y^3}{X^2 + Y^2} right) $$
$$ = E left( frac{X Y(X^2 + Y^2)}{X^2 + Y^2} right) = E(XY) = 0$$
The last equation is due to independence of $X, Y$ $implies 0=operatorname{cov}(X,Y)=E(XY) - E(X)E(Y)=E(XY).$
$endgroup$
If you have already proved $frac{X Y}{sqrt{X^2 + Y^2}} $ and $frac{X^2 - Y^2}{sqrt{X^2 + Y^2}}$ are gaussian, as long as that pair of them is jointly gaussian, then you may use their property: $u,, v text{ independent} iff operatorname{cov}(u,v) = 0$.
$$ operatorname{cov} left( frac{X Y}{sqrt{X^2 + Y^2}},frac{X^2 - Y^2}{sqrt{X^2 + Y^2}} right)$$
$$ = operatorname{cov} left( frac{X Y}{sqrt{X^2 + Y^2}},frac{X^2}{sqrt{X^2 + Y^2}} right) - operatorname{cov} left( frac{X Y}{sqrt{X^2 + Y^2}},frac{Y^2}{sqrt{X^2 + Y^2}} right)$$
Now make use of the symmetry of the expressions we have:
$$ operatorname{cov}(cdots) = 0 $$
To make this more rigorous one may rewrite the covariance as follows:
$$ operatorname{cov} left( frac{X Y}{sqrt{X^2 + Y^2}},frac{X^2}{sqrt{X^2 + Y^2}} right) - operatorname{cov} left( frac{X Y}{sqrt{X^2 + Y^2}},frac{Y^2}{sqrt{X^2 + Y^2}} right) $$
$$ = E left( frac{X^3 Y}{X^2 + Y^2} right) - E left( frac{X Y^3}{X^2 + Y^2} right) $$
Now renaming $X to Y, , Y to X$ under the first expectation sign (note that this is the same as renaming variables under integral) we get the result.
Covariance method can be carried even further, following the last line and the trick $ X = -X $ ($X$ is symmetric distribution) which we apply to the second $E$:
$$ = E left( frac{X^3 Y}{X^2 + Y^2} right) - E left( frac{X Y^3}{X^2 + Y^2} right) = E left( frac{X^3 Y}{X^2 + Y^2} right) + E left( frac{X Y^3}{X^2 + Y^2} right) $$
$$ = E left( frac{X Y(X^2 + Y^2)}{X^2 + Y^2} right) = E(XY) = 0$$
The last equation is due to independence of $X, Y$ $implies 0=operatorname{cov}(X,Y)=E(XY) - E(X)E(Y)=E(XY).$
edited Jan 6 at 15:22
answered Feb 24 '18 at 8:47
Al PrihodkoAl Prihodko
436
436
3
$begingroup$
There is an error in the first sentence here. Being Gaussian and having zero covariance does NOT imply independnce. It does imply independence if they are JOINTLY Gaussian. But you haven't mentioned that.
$endgroup$
– Michael Hardy
Aug 20 '18 at 20:43
add a comment |
3
$begingroup$
There is an error in the first sentence here. Being Gaussian and having zero covariance does NOT imply independnce. It does imply independence if they are JOINTLY Gaussian. But you haven't mentioned that.
$endgroup$
– Michael Hardy
Aug 20 '18 at 20:43
3
3
$begingroup$
There is an error in the first sentence here. Being Gaussian and having zero covariance does NOT imply independnce. It does imply independence if they are JOINTLY Gaussian. But you haven't mentioned that.
$endgroup$
– Michael Hardy
Aug 20 '18 at 20:43
$begingroup$
There is an error in the first sentence here. Being Gaussian and having zero covariance does NOT imply independnce. It does imply independence if they are JOINTLY Gaussian. But you haven't mentioned that.
$endgroup$
– Michael Hardy
Aug 20 '18 at 20:43
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2647442%2fgiven-that-x-y-are-independent-n0-1-show-that-fracxy-sqrtx2y2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You're on the right track: don't get discouraged.
$endgroup$
– kimchi lover
Feb 12 '18 at 13:58
$begingroup$
Actually I can show each of the distributions $frac{XY}{sqrt{X^2+Y^2}}$ and the other one to be N(0,1/4) but I cannot show their independence
$endgroup$
– Legend Killer
Feb 12 '18 at 14:00