How to bound uniformly this integral?












-1












$begingroup$


could someone help me with this question please?



I need to prove that if $1<p<2<q;$ and $fin{L^p(mathbb{R^2})}cap{L^q(mathbb{R^2})}$ then $$g(z)=int_mathbb{R^2}dfrac{|f(y)|}{|z-y|}dy$$ is uniformly bounded.



I tried to write that as



$$g(z)=int_{|z-y|<R}dfrac{|f(y)|}{|z-y|}dy+int_{|z-y|>R}dfrac{|f(y)|}{|z-y|}dy$$
But I only know how to bound each one if $p=1$ and $q=infty$ after fixing a concrete $R$.



Thanks.










share|cite|improve this question









$endgroup$

















    -1












    $begingroup$


    could someone help me with this question please?



    I need to prove that if $1<p<2<q;$ and $fin{L^p(mathbb{R^2})}cap{L^q(mathbb{R^2})}$ then $$g(z)=int_mathbb{R^2}dfrac{|f(y)|}{|z-y|}dy$$ is uniformly bounded.



    I tried to write that as



    $$g(z)=int_{|z-y|<R}dfrac{|f(y)|}{|z-y|}dy+int_{|z-y|>R}dfrac{|f(y)|}{|z-y|}dy$$
    But I only know how to bound each one if $p=1$ and $q=infty$ after fixing a concrete $R$.



    Thanks.










    share|cite|improve this question









    $endgroup$















      -1












      -1








      -1





      $begingroup$


      could someone help me with this question please?



      I need to prove that if $1<p<2<q;$ and $fin{L^p(mathbb{R^2})}cap{L^q(mathbb{R^2})}$ then $$g(z)=int_mathbb{R^2}dfrac{|f(y)|}{|z-y|}dy$$ is uniformly bounded.



      I tried to write that as



      $$g(z)=int_{|z-y|<R}dfrac{|f(y)|}{|z-y|}dy+int_{|z-y|>R}dfrac{|f(y)|}{|z-y|}dy$$
      But I only know how to bound each one if $p=1$ and $q=infty$ after fixing a concrete $R$.



      Thanks.










      share|cite|improve this question









      $endgroup$




      could someone help me with this question please?



      I need to prove that if $1<p<2<q;$ and $fin{L^p(mathbb{R^2})}cap{L^q(mathbb{R^2})}$ then $$g(z)=int_mathbb{R^2}dfrac{|f(y)|}{|z-y|}dy$$ is uniformly bounded.



      I tried to write that as



      $$g(z)=int_{|z-y|<R}dfrac{|f(y)|}{|z-y|}dy+int_{|z-y|>R}dfrac{|f(y)|}{|z-y|}dy$$
      But I only know how to bound each one if $p=1$ and $q=infty$ after fixing a concrete $R$.



      Thanks.







      real-analysis functional-analysis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 6 at 15:48









      mathlifemathlife

      629




      629






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Fix $R=1$. The first term
          $$begin{eqnarray}
          int_{|y|<1}dfrac{|f(z-y)|}{|y|}dy&le&left[int_{|y|<1}|f(z-y)|^qdyright]^{1/q}left[int_{|y|<1}frac{1}{|y|^q{^*}}dyright]^{1/q^*}\&le& |f|_qleft[int_{|y|<1}frac{1}{|y|^q{^*}}dyright]^{1/q^*}le M_1<infty
          end{eqnarray}$$
          by Holder's inequality since $1le q^*<2$ ($q^*$ is a Holder conjugate of $q$) and $ymapsto |y|^{-s}$ is locally integrable for $s<2$. We can check this using polar coordinate $dy = rdr$. The second term is estimated similarly:
          $$begin{eqnarray}
          int_{|y|ge 1}dfrac{|f(z-y)|}{|y|}dy&le&left[int_{|y|ge 1}|f(z-y)|^pdyright]^{1/p}left[int_{|y|ge 1}frac{1}{|y|^p{^*}}dyright]^{1/p^*}\&le& |f|_pleft[int_{|y|ge 1}frac{1}{|y|^p{^*}}dyright]^{1/p^*}le M_2 <infty.
          end{eqnarray}$$
          This is because $2<p^*<infty$ and
          $$
          int_{|y|ge 1}frac{1}{|y|^s}dy =int_1^infty r^{1-s}dr<infty
          $$
          for all $1-s<-1$. Gathering them together, we get an upper bound $M_1+M_2$ independent of $z$ as wanted.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Don't you use that $1<p$?
            $endgroup$
            – mathlife
            Jan 6 at 16:35










          • $begingroup$
            So, $1<p$ is an unnecessary hypothesis?
            $endgroup$
            – mathlife
            Jan 6 at 16:40










          • $begingroup$
            @mathlife Umm .. Now I got what you meant. $p>1$ is necessary to show $p^*<infty$. But even if $p=1$, the argument is still valid using $p^*=infty$ norm. In this sense, $1=p$ is also allowed. In the same spirit, $q=infty$ is also allowed.
            $endgroup$
            – Song
            Jan 6 at 16:44










          • $begingroup$
            Ok, I see. Thanks
            $endgroup$
            – mathlife
            Jan 6 at 16:48











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064020%2fhow-to-bound-uniformly-this-integral%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Fix $R=1$. The first term
          $$begin{eqnarray}
          int_{|y|<1}dfrac{|f(z-y)|}{|y|}dy&le&left[int_{|y|<1}|f(z-y)|^qdyright]^{1/q}left[int_{|y|<1}frac{1}{|y|^q{^*}}dyright]^{1/q^*}\&le& |f|_qleft[int_{|y|<1}frac{1}{|y|^q{^*}}dyright]^{1/q^*}le M_1<infty
          end{eqnarray}$$
          by Holder's inequality since $1le q^*<2$ ($q^*$ is a Holder conjugate of $q$) and $ymapsto |y|^{-s}$ is locally integrable for $s<2$. We can check this using polar coordinate $dy = rdr$. The second term is estimated similarly:
          $$begin{eqnarray}
          int_{|y|ge 1}dfrac{|f(z-y)|}{|y|}dy&le&left[int_{|y|ge 1}|f(z-y)|^pdyright]^{1/p}left[int_{|y|ge 1}frac{1}{|y|^p{^*}}dyright]^{1/p^*}\&le& |f|_pleft[int_{|y|ge 1}frac{1}{|y|^p{^*}}dyright]^{1/p^*}le M_2 <infty.
          end{eqnarray}$$
          This is because $2<p^*<infty$ and
          $$
          int_{|y|ge 1}frac{1}{|y|^s}dy =int_1^infty r^{1-s}dr<infty
          $$
          for all $1-s<-1$. Gathering them together, we get an upper bound $M_1+M_2$ independent of $z$ as wanted.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Don't you use that $1<p$?
            $endgroup$
            – mathlife
            Jan 6 at 16:35










          • $begingroup$
            So, $1<p$ is an unnecessary hypothesis?
            $endgroup$
            – mathlife
            Jan 6 at 16:40










          • $begingroup$
            @mathlife Umm .. Now I got what you meant. $p>1$ is necessary to show $p^*<infty$. But even if $p=1$, the argument is still valid using $p^*=infty$ norm. In this sense, $1=p$ is also allowed. In the same spirit, $q=infty$ is also allowed.
            $endgroup$
            – Song
            Jan 6 at 16:44










          • $begingroup$
            Ok, I see. Thanks
            $endgroup$
            – mathlife
            Jan 6 at 16:48
















          1












          $begingroup$

          Fix $R=1$. The first term
          $$begin{eqnarray}
          int_{|y|<1}dfrac{|f(z-y)|}{|y|}dy&le&left[int_{|y|<1}|f(z-y)|^qdyright]^{1/q}left[int_{|y|<1}frac{1}{|y|^q{^*}}dyright]^{1/q^*}\&le& |f|_qleft[int_{|y|<1}frac{1}{|y|^q{^*}}dyright]^{1/q^*}le M_1<infty
          end{eqnarray}$$
          by Holder's inequality since $1le q^*<2$ ($q^*$ is a Holder conjugate of $q$) and $ymapsto |y|^{-s}$ is locally integrable for $s<2$. We can check this using polar coordinate $dy = rdr$. The second term is estimated similarly:
          $$begin{eqnarray}
          int_{|y|ge 1}dfrac{|f(z-y)|}{|y|}dy&le&left[int_{|y|ge 1}|f(z-y)|^pdyright]^{1/p}left[int_{|y|ge 1}frac{1}{|y|^p{^*}}dyright]^{1/p^*}\&le& |f|_pleft[int_{|y|ge 1}frac{1}{|y|^p{^*}}dyright]^{1/p^*}le M_2 <infty.
          end{eqnarray}$$
          This is because $2<p^*<infty$ and
          $$
          int_{|y|ge 1}frac{1}{|y|^s}dy =int_1^infty r^{1-s}dr<infty
          $$
          for all $1-s<-1$. Gathering them together, we get an upper bound $M_1+M_2$ independent of $z$ as wanted.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Don't you use that $1<p$?
            $endgroup$
            – mathlife
            Jan 6 at 16:35










          • $begingroup$
            So, $1<p$ is an unnecessary hypothesis?
            $endgroup$
            – mathlife
            Jan 6 at 16:40










          • $begingroup$
            @mathlife Umm .. Now I got what you meant. $p>1$ is necessary to show $p^*<infty$. But even if $p=1$, the argument is still valid using $p^*=infty$ norm. In this sense, $1=p$ is also allowed. In the same spirit, $q=infty$ is also allowed.
            $endgroup$
            – Song
            Jan 6 at 16:44










          • $begingroup$
            Ok, I see. Thanks
            $endgroup$
            – mathlife
            Jan 6 at 16:48














          1












          1








          1





          $begingroup$

          Fix $R=1$. The first term
          $$begin{eqnarray}
          int_{|y|<1}dfrac{|f(z-y)|}{|y|}dy&le&left[int_{|y|<1}|f(z-y)|^qdyright]^{1/q}left[int_{|y|<1}frac{1}{|y|^q{^*}}dyright]^{1/q^*}\&le& |f|_qleft[int_{|y|<1}frac{1}{|y|^q{^*}}dyright]^{1/q^*}le M_1<infty
          end{eqnarray}$$
          by Holder's inequality since $1le q^*<2$ ($q^*$ is a Holder conjugate of $q$) and $ymapsto |y|^{-s}$ is locally integrable for $s<2$. We can check this using polar coordinate $dy = rdr$. The second term is estimated similarly:
          $$begin{eqnarray}
          int_{|y|ge 1}dfrac{|f(z-y)|}{|y|}dy&le&left[int_{|y|ge 1}|f(z-y)|^pdyright]^{1/p}left[int_{|y|ge 1}frac{1}{|y|^p{^*}}dyright]^{1/p^*}\&le& |f|_pleft[int_{|y|ge 1}frac{1}{|y|^p{^*}}dyright]^{1/p^*}le M_2 <infty.
          end{eqnarray}$$
          This is because $2<p^*<infty$ and
          $$
          int_{|y|ge 1}frac{1}{|y|^s}dy =int_1^infty r^{1-s}dr<infty
          $$
          for all $1-s<-1$. Gathering them together, we get an upper bound $M_1+M_2$ independent of $z$ as wanted.






          share|cite|improve this answer











          $endgroup$



          Fix $R=1$. The first term
          $$begin{eqnarray}
          int_{|y|<1}dfrac{|f(z-y)|}{|y|}dy&le&left[int_{|y|<1}|f(z-y)|^qdyright]^{1/q}left[int_{|y|<1}frac{1}{|y|^q{^*}}dyright]^{1/q^*}\&le& |f|_qleft[int_{|y|<1}frac{1}{|y|^q{^*}}dyright]^{1/q^*}le M_1<infty
          end{eqnarray}$$
          by Holder's inequality since $1le q^*<2$ ($q^*$ is a Holder conjugate of $q$) and $ymapsto |y|^{-s}$ is locally integrable for $s<2$. We can check this using polar coordinate $dy = rdr$. The second term is estimated similarly:
          $$begin{eqnarray}
          int_{|y|ge 1}dfrac{|f(z-y)|}{|y|}dy&le&left[int_{|y|ge 1}|f(z-y)|^pdyright]^{1/p}left[int_{|y|ge 1}frac{1}{|y|^p{^*}}dyright]^{1/p^*}\&le& |f|_pleft[int_{|y|ge 1}frac{1}{|y|^p{^*}}dyright]^{1/p^*}le M_2 <infty.
          end{eqnarray}$$
          This is because $2<p^*<infty$ and
          $$
          int_{|y|ge 1}frac{1}{|y|^s}dy =int_1^infty r^{1-s}dr<infty
          $$
          for all $1-s<-1$. Gathering them together, we get an upper bound $M_1+M_2$ independent of $z$ as wanted.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 6 at 16:39

























          answered Jan 6 at 16:01









          SongSong

          10.3k627




          10.3k627












          • $begingroup$
            Don't you use that $1<p$?
            $endgroup$
            – mathlife
            Jan 6 at 16:35










          • $begingroup$
            So, $1<p$ is an unnecessary hypothesis?
            $endgroup$
            – mathlife
            Jan 6 at 16:40










          • $begingroup$
            @mathlife Umm .. Now I got what you meant. $p>1$ is necessary to show $p^*<infty$. But even if $p=1$, the argument is still valid using $p^*=infty$ norm. In this sense, $1=p$ is also allowed. In the same spirit, $q=infty$ is also allowed.
            $endgroup$
            – Song
            Jan 6 at 16:44










          • $begingroup$
            Ok, I see. Thanks
            $endgroup$
            – mathlife
            Jan 6 at 16:48


















          • $begingroup$
            Don't you use that $1<p$?
            $endgroup$
            – mathlife
            Jan 6 at 16:35










          • $begingroup$
            So, $1<p$ is an unnecessary hypothesis?
            $endgroup$
            – mathlife
            Jan 6 at 16:40










          • $begingroup$
            @mathlife Umm .. Now I got what you meant. $p>1$ is necessary to show $p^*<infty$. But even if $p=1$, the argument is still valid using $p^*=infty$ norm. In this sense, $1=p$ is also allowed. In the same spirit, $q=infty$ is also allowed.
            $endgroup$
            – Song
            Jan 6 at 16:44










          • $begingroup$
            Ok, I see. Thanks
            $endgroup$
            – mathlife
            Jan 6 at 16:48
















          $begingroup$
          Don't you use that $1<p$?
          $endgroup$
          – mathlife
          Jan 6 at 16:35




          $begingroup$
          Don't you use that $1<p$?
          $endgroup$
          – mathlife
          Jan 6 at 16:35












          $begingroup$
          So, $1<p$ is an unnecessary hypothesis?
          $endgroup$
          – mathlife
          Jan 6 at 16:40




          $begingroup$
          So, $1<p$ is an unnecessary hypothesis?
          $endgroup$
          – mathlife
          Jan 6 at 16:40












          $begingroup$
          @mathlife Umm .. Now I got what you meant. $p>1$ is necessary to show $p^*<infty$. But even if $p=1$, the argument is still valid using $p^*=infty$ norm. In this sense, $1=p$ is also allowed. In the same spirit, $q=infty$ is also allowed.
          $endgroup$
          – Song
          Jan 6 at 16:44




          $begingroup$
          @mathlife Umm .. Now I got what you meant. $p>1$ is necessary to show $p^*<infty$. But even if $p=1$, the argument is still valid using $p^*=infty$ norm. In this sense, $1=p$ is also allowed. In the same spirit, $q=infty$ is also allowed.
          $endgroup$
          – Song
          Jan 6 at 16:44












          $begingroup$
          Ok, I see. Thanks
          $endgroup$
          – mathlife
          Jan 6 at 16:48




          $begingroup$
          Ok, I see. Thanks
          $endgroup$
          – mathlife
          Jan 6 at 16:48


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064020%2fhow-to-bound-uniformly-this-integral%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith