Evaluating $int_{-a}^a frac{f(x)+1}{b^x+1}$ for a y-axis symmetrical function f












1












$begingroup$


Let $[-a, a] subset mathbb{R}$ be an interval. Let $f: [-a, a] rightarrow mathbb{R}$ be a Riemann-integrable function such that $f(x) = f(-x) space forall x in [-a, a]$. Let $b in mathbb{R}_+$.



Question: Is there a "good" way to simplify the integral $int_{-a}^a frac{f(x) + 1}{b^x+1}$ dx?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Possibly helpful: What functions $g$ satisfy $int_{-L}^{L} frac{f(x)}{1 + g(x)}:dx = int_{0}^{L} f(x):dx$ for every even function $f$?.
    $endgroup$
    – Martin R
    Jan 6 at 14:47


















1












$begingroup$


Let $[-a, a] subset mathbb{R}$ be an interval. Let $f: [-a, a] rightarrow mathbb{R}$ be a Riemann-integrable function such that $f(x) = f(-x) space forall x in [-a, a]$. Let $b in mathbb{R}_+$.



Question: Is there a "good" way to simplify the integral $int_{-a}^a frac{f(x) + 1}{b^x+1}$ dx?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Possibly helpful: What functions $g$ satisfy $int_{-L}^{L} frac{f(x)}{1 + g(x)}:dx = int_{0}^{L} f(x):dx$ for every even function $f$?.
    $endgroup$
    – Martin R
    Jan 6 at 14:47
















1












1








1





$begingroup$


Let $[-a, a] subset mathbb{R}$ be an interval. Let $f: [-a, a] rightarrow mathbb{R}$ be a Riemann-integrable function such that $f(x) = f(-x) space forall x in [-a, a]$. Let $b in mathbb{R}_+$.



Question: Is there a "good" way to simplify the integral $int_{-a}^a frac{f(x) + 1}{b^x+1}$ dx?










share|cite|improve this question









$endgroup$




Let $[-a, a] subset mathbb{R}$ be an interval. Let $f: [-a, a] rightarrow mathbb{R}$ be a Riemann-integrable function such that $f(x) = f(-x) space forall x in [-a, a]$. Let $b in mathbb{R}_+$.



Question: Is there a "good" way to simplify the integral $int_{-a}^a frac{f(x) + 1}{b^x+1}$ dx?







calculus integration






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 6 at 14:45









Neil WernerNeil Werner

83




83












  • $begingroup$
    Possibly helpful: What functions $g$ satisfy $int_{-L}^{L} frac{f(x)}{1 + g(x)}:dx = int_{0}^{L} f(x):dx$ for every even function $f$?.
    $endgroup$
    – Martin R
    Jan 6 at 14:47




















  • $begingroup$
    Possibly helpful: What functions $g$ satisfy $int_{-L}^{L} frac{f(x)}{1 + g(x)}:dx = int_{0}^{L} f(x):dx$ for every even function $f$?.
    $endgroup$
    – Martin R
    Jan 6 at 14:47


















$begingroup$
Possibly helpful: What functions $g$ satisfy $int_{-L}^{L} frac{f(x)}{1 + g(x)}:dx = int_{0}^{L} f(x):dx$ for every even function $f$?.
$endgroup$
– Martin R
Jan 6 at 14:47






$begingroup$
Possibly helpful: What functions $g$ satisfy $int_{-L}^{L} frac{f(x)}{1 + g(x)}:dx = int_{0}^{L} f(x):dx$ for every even function $f$?.
$endgroup$
– Martin R
Jan 6 at 14:47












1 Answer
1






active

oldest

votes


















3












$begingroup$

Yes! In fact,




$displaystyleint_{-a}^a frac{f(x)+1}{b^x+1} = a+int_0^a f(x) spacemathrm{d}x$




Proof:
We have
begin{equation}label{*}tag{*}
int_{-a}^a frac{f(x)+1}{b^x+1} dx overset{text{substituting } x rightarrow -x}{=} (-1)^2 cdot int_{-a}^a frac{f(x)+1}{b^{-x}+1} spacemathrm{d}x
= int_{-a}^a frac{b^x cdot (f(x) + 1)}{b^x + 1} spacemathrm{d}x
end{equation}



Thus
begin{gather}
displaystyle 2 cdot int_{-a}^a frac{f(x)+1}{b^x+1} spacemathrm{d}x \ overset{ref{*}}{=} int_{-a}^a frac{f(x)+1}{b^x+1} spacemathrm{d}x + int_{-a}^a frac{b^x cdot (f(x)+1)}{b^x+1} spacemathrm{d}x \
displaystyle = int_{-a}^a frac{(b^x+1) cdot (f(x)+1)}{b^x+1} spacemathrm{d}x = int_{-a}^a f(x)+1 spacemathrm{d}x = 2 a + int_{-a}^a f(x) spacemathrm{d}x \ text{This achieves a proof}. quad square
end{gather}






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063941%2fevaluating-int-aa-fracfx1bx1-for-a-y-axis-symmetrical-function%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Yes! In fact,




    $displaystyleint_{-a}^a frac{f(x)+1}{b^x+1} = a+int_0^a f(x) spacemathrm{d}x$




    Proof:
    We have
    begin{equation}label{*}tag{*}
    int_{-a}^a frac{f(x)+1}{b^x+1} dx overset{text{substituting } x rightarrow -x}{=} (-1)^2 cdot int_{-a}^a frac{f(x)+1}{b^{-x}+1} spacemathrm{d}x
    = int_{-a}^a frac{b^x cdot (f(x) + 1)}{b^x + 1} spacemathrm{d}x
    end{equation}



    Thus
    begin{gather}
    displaystyle 2 cdot int_{-a}^a frac{f(x)+1}{b^x+1} spacemathrm{d}x \ overset{ref{*}}{=} int_{-a}^a frac{f(x)+1}{b^x+1} spacemathrm{d}x + int_{-a}^a frac{b^x cdot (f(x)+1)}{b^x+1} spacemathrm{d}x \
    displaystyle = int_{-a}^a frac{(b^x+1) cdot (f(x)+1)}{b^x+1} spacemathrm{d}x = int_{-a}^a f(x)+1 spacemathrm{d}x = 2 a + int_{-a}^a f(x) spacemathrm{d}x \ text{This achieves a proof}. quad square
    end{gather}






    share|cite|improve this answer











    $endgroup$


















      3












      $begingroup$

      Yes! In fact,




      $displaystyleint_{-a}^a frac{f(x)+1}{b^x+1} = a+int_0^a f(x) spacemathrm{d}x$




      Proof:
      We have
      begin{equation}label{*}tag{*}
      int_{-a}^a frac{f(x)+1}{b^x+1} dx overset{text{substituting } x rightarrow -x}{=} (-1)^2 cdot int_{-a}^a frac{f(x)+1}{b^{-x}+1} spacemathrm{d}x
      = int_{-a}^a frac{b^x cdot (f(x) + 1)}{b^x + 1} spacemathrm{d}x
      end{equation}



      Thus
      begin{gather}
      displaystyle 2 cdot int_{-a}^a frac{f(x)+1}{b^x+1} spacemathrm{d}x \ overset{ref{*}}{=} int_{-a}^a frac{f(x)+1}{b^x+1} spacemathrm{d}x + int_{-a}^a frac{b^x cdot (f(x)+1)}{b^x+1} spacemathrm{d}x \
      displaystyle = int_{-a}^a frac{(b^x+1) cdot (f(x)+1)}{b^x+1} spacemathrm{d}x = int_{-a}^a f(x)+1 spacemathrm{d}x = 2 a + int_{-a}^a f(x) spacemathrm{d}x \ text{This achieves a proof}. quad square
      end{gather}






      share|cite|improve this answer











      $endgroup$
















        3












        3








        3





        $begingroup$

        Yes! In fact,




        $displaystyleint_{-a}^a frac{f(x)+1}{b^x+1} = a+int_0^a f(x) spacemathrm{d}x$




        Proof:
        We have
        begin{equation}label{*}tag{*}
        int_{-a}^a frac{f(x)+1}{b^x+1} dx overset{text{substituting } x rightarrow -x}{=} (-1)^2 cdot int_{-a}^a frac{f(x)+1}{b^{-x}+1} spacemathrm{d}x
        = int_{-a}^a frac{b^x cdot (f(x) + 1)}{b^x + 1} spacemathrm{d}x
        end{equation}



        Thus
        begin{gather}
        displaystyle 2 cdot int_{-a}^a frac{f(x)+1}{b^x+1} spacemathrm{d}x \ overset{ref{*}}{=} int_{-a}^a frac{f(x)+1}{b^x+1} spacemathrm{d}x + int_{-a}^a frac{b^x cdot (f(x)+1)}{b^x+1} spacemathrm{d}x \
        displaystyle = int_{-a}^a frac{(b^x+1) cdot (f(x)+1)}{b^x+1} spacemathrm{d}x = int_{-a}^a f(x)+1 spacemathrm{d}x = 2 a + int_{-a}^a f(x) spacemathrm{d}x \ text{This achieves a proof}. quad square
        end{gather}






        share|cite|improve this answer











        $endgroup$



        Yes! In fact,




        $displaystyleint_{-a}^a frac{f(x)+1}{b^x+1} = a+int_0^a f(x) spacemathrm{d}x$




        Proof:
        We have
        begin{equation}label{*}tag{*}
        int_{-a}^a frac{f(x)+1}{b^x+1} dx overset{text{substituting } x rightarrow -x}{=} (-1)^2 cdot int_{-a}^a frac{f(x)+1}{b^{-x}+1} spacemathrm{d}x
        = int_{-a}^a frac{b^x cdot (f(x) + 1)}{b^x + 1} spacemathrm{d}x
        end{equation}



        Thus
        begin{gather}
        displaystyle 2 cdot int_{-a}^a frac{f(x)+1}{b^x+1} spacemathrm{d}x \ overset{ref{*}}{=} int_{-a}^a frac{f(x)+1}{b^x+1} spacemathrm{d}x + int_{-a}^a frac{b^x cdot (f(x)+1)}{b^x+1} spacemathrm{d}x \
        displaystyle = int_{-a}^a frac{(b^x+1) cdot (f(x)+1)}{b^x+1} spacemathrm{d}x = int_{-a}^a f(x)+1 spacemathrm{d}x = 2 a + int_{-a}^a f(x) spacemathrm{d}x \ text{This achieves a proof}. quad square
        end{gather}







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 6 at 18:05

























        answered Jan 6 at 14:52









        Maximilian JanischMaximilian Janisch

        44110




        44110






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063941%2fevaluating-int-aa-fracfx1bx1-for-a-y-axis-symmetrical-function%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith