Evaluating $int_{-a}^a frac{f(x)+1}{b^x+1}$ for a y-axis symmetrical function f
$begingroup$
Let $[-a, a] subset mathbb{R}$ be an interval. Let $f: [-a, a] rightarrow mathbb{R}$ be a Riemann-integrable function such that $f(x) = f(-x) space forall x in [-a, a]$. Let $b in mathbb{R}_+$.
Question: Is there a "good" way to simplify the integral $int_{-a}^a frac{f(x) + 1}{b^x+1}$ dx?
calculus integration
$endgroup$
add a comment |
$begingroup$
Let $[-a, a] subset mathbb{R}$ be an interval. Let $f: [-a, a] rightarrow mathbb{R}$ be a Riemann-integrable function such that $f(x) = f(-x) space forall x in [-a, a]$. Let $b in mathbb{R}_+$.
Question: Is there a "good" way to simplify the integral $int_{-a}^a frac{f(x) + 1}{b^x+1}$ dx?
calculus integration
$endgroup$
$begingroup$
Possibly helpful: What functions $g$ satisfy $int_{-L}^{L} frac{f(x)}{1 + g(x)}:dx = int_{0}^{L} f(x):dx$ for every even function $f$?.
$endgroup$
– Martin R
Jan 6 at 14:47
add a comment |
$begingroup$
Let $[-a, a] subset mathbb{R}$ be an interval. Let $f: [-a, a] rightarrow mathbb{R}$ be a Riemann-integrable function such that $f(x) = f(-x) space forall x in [-a, a]$. Let $b in mathbb{R}_+$.
Question: Is there a "good" way to simplify the integral $int_{-a}^a frac{f(x) + 1}{b^x+1}$ dx?
calculus integration
$endgroup$
Let $[-a, a] subset mathbb{R}$ be an interval. Let $f: [-a, a] rightarrow mathbb{R}$ be a Riemann-integrable function such that $f(x) = f(-x) space forall x in [-a, a]$. Let $b in mathbb{R}_+$.
Question: Is there a "good" way to simplify the integral $int_{-a}^a frac{f(x) + 1}{b^x+1}$ dx?
calculus integration
calculus integration
asked Jan 6 at 14:45
Neil WernerNeil Werner
83
83
$begingroup$
Possibly helpful: What functions $g$ satisfy $int_{-L}^{L} frac{f(x)}{1 + g(x)}:dx = int_{0}^{L} f(x):dx$ for every even function $f$?.
$endgroup$
– Martin R
Jan 6 at 14:47
add a comment |
$begingroup$
Possibly helpful: What functions $g$ satisfy $int_{-L}^{L} frac{f(x)}{1 + g(x)}:dx = int_{0}^{L} f(x):dx$ for every even function $f$?.
$endgroup$
– Martin R
Jan 6 at 14:47
$begingroup$
Possibly helpful: What functions $g$ satisfy $int_{-L}^{L} frac{f(x)}{1 + g(x)}:dx = int_{0}^{L} f(x):dx$ for every even function $f$?.
$endgroup$
– Martin R
Jan 6 at 14:47
$begingroup$
Possibly helpful: What functions $g$ satisfy $int_{-L}^{L} frac{f(x)}{1 + g(x)}:dx = int_{0}^{L} f(x):dx$ for every even function $f$?.
$endgroup$
– Martin R
Jan 6 at 14:47
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Yes! In fact,
$displaystyleint_{-a}^a frac{f(x)+1}{b^x+1} = a+int_0^a f(x) spacemathrm{d}x$
Proof:
We have
begin{equation}label{*}tag{*}
int_{-a}^a frac{f(x)+1}{b^x+1} dx overset{text{substituting } x rightarrow -x}{=} (-1)^2 cdot int_{-a}^a frac{f(x)+1}{b^{-x}+1} spacemathrm{d}x
= int_{-a}^a frac{b^x cdot (f(x) + 1)}{b^x + 1} spacemathrm{d}x
end{equation}
Thus
begin{gather}
displaystyle 2 cdot int_{-a}^a frac{f(x)+1}{b^x+1} spacemathrm{d}x \ overset{ref{*}}{=} int_{-a}^a frac{f(x)+1}{b^x+1} spacemathrm{d}x + int_{-a}^a frac{b^x cdot (f(x)+1)}{b^x+1} spacemathrm{d}x \
displaystyle = int_{-a}^a frac{(b^x+1) cdot (f(x)+1)}{b^x+1} spacemathrm{d}x = int_{-a}^a f(x)+1 spacemathrm{d}x = 2 a + int_{-a}^a f(x) spacemathrm{d}x \ text{This achieves a proof}. quad square
end{gather}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063941%2fevaluating-int-aa-fracfx1bx1-for-a-y-axis-symmetrical-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes! In fact,
$displaystyleint_{-a}^a frac{f(x)+1}{b^x+1} = a+int_0^a f(x) spacemathrm{d}x$
Proof:
We have
begin{equation}label{*}tag{*}
int_{-a}^a frac{f(x)+1}{b^x+1} dx overset{text{substituting } x rightarrow -x}{=} (-1)^2 cdot int_{-a}^a frac{f(x)+1}{b^{-x}+1} spacemathrm{d}x
= int_{-a}^a frac{b^x cdot (f(x) + 1)}{b^x + 1} spacemathrm{d}x
end{equation}
Thus
begin{gather}
displaystyle 2 cdot int_{-a}^a frac{f(x)+1}{b^x+1} spacemathrm{d}x \ overset{ref{*}}{=} int_{-a}^a frac{f(x)+1}{b^x+1} spacemathrm{d}x + int_{-a}^a frac{b^x cdot (f(x)+1)}{b^x+1} spacemathrm{d}x \
displaystyle = int_{-a}^a frac{(b^x+1) cdot (f(x)+1)}{b^x+1} spacemathrm{d}x = int_{-a}^a f(x)+1 spacemathrm{d}x = 2 a + int_{-a}^a f(x) spacemathrm{d}x \ text{This achieves a proof}. quad square
end{gather}
$endgroup$
add a comment |
$begingroup$
Yes! In fact,
$displaystyleint_{-a}^a frac{f(x)+1}{b^x+1} = a+int_0^a f(x) spacemathrm{d}x$
Proof:
We have
begin{equation}label{*}tag{*}
int_{-a}^a frac{f(x)+1}{b^x+1} dx overset{text{substituting } x rightarrow -x}{=} (-1)^2 cdot int_{-a}^a frac{f(x)+1}{b^{-x}+1} spacemathrm{d}x
= int_{-a}^a frac{b^x cdot (f(x) + 1)}{b^x + 1} spacemathrm{d}x
end{equation}
Thus
begin{gather}
displaystyle 2 cdot int_{-a}^a frac{f(x)+1}{b^x+1} spacemathrm{d}x \ overset{ref{*}}{=} int_{-a}^a frac{f(x)+1}{b^x+1} spacemathrm{d}x + int_{-a}^a frac{b^x cdot (f(x)+1)}{b^x+1} spacemathrm{d}x \
displaystyle = int_{-a}^a frac{(b^x+1) cdot (f(x)+1)}{b^x+1} spacemathrm{d}x = int_{-a}^a f(x)+1 spacemathrm{d}x = 2 a + int_{-a}^a f(x) spacemathrm{d}x \ text{This achieves a proof}. quad square
end{gather}
$endgroup$
add a comment |
$begingroup$
Yes! In fact,
$displaystyleint_{-a}^a frac{f(x)+1}{b^x+1} = a+int_0^a f(x) spacemathrm{d}x$
Proof:
We have
begin{equation}label{*}tag{*}
int_{-a}^a frac{f(x)+1}{b^x+1} dx overset{text{substituting } x rightarrow -x}{=} (-1)^2 cdot int_{-a}^a frac{f(x)+1}{b^{-x}+1} spacemathrm{d}x
= int_{-a}^a frac{b^x cdot (f(x) + 1)}{b^x + 1} spacemathrm{d}x
end{equation}
Thus
begin{gather}
displaystyle 2 cdot int_{-a}^a frac{f(x)+1}{b^x+1} spacemathrm{d}x \ overset{ref{*}}{=} int_{-a}^a frac{f(x)+1}{b^x+1} spacemathrm{d}x + int_{-a}^a frac{b^x cdot (f(x)+1)}{b^x+1} spacemathrm{d}x \
displaystyle = int_{-a}^a frac{(b^x+1) cdot (f(x)+1)}{b^x+1} spacemathrm{d}x = int_{-a}^a f(x)+1 spacemathrm{d}x = 2 a + int_{-a}^a f(x) spacemathrm{d}x \ text{This achieves a proof}. quad square
end{gather}
$endgroup$
Yes! In fact,
$displaystyleint_{-a}^a frac{f(x)+1}{b^x+1} = a+int_0^a f(x) spacemathrm{d}x$
Proof:
We have
begin{equation}label{*}tag{*}
int_{-a}^a frac{f(x)+1}{b^x+1} dx overset{text{substituting } x rightarrow -x}{=} (-1)^2 cdot int_{-a}^a frac{f(x)+1}{b^{-x}+1} spacemathrm{d}x
= int_{-a}^a frac{b^x cdot (f(x) + 1)}{b^x + 1} spacemathrm{d}x
end{equation}
Thus
begin{gather}
displaystyle 2 cdot int_{-a}^a frac{f(x)+1}{b^x+1} spacemathrm{d}x \ overset{ref{*}}{=} int_{-a}^a frac{f(x)+1}{b^x+1} spacemathrm{d}x + int_{-a}^a frac{b^x cdot (f(x)+1)}{b^x+1} spacemathrm{d}x \
displaystyle = int_{-a}^a frac{(b^x+1) cdot (f(x)+1)}{b^x+1} spacemathrm{d}x = int_{-a}^a f(x)+1 spacemathrm{d}x = 2 a + int_{-a}^a f(x) spacemathrm{d}x \ text{This achieves a proof}. quad square
end{gather}
edited Jan 6 at 18:05
answered Jan 6 at 14:52


Maximilian JanischMaximilian Janisch
44110
44110
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063941%2fevaluating-int-aa-fracfx1bx1-for-a-y-axis-symmetrical-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Possibly helpful: What functions $g$ satisfy $int_{-L}^{L} frac{f(x)}{1 + g(x)}:dx = int_{0}^{L} f(x):dx$ for every even function $f$?.
$endgroup$
– Martin R
Jan 6 at 14:47