How to bound uniformly this integral?
$begingroup$
could someone help me with this question please?
I need to prove that if $1<p<2<q;$ and $fin{L^p(mathbb{R^2})}cap{L^q(mathbb{R^2})}$ then $$g(z)=int_mathbb{R^2}dfrac{|f(y)|}{|z-y|}dy$$ is uniformly bounded.
I tried to write that as
$$g(z)=int_{|z-y|<R}dfrac{|f(y)|}{|z-y|}dy+int_{|z-y|>R}dfrac{|f(y)|}{|z-y|}dy$$
But I only know how to bound each one if $p=1$ and $q=infty$ after fixing a concrete $R$.
Thanks.
real-analysis functional-analysis
$endgroup$
add a comment |
$begingroup$
could someone help me with this question please?
I need to prove that if $1<p<2<q;$ and $fin{L^p(mathbb{R^2})}cap{L^q(mathbb{R^2})}$ then $$g(z)=int_mathbb{R^2}dfrac{|f(y)|}{|z-y|}dy$$ is uniformly bounded.
I tried to write that as
$$g(z)=int_{|z-y|<R}dfrac{|f(y)|}{|z-y|}dy+int_{|z-y|>R}dfrac{|f(y)|}{|z-y|}dy$$
But I only know how to bound each one if $p=1$ and $q=infty$ after fixing a concrete $R$.
Thanks.
real-analysis functional-analysis
$endgroup$
add a comment |
$begingroup$
could someone help me with this question please?
I need to prove that if $1<p<2<q;$ and $fin{L^p(mathbb{R^2})}cap{L^q(mathbb{R^2})}$ then $$g(z)=int_mathbb{R^2}dfrac{|f(y)|}{|z-y|}dy$$ is uniformly bounded.
I tried to write that as
$$g(z)=int_{|z-y|<R}dfrac{|f(y)|}{|z-y|}dy+int_{|z-y|>R}dfrac{|f(y)|}{|z-y|}dy$$
But I only know how to bound each one if $p=1$ and $q=infty$ after fixing a concrete $R$.
Thanks.
real-analysis functional-analysis
$endgroup$
could someone help me with this question please?
I need to prove that if $1<p<2<q;$ and $fin{L^p(mathbb{R^2})}cap{L^q(mathbb{R^2})}$ then $$g(z)=int_mathbb{R^2}dfrac{|f(y)|}{|z-y|}dy$$ is uniformly bounded.
I tried to write that as
$$g(z)=int_{|z-y|<R}dfrac{|f(y)|}{|z-y|}dy+int_{|z-y|>R}dfrac{|f(y)|}{|z-y|}dy$$
But I only know how to bound each one if $p=1$ and $q=infty$ after fixing a concrete $R$.
Thanks.
real-analysis functional-analysis
real-analysis functional-analysis
asked Jan 6 at 15:48
mathlifemathlife
629
629
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Fix $R=1$. The first term
$$begin{eqnarray}
int_{|y|<1}dfrac{|f(z-y)|}{|y|}dy&le&left[int_{|y|<1}|f(z-y)|^qdyright]^{1/q}left[int_{|y|<1}frac{1}{|y|^q{^*}}dyright]^{1/q^*}\&le& |f|_qleft[int_{|y|<1}frac{1}{|y|^q{^*}}dyright]^{1/q^*}le M_1<infty
end{eqnarray}$$ by Holder's inequality since $1le q^*<2$ ($q^*$ is a Holder conjugate of $q$) and $ymapsto |y|^{-s}$ is locally integrable for $s<2$. We can check this using polar coordinate $dy = rdr$. The second term is estimated similarly:
$$begin{eqnarray}
int_{|y|ge 1}dfrac{|f(z-y)|}{|y|}dy&le&left[int_{|y|ge 1}|f(z-y)|^pdyright]^{1/p}left[int_{|y|ge 1}frac{1}{|y|^p{^*}}dyright]^{1/p^*}\&le& |f|_pleft[int_{|y|ge 1}frac{1}{|y|^p{^*}}dyright]^{1/p^*}le M_2 <infty.
end{eqnarray}$$ This is because $2<p^*<infty$ and
$$
int_{|y|ge 1}frac{1}{|y|^s}dy =int_1^infty r^{1-s}dr<infty
$$ for all $1-s<-1$. Gathering them together, we get an upper bound $M_1+M_2$ independent of $z$ as wanted.
$endgroup$
$begingroup$
Don't you use that $1<p$?
$endgroup$
– mathlife
Jan 6 at 16:35
$begingroup$
So, $1<p$ is an unnecessary hypothesis?
$endgroup$
– mathlife
Jan 6 at 16:40
$begingroup$
@mathlife Umm .. Now I got what you meant. $p>1$ is necessary to show $p^*<infty$. But even if $p=1$, the argument is still valid using $p^*=infty$ norm. In this sense, $1=p$ is also allowed. In the same spirit, $q=infty$ is also allowed.
$endgroup$
– Song
Jan 6 at 16:44
$begingroup$
Ok, I see. Thanks
$endgroup$
– mathlife
Jan 6 at 16:48
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064020%2fhow-to-bound-uniformly-this-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Fix $R=1$. The first term
$$begin{eqnarray}
int_{|y|<1}dfrac{|f(z-y)|}{|y|}dy&le&left[int_{|y|<1}|f(z-y)|^qdyright]^{1/q}left[int_{|y|<1}frac{1}{|y|^q{^*}}dyright]^{1/q^*}\&le& |f|_qleft[int_{|y|<1}frac{1}{|y|^q{^*}}dyright]^{1/q^*}le M_1<infty
end{eqnarray}$$ by Holder's inequality since $1le q^*<2$ ($q^*$ is a Holder conjugate of $q$) and $ymapsto |y|^{-s}$ is locally integrable for $s<2$. We can check this using polar coordinate $dy = rdr$. The second term is estimated similarly:
$$begin{eqnarray}
int_{|y|ge 1}dfrac{|f(z-y)|}{|y|}dy&le&left[int_{|y|ge 1}|f(z-y)|^pdyright]^{1/p}left[int_{|y|ge 1}frac{1}{|y|^p{^*}}dyright]^{1/p^*}\&le& |f|_pleft[int_{|y|ge 1}frac{1}{|y|^p{^*}}dyright]^{1/p^*}le M_2 <infty.
end{eqnarray}$$ This is because $2<p^*<infty$ and
$$
int_{|y|ge 1}frac{1}{|y|^s}dy =int_1^infty r^{1-s}dr<infty
$$ for all $1-s<-1$. Gathering them together, we get an upper bound $M_1+M_2$ independent of $z$ as wanted.
$endgroup$
$begingroup$
Don't you use that $1<p$?
$endgroup$
– mathlife
Jan 6 at 16:35
$begingroup$
So, $1<p$ is an unnecessary hypothesis?
$endgroup$
– mathlife
Jan 6 at 16:40
$begingroup$
@mathlife Umm .. Now I got what you meant. $p>1$ is necessary to show $p^*<infty$. But even if $p=1$, the argument is still valid using $p^*=infty$ norm. In this sense, $1=p$ is also allowed. In the same spirit, $q=infty$ is also allowed.
$endgroup$
– Song
Jan 6 at 16:44
$begingroup$
Ok, I see. Thanks
$endgroup$
– mathlife
Jan 6 at 16:48
add a comment |
$begingroup$
Fix $R=1$. The first term
$$begin{eqnarray}
int_{|y|<1}dfrac{|f(z-y)|}{|y|}dy&le&left[int_{|y|<1}|f(z-y)|^qdyright]^{1/q}left[int_{|y|<1}frac{1}{|y|^q{^*}}dyright]^{1/q^*}\&le& |f|_qleft[int_{|y|<1}frac{1}{|y|^q{^*}}dyright]^{1/q^*}le M_1<infty
end{eqnarray}$$ by Holder's inequality since $1le q^*<2$ ($q^*$ is a Holder conjugate of $q$) and $ymapsto |y|^{-s}$ is locally integrable for $s<2$. We can check this using polar coordinate $dy = rdr$. The second term is estimated similarly:
$$begin{eqnarray}
int_{|y|ge 1}dfrac{|f(z-y)|}{|y|}dy&le&left[int_{|y|ge 1}|f(z-y)|^pdyright]^{1/p}left[int_{|y|ge 1}frac{1}{|y|^p{^*}}dyright]^{1/p^*}\&le& |f|_pleft[int_{|y|ge 1}frac{1}{|y|^p{^*}}dyright]^{1/p^*}le M_2 <infty.
end{eqnarray}$$ This is because $2<p^*<infty$ and
$$
int_{|y|ge 1}frac{1}{|y|^s}dy =int_1^infty r^{1-s}dr<infty
$$ for all $1-s<-1$. Gathering them together, we get an upper bound $M_1+M_2$ independent of $z$ as wanted.
$endgroup$
$begingroup$
Don't you use that $1<p$?
$endgroup$
– mathlife
Jan 6 at 16:35
$begingroup$
So, $1<p$ is an unnecessary hypothesis?
$endgroup$
– mathlife
Jan 6 at 16:40
$begingroup$
@mathlife Umm .. Now I got what you meant. $p>1$ is necessary to show $p^*<infty$. But even if $p=1$, the argument is still valid using $p^*=infty$ norm. In this sense, $1=p$ is also allowed. In the same spirit, $q=infty$ is also allowed.
$endgroup$
– Song
Jan 6 at 16:44
$begingroup$
Ok, I see. Thanks
$endgroup$
– mathlife
Jan 6 at 16:48
add a comment |
$begingroup$
Fix $R=1$. The first term
$$begin{eqnarray}
int_{|y|<1}dfrac{|f(z-y)|}{|y|}dy&le&left[int_{|y|<1}|f(z-y)|^qdyright]^{1/q}left[int_{|y|<1}frac{1}{|y|^q{^*}}dyright]^{1/q^*}\&le& |f|_qleft[int_{|y|<1}frac{1}{|y|^q{^*}}dyright]^{1/q^*}le M_1<infty
end{eqnarray}$$ by Holder's inequality since $1le q^*<2$ ($q^*$ is a Holder conjugate of $q$) and $ymapsto |y|^{-s}$ is locally integrable for $s<2$. We can check this using polar coordinate $dy = rdr$. The second term is estimated similarly:
$$begin{eqnarray}
int_{|y|ge 1}dfrac{|f(z-y)|}{|y|}dy&le&left[int_{|y|ge 1}|f(z-y)|^pdyright]^{1/p}left[int_{|y|ge 1}frac{1}{|y|^p{^*}}dyright]^{1/p^*}\&le& |f|_pleft[int_{|y|ge 1}frac{1}{|y|^p{^*}}dyright]^{1/p^*}le M_2 <infty.
end{eqnarray}$$ This is because $2<p^*<infty$ and
$$
int_{|y|ge 1}frac{1}{|y|^s}dy =int_1^infty r^{1-s}dr<infty
$$ for all $1-s<-1$. Gathering them together, we get an upper bound $M_1+M_2$ independent of $z$ as wanted.
$endgroup$
Fix $R=1$. The first term
$$begin{eqnarray}
int_{|y|<1}dfrac{|f(z-y)|}{|y|}dy&le&left[int_{|y|<1}|f(z-y)|^qdyright]^{1/q}left[int_{|y|<1}frac{1}{|y|^q{^*}}dyright]^{1/q^*}\&le& |f|_qleft[int_{|y|<1}frac{1}{|y|^q{^*}}dyright]^{1/q^*}le M_1<infty
end{eqnarray}$$ by Holder's inequality since $1le q^*<2$ ($q^*$ is a Holder conjugate of $q$) and $ymapsto |y|^{-s}$ is locally integrable for $s<2$. We can check this using polar coordinate $dy = rdr$. The second term is estimated similarly:
$$begin{eqnarray}
int_{|y|ge 1}dfrac{|f(z-y)|}{|y|}dy&le&left[int_{|y|ge 1}|f(z-y)|^pdyright]^{1/p}left[int_{|y|ge 1}frac{1}{|y|^p{^*}}dyright]^{1/p^*}\&le& |f|_pleft[int_{|y|ge 1}frac{1}{|y|^p{^*}}dyright]^{1/p^*}le M_2 <infty.
end{eqnarray}$$ This is because $2<p^*<infty$ and
$$
int_{|y|ge 1}frac{1}{|y|^s}dy =int_1^infty r^{1-s}dr<infty
$$ for all $1-s<-1$. Gathering them together, we get an upper bound $M_1+M_2$ independent of $z$ as wanted.
edited Jan 6 at 16:39
answered Jan 6 at 16:01
SongSong
10.3k627
10.3k627
$begingroup$
Don't you use that $1<p$?
$endgroup$
– mathlife
Jan 6 at 16:35
$begingroup$
So, $1<p$ is an unnecessary hypothesis?
$endgroup$
– mathlife
Jan 6 at 16:40
$begingroup$
@mathlife Umm .. Now I got what you meant. $p>1$ is necessary to show $p^*<infty$. But even if $p=1$, the argument is still valid using $p^*=infty$ norm. In this sense, $1=p$ is also allowed. In the same spirit, $q=infty$ is also allowed.
$endgroup$
– Song
Jan 6 at 16:44
$begingroup$
Ok, I see. Thanks
$endgroup$
– mathlife
Jan 6 at 16:48
add a comment |
$begingroup$
Don't you use that $1<p$?
$endgroup$
– mathlife
Jan 6 at 16:35
$begingroup$
So, $1<p$ is an unnecessary hypothesis?
$endgroup$
– mathlife
Jan 6 at 16:40
$begingroup$
@mathlife Umm .. Now I got what you meant. $p>1$ is necessary to show $p^*<infty$. But even if $p=1$, the argument is still valid using $p^*=infty$ norm. In this sense, $1=p$ is also allowed. In the same spirit, $q=infty$ is also allowed.
$endgroup$
– Song
Jan 6 at 16:44
$begingroup$
Ok, I see. Thanks
$endgroup$
– mathlife
Jan 6 at 16:48
$begingroup$
Don't you use that $1<p$?
$endgroup$
– mathlife
Jan 6 at 16:35
$begingroup$
Don't you use that $1<p$?
$endgroup$
– mathlife
Jan 6 at 16:35
$begingroup$
So, $1<p$ is an unnecessary hypothesis?
$endgroup$
– mathlife
Jan 6 at 16:40
$begingroup$
So, $1<p$ is an unnecessary hypothesis?
$endgroup$
– mathlife
Jan 6 at 16:40
$begingroup$
@mathlife Umm .. Now I got what you meant. $p>1$ is necessary to show $p^*<infty$. But even if $p=1$, the argument is still valid using $p^*=infty$ norm. In this sense, $1=p$ is also allowed. In the same spirit, $q=infty$ is also allowed.
$endgroup$
– Song
Jan 6 at 16:44
$begingroup$
@mathlife Umm .. Now I got what you meant. $p>1$ is necessary to show $p^*<infty$. But even if $p=1$, the argument is still valid using $p^*=infty$ norm. In this sense, $1=p$ is also allowed. In the same spirit, $q=infty$ is also allowed.
$endgroup$
– Song
Jan 6 at 16:44
$begingroup$
Ok, I see. Thanks
$endgroup$
– mathlife
Jan 6 at 16:48
$begingroup$
Ok, I see. Thanks
$endgroup$
– mathlife
Jan 6 at 16:48
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064020%2fhow-to-bound-uniformly-this-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown