How to efficiently re-compute the inverse of positive definite matrix when its i-th row and column are...
Given a positive definite matrix $Ain R^{ntimes n}$ with its inverse $B$ and the Singular Value Decomposition $A=USU^T$. If I replace the $i-$th row and column of $A$ with a vector $x^Tin R^{1times n}$ and $xin R^n$ respectively, so that the new matrix $C$ is generated.
Here, assume that $C$ is still a positive definite matrix, then my question is that how can I efficiently calculate the inverse of $C$ with the results $B$ and $A=USU^T$?
Maybe we should also know some other calculation results about $A$.
calculus linear-algebra matrices
add a comment |
Given a positive definite matrix $Ain R^{ntimes n}$ with its inverse $B$ and the Singular Value Decomposition $A=USU^T$. If I replace the $i-$th row and column of $A$ with a vector $x^Tin R^{1times n}$ and $xin R^n$ respectively, so that the new matrix $C$ is generated.
Here, assume that $C$ is still a positive definite matrix, then my question is that how can I efficiently calculate the inverse of $C$ with the results $B$ and $A=USU^T$?
Maybe we should also know some other calculation results about $A$.
calculus linear-algebra matrices
add a comment |
Given a positive definite matrix $Ain R^{ntimes n}$ with its inverse $B$ and the Singular Value Decomposition $A=USU^T$. If I replace the $i-$th row and column of $A$ with a vector $x^Tin R^{1times n}$ and $xin R^n$ respectively, so that the new matrix $C$ is generated.
Here, assume that $C$ is still a positive definite matrix, then my question is that how can I efficiently calculate the inverse of $C$ with the results $B$ and $A=USU^T$?
Maybe we should also know some other calculation results about $A$.
calculus linear-algebra matrices
Given a positive definite matrix $Ain R^{ntimes n}$ with its inverse $B$ and the Singular Value Decomposition $A=USU^T$. If I replace the $i-$th row and column of $A$ with a vector $x^Tin R^{1times n}$ and $xin R^n$ respectively, so that the new matrix $C$ is generated.
Here, assume that $C$ is still a positive definite matrix, then my question is that how can I efficiently calculate the inverse of $C$ with the results $B$ and $A=USU^T$?
Maybe we should also know some other calculation results about $A$.
calculus linear-algebra matrices
calculus linear-algebra matrices
asked Nov 20 '18 at 1:47
olivia
766616
766616
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
This is basically a rank-2 update. Let $mathbf a_i$ be the $i$-th column of $A$, $u=e_i$ (the $i$-th standard basis vector) and $v=x-mathbf a_i-frac{x_{ii}-a_{ii}}2e_i$. Then $C=A+uv^T+vu^T$. Hence you may apply Sherman-Morrison formula twice to obtain
$$
C^{-1}=A^{-1}
+A^{-1}frac{avv^T-(1+b)(vu^T+uv^T)+cuu^T}{(1+b)^2-ac}A^{-1},
$$
where $a=u^TA^{-1}u, b=u^TA^{-1}u$ and $c=v^TA^{-1}v$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005816%2fhow-to-efficiently-re-compute-the-inverse-of-positive-definite-matrix-when-its-i%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
This is basically a rank-2 update. Let $mathbf a_i$ be the $i$-th column of $A$, $u=e_i$ (the $i$-th standard basis vector) and $v=x-mathbf a_i-frac{x_{ii}-a_{ii}}2e_i$. Then $C=A+uv^T+vu^T$. Hence you may apply Sherman-Morrison formula twice to obtain
$$
C^{-1}=A^{-1}
+A^{-1}frac{avv^T-(1+b)(vu^T+uv^T)+cuu^T}{(1+b)^2-ac}A^{-1},
$$
where $a=u^TA^{-1}u, b=u^TA^{-1}u$ and $c=v^TA^{-1}v$.
add a comment |
This is basically a rank-2 update. Let $mathbf a_i$ be the $i$-th column of $A$, $u=e_i$ (the $i$-th standard basis vector) and $v=x-mathbf a_i-frac{x_{ii}-a_{ii}}2e_i$. Then $C=A+uv^T+vu^T$. Hence you may apply Sherman-Morrison formula twice to obtain
$$
C^{-1}=A^{-1}
+A^{-1}frac{avv^T-(1+b)(vu^T+uv^T)+cuu^T}{(1+b)^2-ac}A^{-1},
$$
where $a=u^TA^{-1}u, b=u^TA^{-1}u$ and $c=v^TA^{-1}v$.
add a comment |
This is basically a rank-2 update. Let $mathbf a_i$ be the $i$-th column of $A$, $u=e_i$ (the $i$-th standard basis vector) and $v=x-mathbf a_i-frac{x_{ii}-a_{ii}}2e_i$. Then $C=A+uv^T+vu^T$. Hence you may apply Sherman-Morrison formula twice to obtain
$$
C^{-1}=A^{-1}
+A^{-1}frac{avv^T-(1+b)(vu^T+uv^T)+cuu^T}{(1+b)^2-ac}A^{-1},
$$
where $a=u^TA^{-1}u, b=u^TA^{-1}u$ and $c=v^TA^{-1}v$.
This is basically a rank-2 update. Let $mathbf a_i$ be the $i$-th column of $A$, $u=e_i$ (the $i$-th standard basis vector) and $v=x-mathbf a_i-frac{x_{ii}-a_{ii}}2e_i$. Then $C=A+uv^T+vu^T$. Hence you may apply Sherman-Morrison formula twice to obtain
$$
C^{-1}=A^{-1}
+A^{-1}frac{avv^T-(1+b)(vu^T+uv^T)+cuu^T}{(1+b)^2-ac}A^{-1},
$$
where $a=u^TA^{-1}u, b=u^TA^{-1}u$ and $c=v^TA^{-1}v$.
answered Nov 20 '18 at 7:06
user1551
71.3k566125
71.3k566125
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005816%2fhow-to-efficiently-re-compute-the-inverse-of-positive-definite-matrix-when-its-i%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown