What is $int_0^{pi/2}sin^7(theta)cos^5(theta)dtheta$
$begingroup$
I have to integrate the following:
$int_0^limitsfrac{pi}{2}sin^7(theta)cos^5(theta)dtheta$
I decided to use a $u$ substitution of $u=sin^2(theta)$, and $frac{du}{2}=sin(theta)cos(theta)$
and arrived at this integral
$int_limits{0}^{1}u^3(1-u)^2du$
From here I decided to use integration by parts using $g=u^3$ and $dv=(1-u)^2du$
I get the following:
$$biggl[frac{u^3*(1-u)^3}{3}biggr]_0^1-int_limits{0}^{1}(u^2*(1-u)^3)du$$
Repeated again $g=u^2$, and $dv=(1-u)^3du$
$$biggl[frac{u^3*(1-u)^3}{3}biggr]_0^1-biggl[frac{u^2*(1-u)^4}{4}biggr]_0^1+frac{1}{2}int_limits{0}^{1}u(1-u)^4$$
Repeating again $g=u$, and $dv=(1-u)^4$
$$biggl[frac{u^3*(1-u)^3}{3}biggr]_0^1-biggl[frac{u^2*(1-u)^4}{4}biggr]_0^1+frac{1}{2}biggl[frac{u(1-u)^5}{5}biggr]_0^1-frac{1}5int_limits{0}^{1}(1-u)^5$$
and I get
$$biggl[frac{u^3*(1-u)^3}{3}biggr]_0^1-biggl[frac{u^2*(1-u)^4}{4}biggr]_0^1+frac{1}{2}biggl[frac{u(1-u)^5}{5}biggr]_0^1-frac{1}{30}biggl[(1-u)^6biggr]_0^1$$
calculus integration trigonometry definite-integrals
$endgroup$
add a comment |
$begingroup$
I have to integrate the following:
$int_0^limitsfrac{pi}{2}sin^7(theta)cos^5(theta)dtheta$
I decided to use a $u$ substitution of $u=sin^2(theta)$, and $frac{du}{2}=sin(theta)cos(theta)$
and arrived at this integral
$int_limits{0}^{1}u^3(1-u)^2du$
From here I decided to use integration by parts using $g=u^3$ and $dv=(1-u)^2du$
I get the following:
$$biggl[frac{u^3*(1-u)^3}{3}biggr]_0^1-int_limits{0}^{1}(u^2*(1-u)^3)du$$
Repeated again $g=u^2$, and $dv=(1-u)^3du$
$$biggl[frac{u^3*(1-u)^3}{3}biggr]_0^1-biggl[frac{u^2*(1-u)^4}{4}biggr]_0^1+frac{1}{2}int_limits{0}^{1}u(1-u)^4$$
Repeating again $g=u$, and $dv=(1-u)^4$
$$biggl[frac{u^3*(1-u)^3}{3}biggr]_0^1-biggl[frac{u^2*(1-u)^4}{4}biggr]_0^1+frac{1}{2}biggl[frac{u(1-u)^5}{5}biggr]_0^1-frac{1}5int_limits{0}^{1}(1-u)^5$$
and I get
$$biggl[frac{u^3*(1-u)^3}{3}biggr]_0^1-biggl[frac{u^2*(1-u)^4}{4}biggr]_0^1+frac{1}{2}biggl[frac{u(1-u)^5}{5}biggr]_0^1-frac{1}{30}biggl[(1-u)^6biggr]_0^1$$
calculus integration trigonometry definite-integrals
$endgroup$
$begingroup$
If you just expand $(1-u)^2=u^2+1-2u$, you will be able to solve it more directly.
$endgroup$
– Shubham Johri
Jan 6 at 18:09
$begingroup$
Possible duplicate Integral $int_0^frac{pi}{2} sin^7x cos^5x, dx$
$endgroup$
– A.Γ.
Jan 6 at 18:15
$begingroup$
$$frac 12 B(4,3)$$?
$endgroup$
– Digamma
Jan 7 at 2:45
add a comment |
$begingroup$
I have to integrate the following:
$int_0^limitsfrac{pi}{2}sin^7(theta)cos^5(theta)dtheta$
I decided to use a $u$ substitution of $u=sin^2(theta)$, and $frac{du}{2}=sin(theta)cos(theta)$
and arrived at this integral
$int_limits{0}^{1}u^3(1-u)^2du$
From here I decided to use integration by parts using $g=u^3$ and $dv=(1-u)^2du$
I get the following:
$$biggl[frac{u^3*(1-u)^3}{3}biggr]_0^1-int_limits{0}^{1}(u^2*(1-u)^3)du$$
Repeated again $g=u^2$, and $dv=(1-u)^3du$
$$biggl[frac{u^3*(1-u)^3}{3}biggr]_0^1-biggl[frac{u^2*(1-u)^4}{4}biggr]_0^1+frac{1}{2}int_limits{0}^{1}u(1-u)^4$$
Repeating again $g=u$, and $dv=(1-u)^4$
$$biggl[frac{u^3*(1-u)^3}{3}biggr]_0^1-biggl[frac{u^2*(1-u)^4}{4}biggr]_0^1+frac{1}{2}biggl[frac{u(1-u)^5}{5}biggr]_0^1-frac{1}5int_limits{0}^{1}(1-u)^5$$
and I get
$$biggl[frac{u^3*(1-u)^3}{3}biggr]_0^1-biggl[frac{u^2*(1-u)^4}{4}biggr]_0^1+frac{1}{2}biggl[frac{u(1-u)^5}{5}biggr]_0^1-frac{1}{30}biggl[(1-u)^6biggr]_0^1$$
calculus integration trigonometry definite-integrals
$endgroup$
I have to integrate the following:
$int_0^limitsfrac{pi}{2}sin^7(theta)cos^5(theta)dtheta$
I decided to use a $u$ substitution of $u=sin^2(theta)$, and $frac{du}{2}=sin(theta)cos(theta)$
and arrived at this integral
$int_limits{0}^{1}u^3(1-u)^2du$
From here I decided to use integration by parts using $g=u^3$ and $dv=(1-u)^2du$
I get the following:
$$biggl[frac{u^3*(1-u)^3}{3}biggr]_0^1-int_limits{0}^{1}(u^2*(1-u)^3)du$$
Repeated again $g=u^2$, and $dv=(1-u)^3du$
$$biggl[frac{u^3*(1-u)^3}{3}biggr]_0^1-biggl[frac{u^2*(1-u)^4}{4}biggr]_0^1+frac{1}{2}int_limits{0}^{1}u(1-u)^4$$
Repeating again $g=u$, and $dv=(1-u)^4$
$$biggl[frac{u^3*(1-u)^3}{3}biggr]_0^1-biggl[frac{u^2*(1-u)^4}{4}biggr]_0^1+frac{1}{2}biggl[frac{u(1-u)^5}{5}biggr]_0^1-frac{1}5int_limits{0}^{1}(1-u)^5$$
and I get
$$biggl[frac{u^3*(1-u)^3}{3}biggr]_0^1-biggl[frac{u^2*(1-u)^4}{4}biggr]_0^1+frac{1}{2}biggl[frac{u(1-u)^5}{5}biggr]_0^1-frac{1}{30}biggl[(1-u)^6biggr]_0^1$$
calculus integration trigonometry definite-integrals
calculus integration trigonometry definite-integrals
edited Jan 6 at 18:10
JimmyK4542
40.7k245105
40.7k245105
asked Jan 6 at 17:55
EnlightenedFunkyEnlightenedFunky
7471822
7471822
$begingroup$
If you just expand $(1-u)^2=u^2+1-2u$, you will be able to solve it more directly.
$endgroup$
– Shubham Johri
Jan 6 at 18:09
$begingroup$
Possible duplicate Integral $int_0^frac{pi}{2} sin^7x cos^5x, dx$
$endgroup$
– A.Γ.
Jan 6 at 18:15
$begingroup$
$$frac 12 B(4,3)$$?
$endgroup$
– Digamma
Jan 7 at 2:45
add a comment |
$begingroup$
If you just expand $(1-u)^2=u^2+1-2u$, you will be able to solve it more directly.
$endgroup$
– Shubham Johri
Jan 6 at 18:09
$begingroup$
Possible duplicate Integral $int_0^frac{pi}{2} sin^7x cos^5x, dx$
$endgroup$
– A.Γ.
Jan 6 at 18:15
$begingroup$
$$frac 12 B(4,3)$$?
$endgroup$
– Digamma
Jan 7 at 2:45
$begingroup$
If you just expand $(1-u)^2=u^2+1-2u$, you will be able to solve it more directly.
$endgroup$
– Shubham Johri
Jan 6 at 18:09
$begingroup$
If you just expand $(1-u)^2=u^2+1-2u$, you will be able to solve it more directly.
$endgroup$
– Shubham Johri
Jan 6 at 18:09
$begingroup$
Possible duplicate Integral $int_0^frac{pi}{2} sin^7x cos^5x, dx$
$endgroup$
– A.Γ.
Jan 6 at 18:15
$begingroup$
Possible duplicate Integral $int_0^frac{pi}{2} sin^7x cos^5x, dx$
$endgroup$
– A.Γ.
Jan 6 at 18:15
$begingroup$
$$frac 12 B(4,3)$$?
$endgroup$
– Digamma
Jan 7 at 2:45
$begingroup$
$$frac 12 B(4,3)$$?
$endgroup$
– Digamma
Jan 7 at 2:45
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
I think you complicated the last part, after all you are integrating a polynomial.
$displaystyle int_0^1 u^3(1-u)^2mathop{du}=int_0^1 (u^3-2u^4+u^5)mathop{du}=left[frac{u^4}4-2frac{u^5}5+frac{u^6}6right]_0^1=frac 14-frac 25+frac 16=frac 1{60}$
Also you dropped the coeff $dfrac 12$ from $dfrac{du}2$, the result should be $dfrac 1{120}$
$endgroup$
add a comment |
$begingroup$
Note that:
$$B(m+1,n+1)=2int_0^{pi/2}cos^{2m+1}(theta)sin^{2n+1}(theta)dtheta=frac{m!n!}{(m+n+1)!}$$
$endgroup$
1
$begingroup$
I think this is overkill but nevertheless, it's a solution too!
$endgroup$
– Frank W.
Jan 6 at 21:23
add a comment |
$begingroup$
I would just do $u=sintheta$ and $mathrm du=costheta,mathrm dtheta$. Sobegin{align}int_0^{fracpi2}sin^7(theta)cos^5(theta),mathrm dtheta&=int_0^{fracpi2}sin^7(theta)bigl(1-sin^2(theta)bigr)^2cos(theta),mathrm dtheta\&=int_0^1u^7(1-u^2)^2,mathrm du.end{align}I think that it's simpler.
$endgroup$
add a comment |
$begingroup$
To lower the exponents a bit, notice that substitution $theta mapsto fracpi2-theta$ yields
$$int_0^{fracpi2} cos^7thetasin^5theta,dtheta = int_0^{fracpi2} sin^7thetacos^5theta,dtheta$$
so we have
$$2I = int_0^{fracpi2}sin^5thetacos^5theta(cos^2theta+sin^2theta),dtheta = int_0^{fracpi2}sin^5thetacos^5theta,dtheta = int_0^{fracpi2}sin^5theta(1-sin^2theta)^2costheta,dtheta$$
Now setting $u = sintheta$ yields
$$I = frac12 int_0^1u^5(1-u^2)^2,du = frac1{120}$$
$endgroup$
add a comment |
$begingroup$
As has been noted, this integral can be related to the Beta Function. Here's how.
Consider the integral
$$I(a,b)=int_0^{pi/2}sin(x)^acos(x)^bmathrm dx$$
If we make the substitution $t=sin(x)^2$, we have that
$$I(a,b)=frac12int_0^1t^{frac{a-1}2}(1-t)^{frac{b-1}2}mathrm dt$$
$$I(a,b)=frac12int_0^1t^{frac{a+1}2-1}(1-t)^{frac{b+1}2-1}mathrm dt$$
We then recall the definition of the Beta function
$$mathrm B(x,y)=int_0^1t^{x-1}(1-t)^{y-1}mathrm dt=frac{Gamma(x)Gamma(y)}{Gamma(x+y)}$$
Where $Gamma(s)$ is the Gamma function. Technically it is defined by
$$Gamma(s)=int_0^infty x^{s-1}e^{-x}mathrm dx,qquad mathrm{Re}(s)>0$$
But in the case that $s$ is a (positive) integer,
$$Gamma(s)=(s-1)!$$
So without further adieu,
$$I(a,b)=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
We then see that your integral is
$$I(7,5)=frac{Gamma(4)Gamma(3)}{2Gamma(7)}$$
$$I(7,5)=frac1{120}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064190%2fwhat-is-int-0-pi-2-sin7-theta-cos5-thetad-theta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I think you complicated the last part, after all you are integrating a polynomial.
$displaystyle int_0^1 u^3(1-u)^2mathop{du}=int_0^1 (u^3-2u^4+u^5)mathop{du}=left[frac{u^4}4-2frac{u^5}5+frac{u^6}6right]_0^1=frac 14-frac 25+frac 16=frac 1{60}$
Also you dropped the coeff $dfrac 12$ from $dfrac{du}2$, the result should be $dfrac 1{120}$
$endgroup$
add a comment |
$begingroup$
I think you complicated the last part, after all you are integrating a polynomial.
$displaystyle int_0^1 u^3(1-u)^2mathop{du}=int_0^1 (u^3-2u^4+u^5)mathop{du}=left[frac{u^4}4-2frac{u^5}5+frac{u^6}6right]_0^1=frac 14-frac 25+frac 16=frac 1{60}$
Also you dropped the coeff $dfrac 12$ from $dfrac{du}2$, the result should be $dfrac 1{120}$
$endgroup$
add a comment |
$begingroup$
I think you complicated the last part, after all you are integrating a polynomial.
$displaystyle int_0^1 u^3(1-u)^2mathop{du}=int_0^1 (u^3-2u^4+u^5)mathop{du}=left[frac{u^4}4-2frac{u^5}5+frac{u^6}6right]_0^1=frac 14-frac 25+frac 16=frac 1{60}$
Also you dropped the coeff $dfrac 12$ from $dfrac{du}2$, the result should be $dfrac 1{120}$
$endgroup$
I think you complicated the last part, after all you are integrating a polynomial.
$displaystyle int_0^1 u^3(1-u)^2mathop{du}=int_0^1 (u^3-2u^4+u^5)mathop{du}=left[frac{u^4}4-2frac{u^5}5+frac{u^6}6right]_0^1=frac 14-frac 25+frac 16=frac 1{60}$
Also you dropped the coeff $dfrac 12$ from $dfrac{du}2$, the result should be $dfrac 1{120}$
answered Jan 6 at 18:10
zwimzwim
11.8k730
11.8k730
add a comment |
add a comment |
$begingroup$
Note that:
$$B(m+1,n+1)=2int_0^{pi/2}cos^{2m+1}(theta)sin^{2n+1}(theta)dtheta=frac{m!n!}{(m+n+1)!}$$
$endgroup$
1
$begingroup$
I think this is overkill but nevertheless, it's a solution too!
$endgroup$
– Frank W.
Jan 6 at 21:23
add a comment |
$begingroup$
Note that:
$$B(m+1,n+1)=2int_0^{pi/2}cos^{2m+1}(theta)sin^{2n+1}(theta)dtheta=frac{m!n!}{(m+n+1)!}$$
$endgroup$
1
$begingroup$
I think this is overkill but nevertheless, it's a solution too!
$endgroup$
– Frank W.
Jan 6 at 21:23
add a comment |
$begingroup$
Note that:
$$B(m+1,n+1)=2int_0^{pi/2}cos^{2m+1}(theta)sin^{2n+1}(theta)dtheta=frac{m!n!}{(m+n+1)!}$$
$endgroup$
Note that:
$$B(m+1,n+1)=2int_0^{pi/2}cos^{2m+1}(theta)sin^{2n+1}(theta)dtheta=frac{m!n!}{(m+n+1)!}$$
answered Jan 6 at 18:29
Henry LeeHenry Lee
1,884219
1,884219
1
$begingroup$
I think this is overkill but nevertheless, it's a solution too!
$endgroup$
– Frank W.
Jan 6 at 21:23
add a comment |
1
$begingroup$
I think this is overkill but nevertheless, it's a solution too!
$endgroup$
– Frank W.
Jan 6 at 21:23
1
1
$begingroup$
I think this is overkill but nevertheless, it's a solution too!
$endgroup$
– Frank W.
Jan 6 at 21:23
$begingroup$
I think this is overkill but nevertheless, it's a solution too!
$endgroup$
– Frank W.
Jan 6 at 21:23
add a comment |
$begingroup$
I would just do $u=sintheta$ and $mathrm du=costheta,mathrm dtheta$. Sobegin{align}int_0^{fracpi2}sin^7(theta)cos^5(theta),mathrm dtheta&=int_0^{fracpi2}sin^7(theta)bigl(1-sin^2(theta)bigr)^2cos(theta),mathrm dtheta\&=int_0^1u^7(1-u^2)^2,mathrm du.end{align}I think that it's simpler.
$endgroup$
add a comment |
$begingroup$
I would just do $u=sintheta$ and $mathrm du=costheta,mathrm dtheta$. Sobegin{align}int_0^{fracpi2}sin^7(theta)cos^5(theta),mathrm dtheta&=int_0^{fracpi2}sin^7(theta)bigl(1-sin^2(theta)bigr)^2cos(theta),mathrm dtheta\&=int_0^1u^7(1-u^2)^2,mathrm du.end{align}I think that it's simpler.
$endgroup$
add a comment |
$begingroup$
I would just do $u=sintheta$ and $mathrm du=costheta,mathrm dtheta$. Sobegin{align}int_0^{fracpi2}sin^7(theta)cos^5(theta),mathrm dtheta&=int_0^{fracpi2}sin^7(theta)bigl(1-sin^2(theta)bigr)^2cos(theta),mathrm dtheta\&=int_0^1u^7(1-u^2)^2,mathrm du.end{align}I think that it's simpler.
$endgroup$
I would just do $u=sintheta$ and $mathrm du=costheta,mathrm dtheta$. Sobegin{align}int_0^{fracpi2}sin^7(theta)cos^5(theta),mathrm dtheta&=int_0^{fracpi2}sin^7(theta)bigl(1-sin^2(theta)bigr)^2cos(theta),mathrm dtheta\&=int_0^1u^7(1-u^2)^2,mathrm du.end{align}I think that it's simpler.
edited Jan 6 at 21:24
answered Jan 6 at 18:03
José Carlos SantosJosé Carlos Santos
156k22126227
156k22126227
add a comment |
add a comment |
$begingroup$
To lower the exponents a bit, notice that substitution $theta mapsto fracpi2-theta$ yields
$$int_0^{fracpi2} cos^7thetasin^5theta,dtheta = int_0^{fracpi2} sin^7thetacos^5theta,dtheta$$
so we have
$$2I = int_0^{fracpi2}sin^5thetacos^5theta(cos^2theta+sin^2theta),dtheta = int_0^{fracpi2}sin^5thetacos^5theta,dtheta = int_0^{fracpi2}sin^5theta(1-sin^2theta)^2costheta,dtheta$$
Now setting $u = sintheta$ yields
$$I = frac12 int_0^1u^5(1-u^2)^2,du = frac1{120}$$
$endgroup$
add a comment |
$begingroup$
To lower the exponents a bit, notice that substitution $theta mapsto fracpi2-theta$ yields
$$int_0^{fracpi2} cos^7thetasin^5theta,dtheta = int_0^{fracpi2} sin^7thetacos^5theta,dtheta$$
so we have
$$2I = int_0^{fracpi2}sin^5thetacos^5theta(cos^2theta+sin^2theta),dtheta = int_0^{fracpi2}sin^5thetacos^5theta,dtheta = int_0^{fracpi2}sin^5theta(1-sin^2theta)^2costheta,dtheta$$
Now setting $u = sintheta$ yields
$$I = frac12 int_0^1u^5(1-u^2)^2,du = frac1{120}$$
$endgroup$
add a comment |
$begingroup$
To lower the exponents a bit, notice that substitution $theta mapsto fracpi2-theta$ yields
$$int_0^{fracpi2} cos^7thetasin^5theta,dtheta = int_0^{fracpi2} sin^7thetacos^5theta,dtheta$$
so we have
$$2I = int_0^{fracpi2}sin^5thetacos^5theta(cos^2theta+sin^2theta),dtheta = int_0^{fracpi2}sin^5thetacos^5theta,dtheta = int_0^{fracpi2}sin^5theta(1-sin^2theta)^2costheta,dtheta$$
Now setting $u = sintheta$ yields
$$I = frac12 int_0^1u^5(1-u^2)^2,du = frac1{120}$$
$endgroup$
To lower the exponents a bit, notice that substitution $theta mapsto fracpi2-theta$ yields
$$int_0^{fracpi2} cos^7thetasin^5theta,dtheta = int_0^{fracpi2} sin^7thetacos^5theta,dtheta$$
so we have
$$2I = int_0^{fracpi2}sin^5thetacos^5theta(cos^2theta+sin^2theta),dtheta = int_0^{fracpi2}sin^5thetacos^5theta,dtheta = int_0^{fracpi2}sin^5theta(1-sin^2theta)^2costheta,dtheta$$
Now setting $u = sintheta$ yields
$$I = frac12 int_0^1u^5(1-u^2)^2,du = frac1{120}$$
answered Jan 6 at 22:07
mechanodroidmechanodroid
27.3k62446
27.3k62446
add a comment |
add a comment |
$begingroup$
As has been noted, this integral can be related to the Beta Function. Here's how.
Consider the integral
$$I(a,b)=int_0^{pi/2}sin(x)^acos(x)^bmathrm dx$$
If we make the substitution $t=sin(x)^2$, we have that
$$I(a,b)=frac12int_0^1t^{frac{a-1}2}(1-t)^{frac{b-1}2}mathrm dt$$
$$I(a,b)=frac12int_0^1t^{frac{a+1}2-1}(1-t)^{frac{b+1}2-1}mathrm dt$$
We then recall the definition of the Beta function
$$mathrm B(x,y)=int_0^1t^{x-1}(1-t)^{y-1}mathrm dt=frac{Gamma(x)Gamma(y)}{Gamma(x+y)}$$
Where $Gamma(s)$ is the Gamma function. Technically it is defined by
$$Gamma(s)=int_0^infty x^{s-1}e^{-x}mathrm dx,qquad mathrm{Re}(s)>0$$
But in the case that $s$ is a (positive) integer,
$$Gamma(s)=(s-1)!$$
So without further adieu,
$$I(a,b)=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
We then see that your integral is
$$I(7,5)=frac{Gamma(4)Gamma(3)}{2Gamma(7)}$$
$$I(7,5)=frac1{120}$$
$endgroup$
add a comment |
$begingroup$
As has been noted, this integral can be related to the Beta Function. Here's how.
Consider the integral
$$I(a,b)=int_0^{pi/2}sin(x)^acos(x)^bmathrm dx$$
If we make the substitution $t=sin(x)^2$, we have that
$$I(a,b)=frac12int_0^1t^{frac{a-1}2}(1-t)^{frac{b-1}2}mathrm dt$$
$$I(a,b)=frac12int_0^1t^{frac{a+1}2-1}(1-t)^{frac{b+1}2-1}mathrm dt$$
We then recall the definition of the Beta function
$$mathrm B(x,y)=int_0^1t^{x-1}(1-t)^{y-1}mathrm dt=frac{Gamma(x)Gamma(y)}{Gamma(x+y)}$$
Where $Gamma(s)$ is the Gamma function. Technically it is defined by
$$Gamma(s)=int_0^infty x^{s-1}e^{-x}mathrm dx,qquad mathrm{Re}(s)>0$$
But in the case that $s$ is a (positive) integer,
$$Gamma(s)=(s-1)!$$
So without further adieu,
$$I(a,b)=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
We then see that your integral is
$$I(7,5)=frac{Gamma(4)Gamma(3)}{2Gamma(7)}$$
$$I(7,5)=frac1{120}$$
$endgroup$
add a comment |
$begingroup$
As has been noted, this integral can be related to the Beta Function. Here's how.
Consider the integral
$$I(a,b)=int_0^{pi/2}sin(x)^acos(x)^bmathrm dx$$
If we make the substitution $t=sin(x)^2$, we have that
$$I(a,b)=frac12int_0^1t^{frac{a-1}2}(1-t)^{frac{b-1}2}mathrm dt$$
$$I(a,b)=frac12int_0^1t^{frac{a+1}2-1}(1-t)^{frac{b+1}2-1}mathrm dt$$
We then recall the definition of the Beta function
$$mathrm B(x,y)=int_0^1t^{x-1}(1-t)^{y-1}mathrm dt=frac{Gamma(x)Gamma(y)}{Gamma(x+y)}$$
Where $Gamma(s)$ is the Gamma function. Technically it is defined by
$$Gamma(s)=int_0^infty x^{s-1}e^{-x}mathrm dx,qquad mathrm{Re}(s)>0$$
But in the case that $s$ is a (positive) integer,
$$Gamma(s)=(s-1)!$$
So without further adieu,
$$I(a,b)=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
We then see that your integral is
$$I(7,5)=frac{Gamma(4)Gamma(3)}{2Gamma(7)}$$
$$I(7,5)=frac1{120}$$
$endgroup$
As has been noted, this integral can be related to the Beta Function. Here's how.
Consider the integral
$$I(a,b)=int_0^{pi/2}sin(x)^acos(x)^bmathrm dx$$
If we make the substitution $t=sin(x)^2$, we have that
$$I(a,b)=frac12int_0^1t^{frac{a-1}2}(1-t)^{frac{b-1}2}mathrm dt$$
$$I(a,b)=frac12int_0^1t^{frac{a+1}2-1}(1-t)^{frac{b+1}2-1}mathrm dt$$
We then recall the definition of the Beta function
$$mathrm B(x,y)=int_0^1t^{x-1}(1-t)^{y-1}mathrm dt=frac{Gamma(x)Gamma(y)}{Gamma(x+y)}$$
Where $Gamma(s)$ is the Gamma function. Technically it is defined by
$$Gamma(s)=int_0^infty x^{s-1}e^{-x}mathrm dx,qquad mathrm{Re}(s)>0$$
But in the case that $s$ is a (positive) integer,
$$Gamma(s)=(s-1)!$$
So without further adieu,
$$I(a,b)=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
We then see that your integral is
$$I(7,5)=frac{Gamma(4)Gamma(3)}{2Gamma(7)}$$
$$I(7,5)=frac1{120}$$
answered Jan 6 at 23:03
clathratusclathratus
3,767333
3,767333
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064190%2fwhat-is-int-0-pi-2-sin7-theta-cos5-thetad-theta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
If you just expand $(1-u)^2=u^2+1-2u$, you will be able to solve it more directly.
$endgroup$
– Shubham Johri
Jan 6 at 18:09
$begingroup$
Possible duplicate Integral $int_0^frac{pi}{2} sin^7x cos^5x, dx$
$endgroup$
– A.Γ.
Jan 6 at 18:15
$begingroup$
$$frac 12 B(4,3)$$?
$endgroup$
– Digamma
Jan 7 at 2:45