How do I compute the power spectral density knowing the input signal autocorrelation modulated by a cosine...












0












$begingroup$


I have the following system:



$$S(t) = X(t) cdot d(t)$$



where



$R_{XX}(tau)=frac{1}{2pi}Sa(frac{tau}{2})cos(3tau)$ and $d(t)=cos(2t + theta)$ where $theta sim U[0,2pi)$ and is independent of $X(t)$



I would like to compute $R_{SS}(tau)$.



Normally, I would think to be given the autocorrelation of $d$, then I could apply the Winer-Khintchine theorem and using the fact that multiplication in time domain is convolution in frequency domain. But, I am stumped where to begin given that I am given the autocorrelation of X(t) but not d(t).



$R_{SS}(t,tau)=E[S(t)S(t+tau)]$



$=E[X(t)d(t)X(t+tau)d(t+tau)]$



$=E[X(t)X(t+tau) d(t)d(t+tau)]$



$=E[X(t)X(t+tau)]E[d(t)d(t+tau)]$ via independence



$=R_{SS}(tau)E[d(t)d(t+tau)]$



Attempting to solve for
$R_{dd}=E[d(t)d(t+tau)]$,



$E[cos(2t+theta)cos(2(t+tau)+theta)]$



Using product identities, I get,



$frac{1}{2}E[cos(4t + 2theta + 2tau)]$ which I believe is zero.










share|cite|improve this question











$endgroup$












  • $begingroup$
    At first what you can define is $r_{SS}(t,tau)=mathbb{E}[S(t)overline{S(t+tau)}]$. If $U,V$ are independent then $mathbb{E}[UV] = mathbb{E}[U]mathbb{E}[V]$. If $r_{SS}(t,tau)$ doesn't depend on $t$ (eg. when $S$ is stationary) then you set $R_{SS}(tau) = r_{SS}(0,tau)$
    $endgroup$
    – reuns
    Jan 6 at 17:51












  • $begingroup$
    I dont have U though, just the autocorrelation of U.
    $endgroup$
    – Avedis
    Jan 6 at 18:15










  • $begingroup$
    You have $mathbb{E}[U]$ with $U = X(t) X(t+tau)$ (assuming $mathbb{E}[X(t)] = 0$, otherwise substract it from $X(t)$). $overline{z}$ is the complex conjugate, if $X(t)$ is real it is unnecessary
    $endgroup$
    – reuns
    Jan 6 at 19:33








  • 1




    $begingroup$
    $cos A cos B =frac12 cos (A+B)+frac12cos (A-B)$. In the latter $2t+theta$ disappear so it is constant, the former is zero mean
    $endgroup$
    – reuns
    Jan 6 at 20:32








  • 1




    $begingroup$
    $E[cos(2t+theta)cos(2(t+tau)+theta)] = frac{1}{2}E[cos(2tau)]+frac{1}{2}E[cos(4t + 2theta + 2tau)]= frac{1}{2}cos(2tau)+ 0$
    $endgroup$
    – reuns
    Jan 6 at 23:22


















0












$begingroup$


I have the following system:



$$S(t) = X(t) cdot d(t)$$



where



$R_{XX}(tau)=frac{1}{2pi}Sa(frac{tau}{2})cos(3tau)$ and $d(t)=cos(2t + theta)$ where $theta sim U[0,2pi)$ and is independent of $X(t)$



I would like to compute $R_{SS}(tau)$.



Normally, I would think to be given the autocorrelation of $d$, then I could apply the Winer-Khintchine theorem and using the fact that multiplication in time domain is convolution in frequency domain. But, I am stumped where to begin given that I am given the autocorrelation of X(t) but not d(t).



$R_{SS}(t,tau)=E[S(t)S(t+tau)]$



$=E[X(t)d(t)X(t+tau)d(t+tau)]$



$=E[X(t)X(t+tau) d(t)d(t+tau)]$



$=E[X(t)X(t+tau)]E[d(t)d(t+tau)]$ via independence



$=R_{SS}(tau)E[d(t)d(t+tau)]$



Attempting to solve for
$R_{dd}=E[d(t)d(t+tau)]$,



$E[cos(2t+theta)cos(2(t+tau)+theta)]$



Using product identities, I get,



$frac{1}{2}E[cos(4t + 2theta + 2tau)]$ which I believe is zero.










share|cite|improve this question











$endgroup$












  • $begingroup$
    At first what you can define is $r_{SS}(t,tau)=mathbb{E}[S(t)overline{S(t+tau)}]$. If $U,V$ are independent then $mathbb{E}[UV] = mathbb{E}[U]mathbb{E}[V]$. If $r_{SS}(t,tau)$ doesn't depend on $t$ (eg. when $S$ is stationary) then you set $R_{SS}(tau) = r_{SS}(0,tau)$
    $endgroup$
    – reuns
    Jan 6 at 17:51












  • $begingroup$
    I dont have U though, just the autocorrelation of U.
    $endgroup$
    – Avedis
    Jan 6 at 18:15










  • $begingroup$
    You have $mathbb{E}[U]$ with $U = X(t) X(t+tau)$ (assuming $mathbb{E}[X(t)] = 0$, otherwise substract it from $X(t)$). $overline{z}$ is the complex conjugate, if $X(t)$ is real it is unnecessary
    $endgroup$
    – reuns
    Jan 6 at 19:33








  • 1




    $begingroup$
    $cos A cos B =frac12 cos (A+B)+frac12cos (A-B)$. In the latter $2t+theta$ disappear so it is constant, the former is zero mean
    $endgroup$
    – reuns
    Jan 6 at 20:32








  • 1




    $begingroup$
    $E[cos(2t+theta)cos(2(t+tau)+theta)] = frac{1}{2}E[cos(2tau)]+frac{1}{2}E[cos(4t + 2theta + 2tau)]= frac{1}{2}cos(2tau)+ 0$
    $endgroup$
    – reuns
    Jan 6 at 23:22
















0












0








0





$begingroup$


I have the following system:



$$S(t) = X(t) cdot d(t)$$



where



$R_{XX}(tau)=frac{1}{2pi}Sa(frac{tau}{2})cos(3tau)$ and $d(t)=cos(2t + theta)$ where $theta sim U[0,2pi)$ and is independent of $X(t)$



I would like to compute $R_{SS}(tau)$.



Normally, I would think to be given the autocorrelation of $d$, then I could apply the Winer-Khintchine theorem and using the fact that multiplication in time domain is convolution in frequency domain. But, I am stumped where to begin given that I am given the autocorrelation of X(t) but not d(t).



$R_{SS}(t,tau)=E[S(t)S(t+tau)]$



$=E[X(t)d(t)X(t+tau)d(t+tau)]$



$=E[X(t)X(t+tau) d(t)d(t+tau)]$



$=E[X(t)X(t+tau)]E[d(t)d(t+tau)]$ via independence



$=R_{SS}(tau)E[d(t)d(t+tau)]$



Attempting to solve for
$R_{dd}=E[d(t)d(t+tau)]$,



$E[cos(2t+theta)cos(2(t+tau)+theta)]$



Using product identities, I get,



$frac{1}{2}E[cos(4t + 2theta + 2tau)]$ which I believe is zero.










share|cite|improve this question











$endgroup$




I have the following system:



$$S(t) = X(t) cdot d(t)$$



where



$R_{XX}(tau)=frac{1}{2pi}Sa(frac{tau}{2})cos(3tau)$ and $d(t)=cos(2t + theta)$ where $theta sim U[0,2pi)$ and is independent of $X(t)$



I would like to compute $R_{SS}(tau)$.



Normally, I would think to be given the autocorrelation of $d$, then I could apply the Winer-Khintchine theorem and using the fact that multiplication in time domain is convolution in frequency domain. But, I am stumped where to begin given that I am given the autocorrelation of X(t) but not d(t).



$R_{SS}(t,tau)=E[S(t)S(t+tau)]$



$=E[X(t)d(t)X(t+tau)d(t+tau)]$



$=E[X(t)X(t+tau) d(t)d(t+tau)]$



$=E[X(t)X(t+tau)]E[d(t)d(t+tau)]$ via independence



$=R_{SS}(tau)E[d(t)d(t+tau)]$



Attempting to solve for
$R_{dd}=E[d(t)d(t+tau)]$,



$E[cos(2t+theta)cos(2(t+tau)+theta)]$



Using product identities, I get,



$frac{1}{2}E[cos(4t + 2theta + 2tau)]$ which I believe is zero.







stochastic-processes fourier-transform






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 6 at 21:23







Avedis

















asked Jan 6 at 17:39









AvedisAvedis

476




476












  • $begingroup$
    At first what you can define is $r_{SS}(t,tau)=mathbb{E}[S(t)overline{S(t+tau)}]$. If $U,V$ are independent then $mathbb{E}[UV] = mathbb{E}[U]mathbb{E}[V]$. If $r_{SS}(t,tau)$ doesn't depend on $t$ (eg. when $S$ is stationary) then you set $R_{SS}(tau) = r_{SS}(0,tau)$
    $endgroup$
    – reuns
    Jan 6 at 17:51












  • $begingroup$
    I dont have U though, just the autocorrelation of U.
    $endgroup$
    – Avedis
    Jan 6 at 18:15










  • $begingroup$
    You have $mathbb{E}[U]$ with $U = X(t) X(t+tau)$ (assuming $mathbb{E}[X(t)] = 0$, otherwise substract it from $X(t)$). $overline{z}$ is the complex conjugate, if $X(t)$ is real it is unnecessary
    $endgroup$
    – reuns
    Jan 6 at 19:33








  • 1




    $begingroup$
    $cos A cos B =frac12 cos (A+B)+frac12cos (A-B)$. In the latter $2t+theta$ disappear so it is constant, the former is zero mean
    $endgroup$
    – reuns
    Jan 6 at 20:32








  • 1




    $begingroup$
    $E[cos(2t+theta)cos(2(t+tau)+theta)] = frac{1}{2}E[cos(2tau)]+frac{1}{2}E[cos(4t + 2theta + 2tau)]= frac{1}{2}cos(2tau)+ 0$
    $endgroup$
    – reuns
    Jan 6 at 23:22




















  • $begingroup$
    At first what you can define is $r_{SS}(t,tau)=mathbb{E}[S(t)overline{S(t+tau)}]$. If $U,V$ are independent then $mathbb{E}[UV] = mathbb{E}[U]mathbb{E}[V]$. If $r_{SS}(t,tau)$ doesn't depend on $t$ (eg. when $S$ is stationary) then you set $R_{SS}(tau) = r_{SS}(0,tau)$
    $endgroup$
    – reuns
    Jan 6 at 17:51












  • $begingroup$
    I dont have U though, just the autocorrelation of U.
    $endgroup$
    – Avedis
    Jan 6 at 18:15










  • $begingroup$
    You have $mathbb{E}[U]$ with $U = X(t) X(t+tau)$ (assuming $mathbb{E}[X(t)] = 0$, otherwise substract it from $X(t)$). $overline{z}$ is the complex conjugate, if $X(t)$ is real it is unnecessary
    $endgroup$
    – reuns
    Jan 6 at 19:33








  • 1




    $begingroup$
    $cos A cos B =frac12 cos (A+B)+frac12cos (A-B)$. In the latter $2t+theta$ disappear so it is constant, the former is zero mean
    $endgroup$
    – reuns
    Jan 6 at 20:32








  • 1




    $begingroup$
    $E[cos(2t+theta)cos(2(t+tau)+theta)] = frac{1}{2}E[cos(2tau)]+frac{1}{2}E[cos(4t + 2theta + 2tau)]= frac{1}{2}cos(2tau)+ 0$
    $endgroup$
    – reuns
    Jan 6 at 23:22


















$begingroup$
At first what you can define is $r_{SS}(t,tau)=mathbb{E}[S(t)overline{S(t+tau)}]$. If $U,V$ are independent then $mathbb{E}[UV] = mathbb{E}[U]mathbb{E}[V]$. If $r_{SS}(t,tau)$ doesn't depend on $t$ (eg. when $S$ is stationary) then you set $R_{SS}(tau) = r_{SS}(0,tau)$
$endgroup$
– reuns
Jan 6 at 17:51






$begingroup$
At first what you can define is $r_{SS}(t,tau)=mathbb{E}[S(t)overline{S(t+tau)}]$. If $U,V$ are independent then $mathbb{E}[UV] = mathbb{E}[U]mathbb{E}[V]$. If $r_{SS}(t,tau)$ doesn't depend on $t$ (eg. when $S$ is stationary) then you set $R_{SS}(tau) = r_{SS}(0,tau)$
$endgroup$
– reuns
Jan 6 at 17:51














$begingroup$
I dont have U though, just the autocorrelation of U.
$endgroup$
– Avedis
Jan 6 at 18:15




$begingroup$
I dont have U though, just the autocorrelation of U.
$endgroup$
– Avedis
Jan 6 at 18:15












$begingroup$
You have $mathbb{E}[U]$ with $U = X(t) X(t+tau)$ (assuming $mathbb{E}[X(t)] = 0$, otherwise substract it from $X(t)$). $overline{z}$ is the complex conjugate, if $X(t)$ is real it is unnecessary
$endgroup$
– reuns
Jan 6 at 19:33






$begingroup$
You have $mathbb{E}[U]$ with $U = X(t) X(t+tau)$ (assuming $mathbb{E}[X(t)] = 0$, otherwise substract it from $X(t)$). $overline{z}$ is the complex conjugate, if $X(t)$ is real it is unnecessary
$endgroup$
– reuns
Jan 6 at 19:33






1




1




$begingroup$
$cos A cos B =frac12 cos (A+B)+frac12cos (A-B)$. In the latter $2t+theta$ disappear so it is constant, the former is zero mean
$endgroup$
– reuns
Jan 6 at 20:32






$begingroup$
$cos A cos B =frac12 cos (A+B)+frac12cos (A-B)$. In the latter $2t+theta$ disappear so it is constant, the former is zero mean
$endgroup$
– reuns
Jan 6 at 20:32






1




1




$begingroup$
$E[cos(2t+theta)cos(2(t+tau)+theta)] = frac{1}{2}E[cos(2tau)]+frac{1}{2}E[cos(4t + 2theta + 2tau)]= frac{1}{2}cos(2tau)+ 0$
$endgroup$
– reuns
Jan 6 at 23:22






$begingroup$
$E[cos(2t+theta)cos(2(t+tau)+theta)] = frac{1}{2}E[cos(2tau)]+frac{1}{2}E[cos(4t + 2theta + 2tau)]= frac{1}{2}cos(2tau)+ 0$
$endgroup$
– reuns
Jan 6 at 23:22












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064160%2fhow-do-i-compute-the-power-spectral-density-knowing-the-input-signal-autocorrela%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064160%2fhow-do-i-compute-the-power-spectral-density-knowing-the-input-signal-autocorrela%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

SQL update select statement

WPF add header to Image with URL pettitions [duplicate]