Diffusion equation for Brownian motion with a systematic drift component
$begingroup$
I know, that BM formula
$$X_{i+1} = X_{i}+sqrt{delta t}Z_i,$$ $$Z_isim N(0,1),$$
with $X_0equiv0$ leads to Diffusion equation $$u_t=-frac{1}{2}u_{xx}$$
for marginal distributions in $X_i=X(t),t=idelta t,$ in the limit case $delta tto 0$.
I want to derive Diffusion equation for Brownian motion with a systematic drift component, i.e.
$$X_{i+1} = X_{i}+delta tX_{i}+sqrt{delta t}Z_i,$$
using Chapmann-Kolmogorov equation and Taylor expression.
How can i derive this? What is the answer?
Any explanation is very appreciated.
$$$$
To my calculations:
Let density function for BM $pi_t (x)$ in time $t$ be defined as
$$pi_t (x)=frac{1}{sqrt{2pi t}} exp left (frac{-x^2}{2t}right).$$
According to properties of BW increments we consider Chapmann-Kolmogorov equation as follow:
$$pi_{t+delta t} (x')=int {frac{exp left (frac{-(x'-x)^2}{2delta t}right)}{sqrt{2pi delta t}}pi_t (x) dx}.$$
$x = x'+ Delta x, Rightarrow dxrightarrow d Delta x,$
$$Rightarrow pi_{t+delta t} (x')= int {frac{exp left (frac{-(Delta x)^2}{2delta t}right)}{sqrt{2pi delta t}}pi_t (x'+Delta x) dDelta x}.$$
Since $Delta x = delta tX_{i}+sqrt{delta t}Z_i$ we have Taylor expansion:
$$pi_t (x'+Delta x) = pi_t (x') + frac{dpi_t(x')}{dx} Delta x + ... + O(Delta x^4).$$
Then
$$pi_{t+delta t} (x')= int {frac{exp left (frac{-(Delta x)^2}{2delta t}right)}{sqrt{2pi delta t}}pi_t (x'+Delta x) dDelta x}$$
$$=pi_t (x')+frac{dpi_t}{dx} delta t + frac{1}{2} frac{d^2pi_t}{dx^2}delta t+frac{1}{6} frac{d^3pi_t}{dx^3}3 delta t^2 + O(delta t^3);$$
$$frac{pi_{t+delta t} (x') - pi_t (x')}{delta t}=frac{dpi_t}{dx} + frac{1}{2} frac{d^2pi_t}{dx^2}+frac{1}{2}frac{d^3pi_t}{dx^3}delta t + O(delta t^2);$$
$delta t rightarrow 0:$
$$frac{d}{dt}pi_t (x')=frac{dpi_t}{dx} + frac{1}{2} frac{d^2pi_t}{dx^2}.$$
integration ordinary-differential-equations stochastic-calculus brownian-motion finance
$endgroup$
add a comment |
$begingroup$
I know, that BM formula
$$X_{i+1} = X_{i}+sqrt{delta t}Z_i,$$ $$Z_isim N(0,1),$$
with $X_0equiv0$ leads to Diffusion equation $$u_t=-frac{1}{2}u_{xx}$$
for marginal distributions in $X_i=X(t),t=idelta t,$ in the limit case $delta tto 0$.
I want to derive Diffusion equation for Brownian motion with a systematic drift component, i.e.
$$X_{i+1} = X_{i}+delta tX_{i}+sqrt{delta t}Z_i,$$
using Chapmann-Kolmogorov equation and Taylor expression.
How can i derive this? What is the answer?
Any explanation is very appreciated.
$$$$
To my calculations:
Let density function for BM $pi_t (x)$ in time $t$ be defined as
$$pi_t (x)=frac{1}{sqrt{2pi t}} exp left (frac{-x^2}{2t}right).$$
According to properties of BW increments we consider Chapmann-Kolmogorov equation as follow:
$$pi_{t+delta t} (x')=int {frac{exp left (frac{-(x'-x)^2}{2delta t}right)}{sqrt{2pi delta t}}pi_t (x) dx}.$$
$x = x'+ Delta x, Rightarrow dxrightarrow d Delta x,$
$$Rightarrow pi_{t+delta t} (x')= int {frac{exp left (frac{-(Delta x)^2}{2delta t}right)}{sqrt{2pi delta t}}pi_t (x'+Delta x) dDelta x}.$$
Since $Delta x = delta tX_{i}+sqrt{delta t}Z_i$ we have Taylor expansion:
$$pi_t (x'+Delta x) = pi_t (x') + frac{dpi_t(x')}{dx} Delta x + ... + O(Delta x^4).$$
Then
$$pi_{t+delta t} (x')= int {frac{exp left (frac{-(Delta x)^2}{2delta t}right)}{sqrt{2pi delta t}}pi_t (x'+Delta x) dDelta x}$$
$$=pi_t (x')+frac{dpi_t}{dx} delta t + frac{1}{2} frac{d^2pi_t}{dx^2}delta t+frac{1}{6} frac{d^3pi_t}{dx^3}3 delta t^2 + O(delta t^3);$$
$$frac{pi_{t+delta t} (x') - pi_t (x')}{delta t}=frac{dpi_t}{dx} + frac{1}{2} frac{d^2pi_t}{dx^2}+frac{1}{2}frac{d^3pi_t}{dx^3}delta t + O(delta t^2);$$
$delta t rightarrow 0:$
$$frac{d}{dt}pi_t (x')=frac{dpi_t}{dx} + frac{1}{2} frac{d^2pi_t}{dx^2}.$$
integration ordinary-differential-equations stochastic-calculus brownian-motion finance
$endgroup$
add a comment |
$begingroup$
I know, that BM formula
$$X_{i+1} = X_{i}+sqrt{delta t}Z_i,$$ $$Z_isim N(0,1),$$
with $X_0equiv0$ leads to Diffusion equation $$u_t=-frac{1}{2}u_{xx}$$
for marginal distributions in $X_i=X(t),t=idelta t,$ in the limit case $delta tto 0$.
I want to derive Diffusion equation for Brownian motion with a systematic drift component, i.e.
$$X_{i+1} = X_{i}+delta tX_{i}+sqrt{delta t}Z_i,$$
using Chapmann-Kolmogorov equation and Taylor expression.
How can i derive this? What is the answer?
Any explanation is very appreciated.
$$$$
To my calculations:
Let density function for BM $pi_t (x)$ in time $t$ be defined as
$$pi_t (x)=frac{1}{sqrt{2pi t}} exp left (frac{-x^2}{2t}right).$$
According to properties of BW increments we consider Chapmann-Kolmogorov equation as follow:
$$pi_{t+delta t} (x')=int {frac{exp left (frac{-(x'-x)^2}{2delta t}right)}{sqrt{2pi delta t}}pi_t (x) dx}.$$
$x = x'+ Delta x, Rightarrow dxrightarrow d Delta x,$
$$Rightarrow pi_{t+delta t} (x')= int {frac{exp left (frac{-(Delta x)^2}{2delta t}right)}{sqrt{2pi delta t}}pi_t (x'+Delta x) dDelta x}.$$
Since $Delta x = delta tX_{i}+sqrt{delta t}Z_i$ we have Taylor expansion:
$$pi_t (x'+Delta x) = pi_t (x') + frac{dpi_t(x')}{dx} Delta x + ... + O(Delta x^4).$$
Then
$$pi_{t+delta t} (x')= int {frac{exp left (frac{-(Delta x)^2}{2delta t}right)}{sqrt{2pi delta t}}pi_t (x'+Delta x) dDelta x}$$
$$=pi_t (x')+frac{dpi_t}{dx} delta t + frac{1}{2} frac{d^2pi_t}{dx^2}delta t+frac{1}{6} frac{d^3pi_t}{dx^3}3 delta t^2 + O(delta t^3);$$
$$frac{pi_{t+delta t} (x') - pi_t (x')}{delta t}=frac{dpi_t}{dx} + frac{1}{2} frac{d^2pi_t}{dx^2}+frac{1}{2}frac{d^3pi_t}{dx^3}delta t + O(delta t^2);$$
$delta t rightarrow 0:$
$$frac{d}{dt}pi_t (x')=frac{dpi_t}{dx} + frac{1}{2} frac{d^2pi_t}{dx^2}.$$
integration ordinary-differential-equations stochastic-calculus brownian-motion finance
$endgroup$
I know, that BM formula
$$X_{i+1} = X_{i}+sqrt{delta t}Z_i,$$ $$Z_isim N(0,1),$$
with $X_0equiv0$ leads to Diffusion equation $$u_t=-frac{1}{2}u_{xx}$$
for marginal distributions in $X_i=X(t),t=idelta t,$ in the limit case $delta tto 0$.
I want to derive Diffusion equation for Brownian motion with a systematic drift component, i.e.
$$X_{i+1} = X_{i}+delta tX_{i}+sqrt{delta t}Z_i,$$
using Chapmann-Kolmogorov equation and Taylor expression.
How can i derive this? What is the answer?
Any explanation is very appreciated.
$$$$
To my calculations:
Let density function for BM $pi_t (x)$ in time $t$ be defined as
$$pi_t (x)=frac{1}{sqrt{2pi t}} exp left (frac{-x^2}{2t}right).$$
According to properties of BW increments we consider Chapmann-Kolmogorov equation as follow:
$$pi_{t+delta t} (x')=int {frac{exp left (frac{-(x'-x)^2}{2delta t}right)}{sqrt{2pi delta t}}pi_t (x) dx}.$$
$x = x'+ Delta x, Rightarrow dxrightarrow d Delta x,$
$$Rightarrow pi_{t+delta t} (x')= int {frac{exp left (frac{-(Delta x)^2}{2delta t}right)}{sqrt{2pi delta t}}pi_t (x'+Delta x) dDelta x}.$$
Since $Delta x = delta tX_{i}+sqrt{delta t}Z_i$ we have Taylor expansion:
$$pi_t (x'+Delta x) = pi_t (x') + frac{dpi_t(x')}{dx} Delta x + ... + O(Delta x^4).$$
Then
$$pi_{t+delta t} (x')= int {frac{exp left (frac{-(Delta x)^2}{2delta t}right)}{sqrt{2pi delta t}}pi_t (x'+Delta x) dDelta x}$$
$$=pi_t (x')+frac{dpi_t}{dx} delta t + frac{1}{2} frac{d^2pi_t}{dx^2}delta t+frac{1}{6} frac{d^3pi_t}{dx^3}3 delta t^2 + O(delta t^3);$$
$$frac{pi_{t+delta t} (x') - pi_t (x')}{delta t}=frac{dpi_t}{dx} + frac{1}{2} frac{d^2pi_t}{dx^2}+frac{1}{2}frac{d^3pi_t}{dx^3}delta t + O(delta t^2);$$
$delta t rightarrow 0:$
$$frac{d}{dt}pi_t (x')=frac{dpi_t}{dx} + frac{1}{2} frac{d^2pi_t}{dx^2}.$$
integration ordinary-differential-equations stochastic-calculus brownian-motion finance
integration ordinary-differential-equations stochastic-calculus brownian-motion finance
edited Jan 6 at 12:43
Thomas J
asked Dec 19 '18 at 16:26
Thomas JThomas J
114
114
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046578%2fdiffusion-equation-for-brownian-motion-with-a-systematic-drift-component%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046578%2fdiffusion-equation-for-brownian-motion-with-a-systematic-drift-component%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown