Diffusion equation for Brownian motion with a systematic drift component












2












$begingroup$


I know, that BM formula



$$X_{i+1} = X_{i}+sqrt{delta t}Z_i,$$ $$Z_isim N(0,1),$$



with $X_0equiv0$ leads to Diffusion equation $$u_t=-frac{1}{2}u_{xx}$$



for marginal distributions in $X_i=X(t),t=idelta t,$ in the limit case $delta tto 0$.



I want to derive Diffusion equation for Brownian motion with a systematic drift component, i.e.



$$X_{i+1} = X_{i}+delta tX_{i}+sqrt{delta t}Z_i,$$



using Chapmann-Kolmogorov equation and Taylor expression.



How can i derive this? What is the answer?



Any explanation is very appreciated.



$$$$



To my calculations:



Let density function for BM $pi_t (x)$ in time $t$ be defined as
$$pi_t (x)=frac{1}{sqrt{2pi t}} exp left (frac{-x^2}{2t}right).$$



According to properties of BW increments we consider Chapmann-Kolmogorov equation as follow:
$$pi_{t+delta t} (x')=int {frac{exp left (frac{-(x'-x)^2}{2delta t}right)}{sqrt{2pi delta t}}pi_t (x) dx}.$$



$x = x'+ Delta x, Rightarrow dxrightarrow d Delta x,$
$$Rightarrow pi_{t+delta t} (x')= int {frac{exp left (frac{-(Delta x)^2}{2delta t}right)}{sqrt{2pi delta t}}pi_t (x'+Delta x) dDelta x}.$$



Since $Delta x = delta tX_{i}+sqrt{delta t}Z_i$ we have Taylor expansion:
$$pi_t (x'+Delta x) = pi_t (x') + frac{dpi_t(x')}{dx} Delta x + ... + O(Delta x^4).$$



Then
$$pi_{t+delta t} (x')= int {frac{exp left (frac{-(Delta x)^2}{2delta t}right)}{sqrt{2pi delta t}}pi_t (x'+Delta x) dDelta x}$$



$$=pi_t (x')+frac{dpi_t}{dx} delta t + frac{1}{2} frac{d^2pi_t}{dx^2}delta t+frac{1}{6} frac{d^3pi_t}{dx^3}3 delta t^2 + O(delta t^3);$$



$$frac{pi_{t+delta t} (x') - pi_t (x')}{delta t}=frac{dpi_t}{dx} + frac{1}{2} frac{d^2pi_t}{dx^2}+frac{1}{2}frac{d^3pi_t}{dx^3}delta t + O(delta t^2);$$



$delta t rightarrow 0:$



$$frac{d}{dt}pi_t (x')=frac{dpi_t}{dx} + frac{1}{2} frac{d^2pi_t}{dx^2}.$$










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    I know, that BM formula



    $$X_{i+1} = X_{i}+sqrt{delta t}Z_i,$$ $$Z_isim N(0,1),$$



    with $X_0equiv0$ leads to Diffusion equation $$u_t=-frac{1}{2}u_{xx}$$



    for marginal distributions in $X_i=X(t),t=idelta t,$ in the limit case $delta tto 0$.



    I want to derive Diffusion equation for Brownian motion with a systematic drift component, i.e.



    $$X_{i+1} = X_{i}+delta tX_{i}+sqrt{delta t}Z_i,$$



    using Chapmann-Kolmogorov equation and Taylor expression.



    How can i derive this? What is the answer?



    Any explanation is very appreciated.



    $$$$



    To my calculations:



    Let density function for BM $pi_t (x)$ in time $t$ be defined as
    $$pi_t (x)=frac{1}{sqrt{2pi t}} exp left (frac{-x^2}{2t}right).$$



    According to properties of BW increments we consider Chapmann-Kolmogorov equation as follow:
    $$pi_{t+delta t} (x')=int {frac{exp left (frac{-(x'-x)^2}{2delta t}right)}{sqrt{2pi delta t}}pi_t (x) dx}.$$



    $x = x'+ Delta x, Rightarrow dxrightarrow d Delta x,$
    $$Rightarrow pi_{t+delta t} (x')= int {frac{exp left (frac{-(Delta x)^2}{2delta t}right)}{sqrt{2pi delta t}}pi_t (x'+Delta x) dDelta x}.$$



    Since $Delta x = delta tX_{i}+sqrt{delta t}Z_i$ we have Taylor expansion:
    $$pi_t (x'+Delta x) = pi_t (x') + frac{dpi_t(x')}{dx} Delta x + ... + O(Delta x^4).$$



    Then
    $$pi_{t+delta t} (x')= int {frac{exp left (frac{-(Delta x)^2}{2delta t}right)}{sqrt{2pi delta t}}pi_t (x'+Delta x) dDelta x}$$



    $$=pi_t (x')+frac{dpi_t}{dx} delta t + frac{1}{2} frac{d^2pi_t}{dx^2}delta t+frac{1}{6} frac{d^3pi_t}{dx^3}3 delta t^2 + O(delta t^3);$$



    $$frac{pi_{t+delta t} (x') - pi_t (x')}{delta t}=frac{dpi_t}{dx} + frac{1}{2} frac{d^2pi_t}{dx^2}+frac{1}{2}frac{d^3pi_t}{dx^3}delta t + O(delta t^2);$$



    $delta t rightarrow 0:$



    $$frac{d}{dt}pi_t (x')=frac{dpi_t}{dx} + frac{1}{2} frac{d^2pi_t}{dx^2}.$$










    share|cite|improve this question











    $endgroup$















      2












      2








      2


      1



      $begingroup$


      I know, that BM formula



      $$X_{i+1} = X_{i}+sqrt{delta t}Z_i,$$ $$Z_isim N(0,1),$$



      with $X_0equiv0$ leads to Diffusion equation $$u_t=-frac{1}{2}u_{xx}$$



      for marginal distributions in $X_i=X(t),t=idelta t,$ in the limit case $delta tto 0$.



      I want to derive Diffusion equation for Brownian motion with a systematic drift component, i.e.



      $$X_{i+1} = X_{i}+delta tX_{i}+sqrt{delta t}Z_i,$$



      using Chapmann-Kolmogorov equation and Taylor expression.



      How can i derive this? What is the answer?



      Any explanation is very appreciated.



      $$$$



      To my calculations:



      Let density function for BM $pi_t (x)$ in time $t$ be defined as
      $$pi_t (x)=frac{1}{sqrt{2pi t}} exp left (frac{-x^2}{2t}right).$$



      According to properties of BW increments we consider Chapmann-Kolmogorov equation as follow:
      $$pi_{t+delta t} (x')=int {frac{exp left (frac{-(x'-x)^2}{2delta t}right)}{sqrt{2pi delta t}}pi_t (x) dx}.$$



      $x = x'+ Delta x, Rightarrow dxrightarrow d Delta x,$
      $$Rightarrow pi_{t+delta t} (x')= int {frac{exp left (frac{-(Delta x)^2}{2delta t}right)}{sqrt{2pi delta t}}pi_t (x'+Delta x) dDelta x}.$$



      Since $Delta x = delta tX_{i}+sqrt{delta t}Z_i$ we have Taylor expansion:
      $$pi_t (x'+Delta x) = pi_t (x') + frac{dpi_t(x')}{dx} Delta x + ... + O(Delta x^4).$$



      Then
      $$pi_{t+delta t} (x')= int {frac{exp left (frac{-(Delta x)^2}{2delta t}right)}{sqrt{2pi delta t}}pi_t (x'+Delta x) dDelta x}$$



      $$=pi_t (x')+frac{dpi_t}{dx} delta t + frac{1}{2} frac{d^2pi_t}{dx^2}delta t+frac{1}{6} frac{d^3pi_t}{dx^3}3 delta t^2 + O(delta t^3);$$



      $$frac{pi_{t+delta t} (x') - pi_t (x')}{delta t}=frac{dpi_t}{dx} + frac{1}{2} frac{d^2pi_t}{dx^2}+frac{1}{2}frac{d^3pi_t}{dx^3}delta t + O(delta t^2);$$



      $delta t rightarrow 0:$



      $$frac{d}{dt}pi_t (x')=frac{dpi_t}{dx} + frac{1}{2} frac{d^2pi_t}{dx^2}.$$










      share|cite|improve this question











      $endgroup$




      I know, that BM formula



      $$X_{i+1} = X_{i}+sqrt{delta t}Z_i,$$ $$Z_isim N(0,1),$$



      with $X_0equiv0$ leads to Diffusion equation $$u_t=-frac{1}{2}u_{xx}$$



      for marginal distributions in $X_i=X(t),t=idelta t,$ in the limit case $delta tto 0$.



      I want to derive Diffusion equation for Brownian motion with a systematic drift component, i.e.



      $$X_{i+1} = X_{i}+delta tX_{i}+sqrt{delta t}Z_i,$$



      using Chapmann-Kolmogorov equation and Taylor expression.



      How can i derive this? What is the answer?



      Any explanation is very appreciated.



      $$$$



      To my calculations:



      Let density function for BM $pi_t (x)$ in time $t$ be defined as
      $$pi_t (x)=frac{1}{sqrt{2pi t}} exp left (frac{-x^2}{2t}right).$$



      According to properties of BW increments we consider Chapmann-Kolmogorov equation as follow:
      $$pi_{t+delta t} (x')=int {frac{exp left (frac{-(x'-x)^2}{2delta t}right)}{sqrt{2pi delta t}}pi_t (x) dx}.$$



      $x = x'+ Delta x, Rightarrow dxrightarrow d Delta x,$
      $$Rightarrow pi_{t+delta t} (x')= int {frac{exp left (frac{-(Delta x)^2}{2delta t}right)}{sqrt{2pi delta t}}pi_t (x'+Delta x) dDelta x}.$$



      Since $Delta x = delta tX_{i}+sqrt{delta t}Z_i$ we have Taylor expansion:
      $$pi_t (x'+Delta x) = pi_t (x') + frac{dpi_t(x')}{dx} Delta x + ... + O(Delta x^4).$$



      Then
      $$pi_{t+delta t} (x')= int {frac{exp left (frac{-(Delta x)^2}{2delta t}right)}{sqrt{2pi delta t}}pi_t (x'+Delta x) dDelta x}$$



      $$=pi_t (x')+frac{dpi_t}{dx} delta t + frac{1}{2} frac{d^2pi_t}{dx^2}delta t+frac{1}{6} frac{d^3pi_t}{dx^3}3 delta t^2 + O(delta t^3);$$



      $$frac{pi_{t+delta t} (x') - pi_t (x')}{delta t}=frac{dpi_t}{dx} + frac{1}{2} frac{d^2pi_t}{dx^2}+frac{1}{2}frac{d^3pi_t}{dx^3}delta t + O(delta t^2);$$



      $delta t rightarrow 0:$



      $$frac{d}{dt}pi_t (x')=frac{dpi_t}{dx} + frac{1}{2} frac{d^2pi_t}{dx^2}.$$







      integration ordinary-differential-equations stochastic-calculus brownian-motion finance






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 6 at 12:43







      Thomas J

















      asked Dec 19 '18 at 16:26









      Thomas JThomas J

      114




      114






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046578%2fdiffusion-equation-for-brownian-motion-with-a-systematic-drift-component%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046578%2fdiffusion-equation-for-brownian-motion-with-a-systematic-drift-component%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith