Relation of Roots of Bi-quadratic equation without using Vieta's formula
$begingroup$
If $ a, b, c, d $ are roots of the equation
$$ x^4 + px^3 + qx^2 + rx + s=0 $$
Show that
$$ (1+a^2)(1+b^2)(1+c^2)(1+d^2)=(1+s-q)^2 + (p-r)^2 $$
I was able to show this by using Vieta's formulas but the book from which I am doing this has not yet taught, till now it has just taught reminder, factor theorem and fundamental theorem of algebra so I want to ask that is there any other solution using only these or some more interesting way to do
polynomials complex-numbers roots
$endgroup$
add a comment |
$begingroup$
If $ a, b, c, d $ are roots of the equation
$$ x^4 + px^3 + qx^2 + rx + s=0 $$
Show that
$$ (1+a^2)(1+b^2)(1+c^2)(1+d^2)=(1+s-q)^2 + (p-r)^2 $$
I was able to show this by using Vieta's formulas but the book from which I am doing this has not yet taught, till now it has just taught reminder, factor theorem and fundamental theorem of algebra so I want to ask that is there any other solution using only these or some more interesting way to do
polynomials complex-numbers roots
$endgroup$
$begingroup$
See math.stackexchange.com/questions/3063351/…
$endgroup$
– lab bhattacharjee
Jan 6 at 18:12
add a comment |
$begingroup$
If $ a, b, c, d $ are roots of the equation
$$ x^4 + px^3 + qx^2 + rx + s=0 $$
Show that
$$ (1+a^2)(1+b^2)(1+c^2)(1+d^2)=(1+s-q)^2 + (p-r)^2 $$
I was able to show this by using Vieta's formulas but the book from which I am doing this has not yet taught, till now it has just taught reminder, factor theorem and fundamental theorem of algebra so I want to ask that is there any other solution using only these or some more interesting way to do
polynomials complex-numbers roots
$endgroup$
If $ a, b, c, d $ are roots of the equation
$$ x^4 + px^3 + qx^2 + rx + s=0 $$
Show that
$$ (1+a^2)(1+b^2)(1+c^2)(1+d^2)=(1+s-q)^2 + (p-r)^2 $$
I was able to show this by using Vieta's formulas but the book from which I am doing this has not yet taught, till now it has just taught reminder, factor theorem and fundamental theorem of algebra so I want to ask that is there any other solution using only these or some more interesting way to do
polynomials complex-numbers roots
polynomials complex-numbers roots
edited Jan 6 at 18:19
greedoid
39.7k114798
39.7k114798
asked Jan 6 at 17:59
Keshav SharmaKeshav Sharma
985
985
$begingroup$
See math.stackexchange.com/questions/3063351/…
$endgroup$
– lab bhattacharjee
Jan 6 at 18:12
add a comment |
$begingroup$
See math.stackexchange.com/questions/3063351/…
$endgroup$
– lab bhattacharjee
Jan 6 at 18:12
$begingroup$
See math.stackexchange.com/questions/3063351/…
$endgroup$
– lab bhattacharjee
Jan 6 at 18:12
$begingroup$
See math.stackexchange.com/questions/3063351/…
$endgroup$
– lab bhattacharjee
Jan 6 at 18:12
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
So: $$ f(x)= (x-a)(x-b)(x-c)(x-d)$$
$$f(i) = (i-a)...;;;;{rm and };;;;f(-i)= (-i-a)...$$
thus $$f(i)f(-i) = (a^2+1)(b^2+1)(c^2+1)(d^2+1)$$
On the other side $$f(i)f(-i) = (1 -ip -q+ ri + s) (1 + ip + q - ri + s)$$
$$ = (1-q+s-i(p-r))(1-q+s+i(p-r))$$ $$= (1-q+s)^2+(p-r)^2$$
$endgroup$
add a comment |
$begingroup$
Also, we can use $$(a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2.$$
Indeed,
$$(1+a^2)(1+b^2)(1+c^2)(1+d^2)=((a+b)^2+(1-ab)^2)((c+d)^2+(1-cd)^2)=$$
$$=((a+b)(c+d)-(1-ab)(1-cd))^2+((a+b)(1-cd)+(c+d)(1-ab))^2=$$
$$=(ab+ac+ad+bc+bd+cd-abcd-1)^2+(a+b+c+d-abc-abd-acd-bcd)^2=$$
$$=(q-s-1)^2+(-p+r)^2=(1+s-q)^2+(p-r)^2.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064194%2frelation-of-roots-of-bi-quadratic-equation-without-using-vietas-formula%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
So: $$ f(x)= (x-a)(x-b)(x-c)(x-d)$$
$$f(i) = (i-a)...;;;;{rm and };;;;f(-i)= (-i-a)...$$
thus $$f(i)f(-i) = (a^2+1)(b^2+1)(c^2+1)(d^2+1)$$
On the other side $$f(i)f(-i) = (1 -ip -q+ ri + s) (1 + ip + q - ri + s)$$
$$ = (1-q+s-i(p-r))(1-q+s+i(p-r))$$ $$= (1-q+s)^2+(p-r)^2$$
$endgroup$
add a comment |
$begingroup$
So: $$ f(x)= (x-a)(x-b)(x-c)(x-d)$$
$$f(i) = (i-a)...;;;;{rm and };;;;f(-i)= (-i-a)...$$
thus $$f(i)f(-i) = (a^2+1)(b^2+1)(c^2+1)(d^2+1)$$
On the other side $$f(i)f(-i) = (1 -ip -q+ ri + s) (1 + ip + q - ri + s)$$
$$ = (1-q+s-i(p-r))(1-q+s+i(p-r))$$ $$= (1-q+s)^2+(p-r)^2$$
$endgroup$
add a comment |
$begingroup$
So: $$ f(x)= (x-a)(x-b)(x-c)(x-d)$$
$$f(i) = (i-a)...;;;;{rm and };;;;f(-i)= (-i-a)...$$
thus $$f(i)f(-i) = (a^2+1)(b^2+1)(c^2+1)(d^2+1)$$
On the other side $$f(i)f(-i) = (1 -ip -q+ ri + s) (1 + ip + q - ri + s)$$
$$ = (1-q+s-i(p-r))(1-q+s+i(p-r))$$ $$= (1-q+s)^2+(p-r)^2$$
$endgroup$
So: $$ f(x)= (x-a)(x-b)(x-c)(x-d)$$
$$f(i) = (i-a)...;;;;{rm and };;;;f(-i)= (-i-a)...$$
thus $$f(i)f(-i) = (a^2+1)(b^2+1)(c^2+1)(d^2+1)$$
On the other side $$f(i)f(-i) = (1 -ip -q+ ri + s) (1 + ip + q - ri + s)$$
$$ = (1-q+s-i(p-r))(1-q+s+i(p-r))$$ $$= (1-q+s)^2+(p-r)^2$$
answered Jan 6 at 18:14
greedoidgreedoid
39.7k114798
39.7k114798
add a comment |
add a comment |
$begingroup$
Also, we can use $$(a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2.$$
Indeed,
$$(1+a^2)(1+b^2)(1+c^2)(1+d^2)=((a+b)^2+(1-ab)^2)((c+d)^2+(1-cd)^2)=$$
$$=((a+b)(c+d)-(1-ab)(1-cd))^2+((a+b)(1-cd)+(c+d)(1-ab))^2=$$
$$=(ab+ac+ad+bc+bd+cd-abcd-1)^2+(a+b+c+d-abc-abd-acd-bcd)^2=$$
$$=(q-s-1)^2+(-p+r)^2=(1+s-q)^2+(p-r)^2.$$
$endgroup$
add a comment |
$begingroup$
Also, we can use $$(a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2.$$
Indeed,
$$(1+a^2)(1+b^2)(1+c^2)(1+d^2)=((a+b)^2+(1-ab)^2)((c+d)^2+(1-cd)^2)=$$
$$=((a+b)(c+d)-(1-ab)(1-cd))^2+((a+b)(1-cd)+(c+d)(1-ab))^2=$$
$$=(ab+ac+ad+bc+bd+cd-abcd-1)^2+(a+b+c+d-abc-abd-acd-bcd)^2=$$
$$=(q-s-1)^2+(-p+r)^2=(1+s-q)^2+(p-r)^2.$$
$endgroup$
add a comment |
$begingroup$
Also, we can use $$(a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2.$$
Indeed,
$$(1+a^2)(1+b^2)(1+c^2)(1+d^2)=((a+b)^2+(1-ab)^2)((c+d)^2+(1-cd)^2)=$$
$$=((a+b)(c+d)-(1-ab)(1-cd))^2+((a+b)(1-cd)+(c+d)(1-ab))^2=$$
$$=(ab+ac+ad+bc+bd+cd-abcd-1)^2+(a+b+c+d-abc-abd-acd-bcd)^2=$$
$$=(q-s-1)^2+(-p+r)^2=(1+s-q)^2+(p-r)^2.$$
$endgroup$
Also, we can use $$(a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2.$$
Indeed,
$$(1+a^2)(1+b^2)(1+c^2)(1+d^2)=((a+b)^2+(1-ab)^2)((c+d)^2+(1-cd)^2)=$$
$$=((a+b)(c+d)-(1-ab)(1-cd))^2+((a+b)(1-cd)+(c+d)(1-ab))^2=$$
$$=(ab+ac+ad+bc+bd+cd-abcd-1)^2+(a+b+c+d-abc-abd-acd-bcd)^2=$$
$$=(q-s-1)^2+(-p+r)^2=(1+s-q)^2+(p-r)^2.$$
answered Jan 6 at 19:21
Michael RozenbergMichael Rozenberg
99.3k1590189
99.3k1590189
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064194%2frelation-of-roots-of-bi-quadratic-equation-without-using-vietas-formula%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
See math.stackexchange.com/questions/3063351/…
$endgroup$
– lab bhattacharjee
Jan 6 at 18:12