How to show that $sum_{n=1}^{infty}frac{H_n}{n^2+n}=frac{pi^2}{6}$












6












$begingroup$


Wolfram Alpha shows that
$$sum_{n=1}^{infty}frac{H_n}{n^2+n}=zeta(2)=frac{pi^2}{6}$$
I want to prove this.



Attempt:



I tried to treat this as a telescoping series:
$$begin{align}
sum_{n=1}^{infty}frac{H_n}{n^2+n}&=sum_{n=1}^{infty}H_nleft(frac{1}{n}-frac{1}{n+1}right)\
&=H_{1}left(1-frac{1}{2}right)+H_{2}left(frac{1}{2}-frac{1}{3}right)+H_{3}left(frac{1}{3}-frac{1}{4}right)\
&=1-frac{1}{2}+frac{1}{2}-frac{1}{3}+frac{1}{4}-frac{1}{6}+frac{1}{3}-frac{1}{4}+frac{1}{6}-frac{1}{8}+frac{1}{9}-frac{1}{12}
end{align}$$

I think this method is not quite useful, so I tried another one:
$$H_n=int_{0}^{1}frac{1-t^n}{1-t}dt$$
Then,
$$sum_{n=1}^{infty}frac{H_n}{n^2+n}=sum_{n=1}^{infty}frac{1}{n^2+n}int_{0}^{1}frac{1-t^n}{1-t}dt$$
At this point, I do not know how to proceed.










share|cite|improve this question









$endgroup$












  • $begingroup$
    It should work similarly to this question.
    $endgroup$
    – Dietrich Burde
    Jan 6 at 15:13
















6












$begingroup$


Wolfram Alpha shows that
$$sum_{n=1}^{infty}frac{H_n}{n^2+n}=zeta(2)=frac{pi^2}{6}$$
I want to prove this.



Attempt:



I tried to treat this as a telescoping series:
$$begin{align}
sum_{n=1}^{infty}frac{H_n}{n^2+n}&=sum_{n=1}^{infty}H_nleft(frac{1}{n}-frac{1}{n+1}right)\
&=H_{1}left(1-frac{1}{2}right)+H_{2}left(frac{1}{2}-frac{1}{3}right)+H_{3}left(frac{1}{3}-frac{1}{4}right)\
&=1-frac{1}{2}+frac{1}{2}-frac{1}{3}+frac{1}{4}-frac{1}{6}+frac{1}{3}-frac{1}{4}+frac{1}{6}-frac{1}{8}+frac{1}{9}-frac{1}{12}
end{align}$$

I think this method is not quite useful, so I tried another one:
$$H_n=int_{0}^{1}frac{1-t^n}{1-t}dt$$
Then,
$$sum_{n=1}^{infty}frac{H_n}{n^2+n}=sum_{n=1}^{infty}frac{1}{n^2+n}int_{0}^{1}frac{1-t^n}{1-t}dt$$
At this point, I do not know how to proceed.










share|cite|improve this question









$endgroup$












  • $begingroup$
    It should work similarly to this question.
    $endgroup$
    – Dietrich Burde
    Jan 6 at 15:13














6












6








6


2



$begingroup$


Wolfram Alpha shows that
$$sum_{n=1}^{infty}frac{H_n}{n^2+n}=zeta(2)=frac{pi^2}{6}$$
I want to prove this.



Attempt:



I tried to treat this as a telescoping series:
$$begin{align}
sum_{n=1}^{infty}frac{H_n}{n^2+n}&=sum_{n=1}^{infty}H_nleft(frac{1}{n}-frac{1}{n+1}right)\
&=H_{1}left(1-frac{1}{2}right)+H_{2}left(frac{1}{2}-frac{1}{3}right)+H_{3}left(frac{1}{3}-frac{1}{4}right)\
&=1-frac{1}{2}+frac{1}{2}-frac{1}{3}+frac{1}{4}-frac{1}{6}+frac{1}{3}-frac{1}{4}+frac{1}{6}-frac{1}{8}+frac{1}{9}-frac{1}{12}
end{align}$$

I think this method is not quite useful, so I tried another one:
$$H_n=int_{0}^{1}frac{1-t^n}{1-t}dt$$
Then,
$$sum_{n=1}^{infty}frac{H_n}{n^2+n}=sum_{n=1}^{infty}frac{1}{n^2+n}int_{0}^{1}frac{1-t^n}{1-t}dt$$
At this point, I do not know how to proceed.










share|cite|improve this question









$endgroup$




Wolfram Alpha shows that
$$sum_{n=1}^{infty}frac{H_n}{n^2+n}=zeta(2)=frac{pi^2}{6}$$
I want to prove this.



Attempt:



I tried to treat this as a telescoping series:
$$begin{align}
sum_{n=1}^{infty}frac{H_n}{n^2+n}&=sum_{n=1}^{infty}H_nleft(frac{1}{n}-frac{1}{n+1}right)\
&=H_{1}left(1-frac{1}{2}right)+H_{2}left(frac{1}{2}-frac{1}{3}right)+H_{3}left(frac{1}{3}-frac{1}{4}right)\
&=1-frac{1}{2}+frac{1}{2}-frac{1}{3}+frac{1}{4}-frac{1}{6}+frac{1}{3}-frac{1}{4}+frac{1}{6}-frac{1}{8}+frac{1}{9}-frac{1}{12}
end{align}$$

I think this method is not quite useful, so I tried another one:
$$H_n=int_{0}^{1}frac{1-t^n}{1-t}dt$$
Then,
$$sum_{n=1}^{infty}frac{H_n}{n^2+n}=sum_{n=1}^{infty}frac{1}{n^2+n}int_{0}^{1}frac{1-t^n}{1-t}dt$$
At this point, I do not know how to proceed.







sequences-and-series






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 6 at 15:07









LarryLarry

2,27231028




2,27231028












  • $begingroup$
    It should work similarly to this question.
    $endgroup$
    – Dietrich Burde
    Jan 6 at 15:13


















  • $begingroup$
    It should work similarly to this question.
    $endgroup$
    – Dietrich Burde
    Jan 6 at 15:13
















$begingroup$
It should work similarly to this question.
$endgroup$
– Dietrich Burde
Jan 6 at 15:13




$begingroup$
It should work similarly to this question.
$endgroup$
– Dietrich Burde
Jan 6 at 15:13










5 Answers
5






active

oldest

votes


















8












$begingroup$

Beside telescoping, all you need is to reverse the order of the double sum: $$sum_{nge 1}frac{sum_{k=1}^n k^{-1}}{n(n+1)}=sum_{kge 1}k^{-1}sum_{nge k}frac{1}{n(n+1)}=sum_{kge 1}k^{-2}=frac{pi^2}{6}.$$Edit to explain the reversal: we're summing all terms of the form $frac{k^{-1}}{n(n+1)}$ with $n,,k$ integers in the set ${(n,,k)|n,,kge 1,,kle n}$. But I could equivalently describe this set as ${(n,,k)|kge 1,,nge k}$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    How do you reverse the order? I do not completely understand, especially how you manipulate the lower limit.
    $endgroup$
    – Larry
    Jan 6 at 15:20










  • $begingroup$
    @Larry See edit.
    $endgroup$
    – J.G.
    Jan 6 at 15:23










  • $begingroup$
    $frac{H_n}{n^2(1+frac{1}{n})}=frac{1}{n^2}lim_{n→∞}frac{H_n}{1+H_n}=frac{1}{n^2}$
    $endgroup$
    – sirous
    Jan 6 at 15:24










  • $begingroup$
    @J.G Thanks, I think I understand the reversal now.
    $endgroup$
    – Larry
    Jan 6 at 15:25












  • $begingroup$
    @sirous Your equality is not true: for example $$H_1/(1^2+1)neq 1/1^2$$
    $endgroup$
    – Nick
    Jan 6 at 15:26





















8












$begingroup$

We have
begin{align}
sum_{n=1}^inftyfrac{H_n}{n^2+n}
&=sum_{n=1}^infty H_nleft(frac1n-frac1{n+1}right)
\&=sum_{n=1}^inftysum_{m=1}^nfrac1mleft(frac1n-frac1{n+1}right)
\&=sum_{m=1}^inftyfrac1msum_{n=m}^inftyleft(frac1n-frac1{n+1}right)
\&=sum_{m=1}^inftyfrac1mcdotfrac1m
\&=frac{pi^2}6.
end{align}






share|cite|improve this answer









$endgroup$





















    3












    $begingroup$

    $newcommand{Li}{operatorname{Li}}$Starting with a generating function for the Harmonic Numbers




    $$-frac{log(1-x)}{1-x}~=~sum_{n=1}^infty H_nx^ntag1$$




    we divide both sides by $x$ and integrate afterwards to get



    $$begin{align*}
    int-frac{log(1-x)}{x(1-x)}mathrm dx&=intsum_{n=1}^infty H_nx^{n-1}mathrm dx\
    Li_2(x)+frac12log^2(1-x)+c&=sum_{n=1}^infty frac{H_n}nx^{n}
    end{align*}$$



    Plug in $x=0$ to determine the value of $c$ which turns out to be $0$ aswell. Integrating this equation yields to



    $$begin{align*}
    intLi_2(x)+frac12log^2(1-x)mathrm dx&=intsum_{n=1}^infty frac{H_n}nx^{n}mathrm dx\
    xLi_2(x)-x+(x-1)log(1-x)+frac12(x-1)(log^2(1-x)-2log(1-x)+2)+c&=sum_{n=1}^inftyfrac{H_n}{n(n+1)}x^{n}
    end{align*}$$



    The new constant again equals $0$ due the same argumentation as above. Now we can plug in $x=1$ to compute the value of your given series which overall is given by $Li_2(1)$ and this is well-known to equal $zeta(2)$.




    $$therefore~sum_{n=1}^inftyfrac{H_n}{n(n+1)}~=~frac{pi^2}6tag2$$







    share|cite|improve this answer











    $endgroup$





















      2












      $begingroup$

      Here is another, slightly longer, approach. It will use a double integral in order to evaluate the sum.



      Noting that
      $$int_0^1 x^{n - 1} , dx = frac{1}{n} quad text{and} quad int_0^1 y^n , dy = frac{1}{n + 1},$$
      the sum can be written as
      $$sum_{n = 1}^infty frac{H_n}{n(n + 1)} = int_0^1 int_0^1 frac{1}{x} sum_{n = 1}^infty H_n (xy)^n , dx dy.tag1$$
      Here the order of the summation with the double integral has been changed and can be done due to the dominated convergence theorem.



      Making use of the generating function for the Harmonic number, namely
      $$-frac{log(1-x)}{1 - x}~=~sum_{n=1}^infty H_n x^n,$$
      the infinity sum appearing inside the integral in (1) can be written as
      $$sum_{n = 1}^infty frac{H_n}{n(n + 1)} = -int_0^1 int_0^1 frac{ln (1 - xy)}{x(1 - xy)} , dx dy.$$
      Enforcing a substitution of $x mapsto x/y$ gives
      begin{align}
      sum_{n = 1}^infty frac{H_n}{n(n + 1)} &= -int_0^1 int_0^y frac{ln (1 - x)}{x (1 - x)} , dx dy\
      &= -int_0^1 int_0^y left [frac{ln (1 - x)}{x} + frac{ln (1 - x)}{1 - x} right ] , dx , dy\
      &= int_0^1 operatorname{Li}_2 (y) , dy + frac{1}{2} int_0^1 ln^2 (1 - y) , dy\
      &= I_1 + frac{1}{2} I_2.
      end{align}

      Here $operatorname{Li}_2 (y)$ is the dilogarithm function.



      For the first of these integrals, writing the dilogarithm function in terms of its series representation, we have
      begin{align}
      I_1 &= int_0^1 sum_{n = 1}^infty frac{y^n}{n^2} , dy\
      &= sum_{n = 1}^infty frac{1}{n^2} int_0^1 y^n , dy\
      &= sum_{n = 1}^infty frac{1}{n^2(n + 1)}\
      &= sum_{n = 1}^infty left [frac{1}{n^2} + frac{1}{n + 1} - frac{1}{n} right ]\
      &= sum_{n = 1}^infty frac{1}{n^2} - sum_{n = 1}^infty left (frac{1}{n} - frac{1}{n + 1} right )\
      &= frac{pi^2}{6} - 1,
      end{align}

      where the first of the series is the well-known Basel problem while the second telescopes.



      For the second of the integrals, define
      $$I(a) = int_0^1 (1 - y)^a , dy, quad a > - 1.$$
      Observe that
      $$I''(0) = int_0^1 ln^2 ( 1 - y) , dy,$$
      where the derivative is with respect to $a$. Now, as
      $$I(a) = operatorname{B} (1, a + 1) = frac{Gamma (a + 1)}{Gamma (a + 2)} = frac{1}{a + 1},$$
      where $operatorname{B}(x,y)$ is the Beta function, one readily has
      $$I''(a) = frac{2}{(a + 1)^3},$$
      yielding $I''(0) = I_2 = 2$.



      Thus
      $$sum_{n = 1}^infty frac{H_n}{n (n + 1)} = frac{pi^2}{6} - 1 + frac{1}{2} cdot 2 = frac{pi^2}{6}.$$






      share|cite|improve this answer











      $endgroup$





















        1












        $begingroup$

        Using summation by parts we have $$sum_{nleq N}frac{H_{n}}{nleft(n+1right)}=H_{N}sum_{nleq N}frac{1}{nleft(n+1right)}-sum_{nleq N-1}frac{1}{n+1}left(sum_{kleq n}frac{1}{kleft(k+1right)}right).$$ Clearly $$sum_{nleq N}frac{1}{nleft(n+1right)}=left(1-frac{1}{N+1}right)$$ then $$sum_{nleq N}frac{H_{n}}{nleft(n+1right)}=H_{N}left(1-frac{1}{N+1}right)-H_{N}+sum_{nleq N-1}frac{1}{left(n+1right)^{2}}.$$ Now, since $H_{N}simlogleft(Nright)$ as $Nrightarrow+infty$, the claim follows.






        share|cite|improve this answer









        $endgroup$













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063965%2fhow-to-show-that-sum-n-1-infty-frach-nn2n-frac-pi26%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          5 Answers
          5






          active

          oldest

          votes








          5 Answers
          5






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          8












          $begingroup$

          Beside telescoping, all you need is to reverse the order of the double sum: $$sum_{nge 1}frac{sum_{k=1}^n k^{-1}}{n(n+1)}=sum_{kge 1}k^{-1}sum_{nge k}frac{1}{n(n+1)}=sum_{kge 1}k^{-2}=frac{pi^2}{6}.$$Edit to explain the reversal: we're summing all terms of the form $frac{k^{-1}}{n(n+1)}$ with $n,,k$ integers in the set ${(n,,k)|n,,kge 1,,kle n}$. But I could equivalently describe this set as ${(n,,k)|kge 1,,nge k}$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            How do you reverse the order? I do not completely understand, especially how you manipulate the lower limit.
            $endgroup$
            – Larry
            Jan 6 at 15:20










          • $begingroup$
            @Larry See edit.
            $endgroup$
            – J.G.
            Jan 6 at 15:23










          • $begingroup$
            $frac{H_n}{n^2(1+frac{1}{n})}=frac{1}{n^2}lim_{n→∞}frac{H_n}{1+H_n}=frac{1}{n^2}$
            $endgroup$
            – sirous
            Jan 6 at 15:24










          • $begingroup$
            @J.G Thanks, I think I understand the reversal now.
            $endgroup$
            – Larry
            Jan 6 at 15:25












          • $begingroup$
            @sirous Your equality is not true: for example $$H_1/(1^2+1)neq 1/1^2$$
            $endgroup$
            – Nick
            Jan 6 at 15:26


















          8












          $begingroup$

          Beside telescoping, all you need is to reverse the order of the double sum: $$sum_{nge 1}frac{sum_{k=1}^n k^{-1}}{n(n+1)}=sum_{kge 1}k^{-1}sum_{nge k}frac{1}{n(n+1)}=sum_{kge 1}k^{-2}=frac{pi^2}{6}.$$Edit to explain the reversal: we're summing all terms of the form $frac{k^{-1}}{n(n+1)}$ with $n,,k$ integers in the set ${(n,,k)|n,,kge 1,,kle n}$. But I could equivalently describe this set as ${(n,,k)|kge 1,,nge k}$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            How do you reverse the order? I do not completely understand, especially how you manipulate the lower limit.
            $endgroup$
            – Larry
            Jan 6 at 15:20










          • $begingroup$
            @Larry See edit.
            $endgroup$
            – J.G.
            Jan 6 at 15:23










          • $begingroup$
            $frac{H_n}{n^2(1+frac{1}{n})}=frac{1}{n^2}lim_{n→∞}frac{H_n}{1+H_n}=frac{1}{n^2}$
            $endgroup$
            – sirous
            Jan 6 at 15:24










          • $begingroup$
            @J.G Thanks, I think I understand the reversal now.
            $endgroup$
            – Larry
            Jan 6 at 15:25












          • $begingroup$
            @sirous Your equality is not true: for example $$H_1/(1^2+1)neq 1/1^2$$
            $endgroup$
            – Nick
            Jan 6 at 15:26
















          8












          8








          8





          $begingroup$

          Beside telescoping, all you need is to reverse the order of the double sum: $$sum_{nge 1}frac{sum_{k=1}^n k^{-1}}{n(n+1)}=sum_{kge 1}k^{-1}sum_{nge k}frac{1}{n(n+1)}=sum_{kge 1}k^{-2}=frac{pi^2}{6}.$$Edit to explain the reversal: we're summing all terms of the form $frac{k^{-1}}{n(n+1)}$ with $n,,k$ integers in the set ${(n,,k)|n,,kge 1,,kle n}$. But I could equivalently describe this set as ${(n,,k)|kge 1,,nge k}$.






          share|cite|improve this answer











          $endgroup$



          Beside telescoping, all you need is to reverse the order of the double sum: $$sum_{nge 1}frac{sum_{k=1}^n k^{-1}}{n(n+1)}=sum_{kge 1}k^{-1}sum_{nge k}frac{1}{n(n+1)}=sum_{kge 1}k^{-2}=frac{pi^2}{6}.$$Edit to explain the reversal: we're summing all terms of the form $frac{k^{-1}}{n(n+1)}$ with $n,,k$ integers in the set ${(n,,k)|n,,kge 1,,kle n}$. But I could equivalently describe this set as ${(n,,k)|kge 1,,nge k}$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 6 at 15:22

























          answered Jan 6 at 15:11









          J.G.J.G.

          24.9k22539




          24.9k22539












          • $begingroup$
            How do you reverse the order? I do not completely understand, especially how you manipulate the lower limit.
            $endgroup$
            – Larry
            Jan 6 at 15:20










          • $begingroup$
            @Larry See edit.
            $endgroup$
            – J.G.
            Jan 6 at 15:23










          • $begingroup$
            $frac{H_n}{n^2(1+frac{1}{n})}=frac{1}{n^2}lim_{n→∞}frac{H_n}{1+H_n}=frac{1}{n^2}$
            $endgroup$
            – sirous
            Jan 6 at 15:24










          • $begingroup$
            @J.G Thanks, I think I understand the reversal now.
            $endgroup$
            – Larry
            Jan 6 at 15:25












          • $begingroup$
            @sirous Your equality is not true: for example $$H_1/(1^2+1)neq 1/1^2$$
            $endgroup$
            – Nick
            Jan 6 at 15:26




















          • $begingroup$
            How do you reverse the order? I do not completely understand, especially how you manipulate the lower limit.
            $endgroup$
            – Larry
            Jan 6 at 15:20










          • $begingroup$
            @Larry See edit.
            $endgroup$
            – J.G.
            Jan 6 at 15:23










          • $begingroup$
            $frac{H_n}{n^2(1+frac{1}{n})}=frac{1}{n^2}lim_{n→∞}frac{H_n}{1+H_n}=frac{1}{n^2}$
            $endgroup$
            – sirous
            Jan 6 at 15:24










          • $begingroup$
            @J.G Thanks, I think I understand the reversal now.
            $endgroup$
            – Larry
            Jan 6 at 15:25












          • $begingroup$
            @sirous Your equality is not true: for example $$H_1/(1^2+1)neq 1/1^2$$
            $endgroup$
            – Nick
            Jan 6 at 15:26


















          $begingroup$
          How do you reverse the order? I do not completely understand, especially how you manipulate the lower limit.
          $endgroup$
          – Larry
          Jan 6 at 15:20




          $begingroup$
          How do you reverse the order? I do not completely understand, especially how you manipulate the lower limit.
          $endgroup$
          – Larry
          Jan 6 at 15:20












          $begingroup$
          @Larry See edit.
          $endgroup$
          – J.G.
          Jan 6 at 15:23




          $begingroup$
          @Larry See edit.
          $endgroup$
          – J.G.
          Jan 6 at 15:23












          $begingroup$
          $frac{H_n}{n^2(1+frac{1}{n})}=frac{1}{n^2}lim_{n→∞}frac{H_n}{1+H_n}=frac{1}{n^2}$
          $endgroup$
          – sirous
          Jan 6 at 15:24




          $begingroup$
          $frac{H_n}{n^2(1+frac{1}{n})}=frac{1}{n^2}lim_{n→∞}frac{H_n}{1+H_n}=frac{1}{n^2}$
          $endgroup$
          – sirous
          Jan 6 at 15:24












          $begingroup$
          @J.G Thanks, I think I understand the reversal now.
          $endgroup$
          – Larry
          Jan 6 at 15:25






          $begingroup$
          @J.G Thanks, I think I understand the reversal now.
          $endgroup$
          – Larry
          Jan 6 at 15:25














          $begingroup$
          @sirous Your equality is not true: for example $$H_1/(1^2+1)neq 1/1^2$$
          $endgroup$
          – Nick
          Jan 6 at 15:26






          $begingroup$
          @sirous Your equality is not true: for example $$H_1/(1^2+1)neq 1/1^2$$
          $endgroup$
          – Nick
          Jan 6 at 15:26













          8












          $begingroup$

          We have
          begin{align}
          sum_{n=1}^inftyfrac{H_n}{n^2+n}
          &=sum_{n=1}^infty H_nleft(frac1n-frac1{n+1}right)
          \&=sum_{n=1}^inftysum_{m=1}^nfrac1mleft(frac1n-frac1{n+1}right)
          \&=sum_{m=1}^inftyfrac1msum_{n=m}^inftyleft(frac1n-frac1{n+1}right)
          \&=sum_{m=1}^inftyfrac1mcdotfrac1m
          \&=frac{pi^2}6.
          end{align}






          share|cite|improve this answer









          $endgroup$


















            8












            $begingroup$

            We have
            begin{align}
            sum_{n=1}^inftyfrac{H_n}{n^2+n}
            &=sum_{n=1}^infty H_nleft(frac1n-frac1{n+1}right)
            \&=sum_{n=1}^inftysum_{m=1}^nfrac1mleft(frac1n-frac1{n+1}right)
            \&=sum_{m=1}^inftyfrac1msum_{n=m}^inftyleft(frac1n-frac1{n+1}right)
            \&=sum_{m=1}^inftyfrac1mcdotfrac1m
            \&=frac{pi^2}6.
            end{align}






            share|cite|improve this answer









            $endgroup$
















              8












              8








              8





              $begingroup$

              We have
              begin{align}
              sum_{n=1}^inftyfrac{H_n}{n^2+n}
              &=sum_{n=1}^infty H_nleft(frac1n-frac1{n+1}right)
              \&=sum_{n=1}^inftysum_{m=1}^nfrac1mleft(frac1n-frac1{n+1}right)
              \&=sum_{m=1}^inftyfrac1msum_{n=m}^inftyleft(frac1n-frac1{n+1}right)
              \&=sum_{m=1}^inftyfrac1mcdotfrac1m
              \&=frac{pi^2}6.
              end{align}






              share|cite|improve this answer









              $endgroup$



              We have
              begin{align}
              sum_{n=1}^inftyfrac{H_n}{n^2+n}
              &=sum_{n=1}^infty H_nleft(frac1n-frac1{n+1}right)
              \&=sum_{n=1}^inftysum_{m=1}^nfrac1mleft(frac1n-frac1{n+1}right)
              \&=sum_{m=1}^inftyfrac1msum_{n=m}^inftyleft(frac1n-frac1{n+1}right)
              \&=sum_{m=1}^inftyfrac1mcdotfrac1m
              \&=frac{pi^2}6.
              end{align}







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Jan 6 at 15:21









              SmileyCraftSmileyCraft

              3,506517




              3,506517























                  3












                  $begingroup$

                  $newcommand{Li}{operatorname{Li}}$Starting with a generating function for the Harmonic Numbers




                  $$-frac{log(1-x)}{1-x}~=~sum_{n=1}^infty H_nx^ntag1$$




                  we divide both sides by $x$ and integrate afterwards to get



                  $$begin{align*}
                  int-frac{log(1-x)}{x(1-x)}mathrm dx&=intsum_{n=1}^infty H_nx^{n-1}mathrm dx\
                  Li_2(x)+frac12log^2(1-x)+c&=sum_{n=1}^infty frac{H_n}nx^{n}
                  end{align*}$$



                  Plug in $x=0$ to determine the value of $c$ which turns out to be $0$ aswell. Integrating this equation yields to



                  $$begin{align*}
                  intLi_2(x)+frac12log^2(1-x)mathrm dx&=intsum_{n=1}^infty frac{H_n}nx^{n}mathrm dx\
                  xLi_2(x)-x+(x-1)log(1-x)+frac12(x-1)(log^2(1-x)-2log(1-x)+2)+c&=sum_{n=1}^inftyfrac{H_n}{n(n+1)}x^{n}
                  end{align*}$$



                  The new constant again equals $0$ due the same argumentation as above. Now we can plug in $x=1$ to compute the value of your given series which overall is given by $Li_2(1)$ and this is well-known to equal $zeta(2)$.




                  $$therefore~sum_{n=1}^inftyfrac{H_n}{n(n+1)}~=~frac{pi^2}6tag2$$







                  share|cite|improve this answer











                  $endgroup$


















                    3












                    $begingroup$

                    $newcommand{Li}{operatorname{Li}}$Starting with a generating function for the Harmonic Numbers




                    $$-frac{log(1-x)}{1-x}~=~sum_{n=1}^infty H_nx^ntag1$$




                    we divide both sides by $x$ and integrate afterwards to get



                    $$begin{align*}
                    int-frac{log(1-x)}{x(1-x)}mathrm dx&=intsum_{n=1}^infty H_nx^{n-1}mathrm dx\
                    Li_2(x)+frac12log^2(1-x)+c&=sum_{n=1}^infty frac{H_n}nx^{n}
                    end{align*}$$



                    Plug in $x=0$ to determine the value of $c$ which turns out to be $0$ aswell. Integrating this equation yields to



                    $$begin{align*}
                    intLi_2(x)+frac12log^2(1-x)mathrm dx&=intsum_{n=1}^infty frac{H_n}nx^{n}mathrm dx\
                    xLi_2(x)-x+(x-1)log(1-x)+frac12(x-1)(log^2(1-x)-2log(1-x)+2)+c&=sum_{n=1}^inftyfrac{H_n}{n(n+1)}x^{n}
                    end{align*}$$



                    The new constant again equals $0$ due the same argumentation as above. Now we can plug in $x=1$ to compute the value of your given series which overall is given by $Li_2(1)$ and this is well-known to equal $zeta(2)$.




                    $$therefore~sum_{n=1}^inftyfrac{H_n}{n(n+1)}~=~frac{pi^2}6tag2$$







                    share|cite|improve this answer











                    $endgroup$
















                      3












                      3








                      3





                      $begingroup$

                      $newcommand{Li}{operatorname{Li}}$Starting with a generating function for the Harmonic Numbers




                      $$-frac{log(1-x)}{1-x}~=~sum_{n=1}^infty H_nx^ntag1$$




                      we divide both sides by $x$ and integrate afterwards to get



                      $$begin{align*}
                      int-frac{log(1-x)}{x(1-x)}mathrm dx&=intsum_{n=1}^infty H_nx^{n-1}mathrm dx\
                      Li_2(x)+frac12log^2(1-x)+c&=sum_{n=1}^infty frac{H_n}nx^{n}
                      end{align*}$$



                      Plug in $x=0$ to determine the value of $c$ which turns out to be $0$ aswell. Integrating this equation yields to



                      $$begin{align*}
                      intLi_2(x)+frac12log^2(1-x)mathrm dx&=intsum_{n=1}^infty frac{H_n}nx^{n}mathrm dx\
                      xLi_2(x)-x+(x-1)log(1-x)+frac12(x-1)(log^2(1-x)-2log(1-x)+2)+c&=sum_{n=1}^inftyfrac{H_n}{n(n+1)}x^{n}
                      end{align*}$$



                      The new constant again equals $0$ due the same argumentation as above. Now we can plug in $x=1$ to compute the value of your given series which overall is given by $Li_2(1)$ and this is well-known to equal $zeta(2)$.




                      $$therefore~sum_{n=1}^inftyfrac{H_n}{n(n+1)}~=~frac{pi^2}6tag2$$







                      share|cite|improve this answer











                      $endgroup$



                      $newcommand{Li}{operatorname{Li}}$Starting with a generating function for the Harmonic Numbers




                      $$-frac{log(1-x)}{1-x}~=~sum_{n=1}^infty H_nx^ntag1$$




                      we divide both sides by $x$ and integrate afterwards to get



                      $$begin{align*}
                      int-frac{log(1-x)}{x(1-x)}mathrm dx&=intsum_{n=1}^infty H_nx^{n-1}mathrm dx\
                      Li_2(x)+frac12log^2(1-x)+c&=sum_{n=1}^infty frac{H_n}nx^{n}
                      end{align*}$$



                      Plug in $x=0$ to determine the value of $c$ which turns out to be $0$ aswell. Integrating this equation yields to



                      $$begin{align*}
                      intLi_2(x)+frac12log^2(1-x)mathrm dx&=intsum_{n=1}^infty frac{H_n}nx^{n}mathrm dx\
                      xLi_2(x)-x+(x-1)log(1-x)+frac12(x-1)(log^2(1-x)-2log(1-x)+2)+c&=sum_{n=1}^inftyfrac{H_n}{n(n+1)}x^{n}
                      end{align*}$$



                      The new constant again equals $0$ due the same argumentation as above. Now we can plug in $x=1$ to compute the value of your given series which overall is given by $Li_2(1)$ and this is well-known to equal $zeta(2)$.




                      $$therefore~sum_{n=1}^inftyfrac{H_n}{n(n+1)}~=~frac{pi^2}6tag2$$








                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Jan 6 at 15:32

























                      answered Jan 6 at 15:27









                      mrtaurhomrtaurho

                      4,09121234




                      4,09121234























                          2












                          $begingroup$

                          Here is another, slightly longer, approach. It will use a double integral in order to evaluate the sum.



                          Noting that
                          $$int_0^1 x^{n - 1} , dx = frac{1}{n} quad text{and} quad int_0^1 y^n , dy = frac{1}{n + 1},$$
                          the sum can be written as
                          $$sum_{n = 1}^infty frac{H_n}{n(n + 1)} = int_0^1 int_0^1 frac{1}{x} sum_{n = 1}^infty H_n (xy)^n , dx dy.tag1$$
                          Here the order of the summation with the double integral has been changed and can be done due to the dominated convergence theorem.



                          Making use of the generating function for the Harmonic number, namely
                          $$-frac{log(1-x)}{1 - x}~=~sum_{n=1}^infty H_n x^n,$$
                          the infinity sum appearing inside the integral in (1) can be written as
                          $$sum_{n = 1}^infty frac{H_n}{n(n + 1)} = -int_0^1 int_0^1 frac{ln (1 - xy)}{x(1 - xy)} , dx dy.$$
                          Enforcing a substitution of $x mapsto x/y$ gives
                          begin{align}
                          sum_{n = 1}^infty frac{H_n}{n(n + 1)} &= -int_0^1 int_0^y frac{ln (1 - x)}{x (1 - x)} , dx dy\
                          &= -int_0^1 int_0^y left [frac{ln (1 - x)}{x} + frac{ln (1 - x)}{1 - x} right ] , dx , dy\
                          &= int_0^1 operatorname{Li}_2 (y) , dy + frac{1}{2} int_0^1 ln^2 (1 - y) , dy\
                          &= I_1 + frac{1}{2} I_2.
                          end{align}

                          Here $operatorname{Li}_2 (y)$ is the dilogarithm function.



                          For the first of these integrals, writing the dilogarithm function in terms of its series representation, we have
                          begin{align}
                          I_1 &= int_0^1 sum_{n = 1}^infty frac{y^n}{n^2} , dy\
                          &= sum_{n = 1}^infty frac{1}{n^2} int_0^1 y^n , dy\
                          &= sum_{n = 1}^infty frac{1}{n^2(n + 1)}\
                          &= sum_{n = 1}^infty left [frac{1}{n^2} + frac{1}{n + 1} - frac{1}{n} right ]\
                          &= sum_{n = 1}^infty frac{1}{n^2} - sum_{n = 1}^infty left (frac{1}{n} - frac{1}{n + 1} right )\
                          &= frac{pi^2}{6} - 1,
                          end{align}

                          where the first of the series is the well-known Basel problem while the second telescopes.



                          For the second of the integrals, define
                          $$I(a) = int_0^1 (1 - y)^a , dy, quad a > - 1.$$
                          Observe that
                          $$I''(0) = int_0^1 ln^2 ( 1 - y) , dy,$$
                          where the derivative is with respect to $a$. Now, as
                          $$I(a) = operatorname{B} (1, a + 1) = frac{Gamma (a + 1)}{Gamma (a + 2)} = frac{1}{a + 1},$$
                          where $operatorname{B}(x,y)$ is the Beta function, one readily has
                          $$I''(a) = frac{2}{(a + 1)^3},$$
                          yielding $I''(0) = I_2 = 2$.



                          Thus
                          $$sum_{n = 1}^infty frac{H_n}{n (n + 1)} = frac{pi^2}{6} - 1 + frac{1}{2} cdot 2 = frac{pi^2}{6}.$$






                          share|cite|improve this answer











                          $endgroup$


















                            2












                            $begingroup$

                            Here is another, slightly longer, approach. It will use a double integral in order to evaluate the sum.



                            Noting that
                            $$int_0^1 x^{n - 1} , dx = frac{1}{n} quad text{and} quad int_0^1 y^n , dy = frac{1}{n + 1},$$
                            the sum can be written as
                            $$sum_{n = 1}^infty frac{H_n}{n(n + 1)} = int_0^1 int_0^1 frac{1}{x} sum_{n = 1}^infty H_n (xy)^n , dx dy.tag1$$
                            Here the order of the summation with the double integral has been changed and can be done due to the dominated convergence theorem.



                            Making use of the generating function for the Harmonic number, namely
                            $$-frac{log(1-x)}{1 - x}~=~sum_{n=1}^infty H_n x^n,$$
                            the infinity sum appearing inside the integral in (1) can be written as
                            $$sum_{n = 1}^infty frac{H_n}{n(n + 1)} = -int_0^1 int_0^1 frac{ln (1 - xy)}{x(1 - xy)} , dx dy.$$
                            Enforcing a substitution of $x mapsto x/y$ gives
                            begin{align}
                            sum_{n = 1}^infty frac{H_n}{n(n + 1)} &= -int_0^1 int_0^y frac{ln (1 - x)}{x (1 - x)} , dx dy\
                            &= -int_0^1 int_0^y left [frac{ln (1 - x)}{x} + frac{ln (1 - x)}{1 - x} right ] , dx , dy\
                            &= int_0^1 operatorname{Li}_2 (y) , dy + frac{1}{2} int_0^1 ln^2 (1 - y) , dy\
                            &= I_1 + frac{1}{2} I_2.
                            end{align}

                            Here $operatorname{Li}_2 (y)$ is the dilogarithm function.



                            For the first of these integrals, writing the dilogarithm function in terms of its series representation, we have
                            begin{align}
                            I_1 &= int_0^1 sum_{n = 1}^infty frac{y^n}{n^2} , dy\
                            &= sum_{n = 1}^infty frac{1}{n^2} int_0^1 y^n , dy\
                            &= sum_{n = 1}^infty frac{1}{n^2(n + 1)}\
                            &= sum_{n = 1}^infty left [frac{1}{n^2} + frac{1}{n + 1} - frac{1}{n} right ]\
                            &= sum_{n = 1}^infty frac{1}{n^2} - sum_{n = 1}^infty left (frac{1}{n} - frac{1}{n + 1} right )\
                            &= frac{pi^2}{6} - 1,
                            end{align}

                            where the first of the series is the well-known Basel problem while the second telescopes.



                            For the second of the integrals, define
                            $$I(a) = int_0^1 (1 - y)^a , dy, quad a > - 1.$$
                            Observe that
                            $$I''(0) = int_0^1 ln^2 ( 1 - y) , dy,$$
                            where the derivative is with respect to $a$. Now, as
                            $$I(a) = operatorname{B} (1, a + 1) = frac{Gamma (a + 1)}{Gamma (a + 2)} = frac{1}{a + 1},$$
                            where $operatorname{B}(x,y)$ is the Beta function, one readily has
                            $$I''(a) = frac{2}{(a + 1)^3},$$
                            yielding $I''(0) = I_2 = 2$.



                            Thus
                            $$sum_{n = 1}^infty frac{H_n}{n (n + 1)} = frac{pi^2}{6} - 1 + frac{1}{2} cdot 2 = frac{pi^2}{6}.$$






                            share|cite|improve this answer











                            $endgroup$
















                              2












                              2








                              2





                              $begingroup$

                              Here is another, slightly longer, approach. It will use a double integral in order to evaluate the sum.



                              Noting that
                              $$int_0^1 x^{n - 1} , dx = frac{1}{n} quad text{and} quad int_0^1 y^n , dy = frac{1}{n + 1},$$
                              the sum can be written as
                              $$sum_{n = 1}^infty frac{H_n}{n(n + 1)} = int_0^1 int_0^1 frac{1}{x} sum_{n = 1}^infty H_n (xy)^n , dx dy.tag1$$
                              Here the order of the summation with the double integral has been changed and can be done due to the dominated convergence theorem.



                              Making use of the generating function for the Harmonic number, namely
                              $$-frac{log(1-x)}{1 - x}~=~sum_{n=1}^infty H_n x^n,$$
                              the infinity sum appearing inside the integral in (1) can be written as
                              $$sum_{n = 1}^infty frac{H_n}{n(n + 1)} = -int_0^1 int_0^1 frac{ln (1 - xy)}{x(1 - xy)} , dx dy.$$
                              Enforcing a substitution of $x mapsto x/y$ gives
                              begin{align}
                              sum_{n = 1}^infty frac{H_n}{n(n + 1)} &= -int_0^1 int_0^y frac{ln (1 - x)}{x (1 - x)} , dx dy\
                              &= -int_0^1 int_0^y left [frac{ln (1 - x)}{x} + frac{ln (1 - x)}{1 - x} right ] , dx , dy\
                              &= int_0^1 operatorname{Li}_2 (y) , dy + frac{1}{2} int_0^1 ln^2 (1 - y) , dy\
                              &= I_1 + frac{1}{2} I_2.
                              end{align}

                              Here $operatorname{Li}_2 (y)$ is the dilogarithm function.



                              For the first of these integrals, writing the dilogarithm function in terms of its series representation, we have
                              begin{align}
                              I_1 &= int_0^1 sum_{n = 1}^infty frac{y^n}{n^2} , dy\
                              &= sum_{n = 1}^infty frac{1}{n^2} int_0^1 y^n , dy\
                              &= sum_{n = 1}^infty frac{1}{n^2(n + 1)}\
                              &= sum_{n = 1}^infty left [frac{1}{n^2} + frac{1}{n + 1} - frac{1}{n} right ]\
                              &= sum_{n = 1}^infty frac{1}{n^2} - sum_{n = 1}^infty left (frac{1}{n} - frac{1}{n + 1} right )\
                              &= frac{pi^2}{6} - 1,
                              end{align}

                              where the first of the series is the well-known Basel problem while the second telescopes.



                              For the second of the integrals, define
                              $$I(a) = int_0^1 (1 - y)^a , dy, quad a > - 1.$$
                              Observe that
                              $$I''(0) = int_0^1 ln^2 ( 1 - y) , dy,$$
                              where the derivative is with respect to $a$. Now, as
                              $$I(a) = operatorname{B} (1, a + 1) = frac{Gamma (a + 1)}{Gamma (a + 2)} = frac{1}{a + 1},$$
                              where $operatorname{B}(x,y)$ is the Beta function, one readily has
                              $$I''(a) = frac{2}{(a + 1)^3},$$
                              yielding $I''(0) = I_2 = 2$.



                              Thus
                              $$sum_{n = 1}^infty frac{H_n}{n (n + 1)} = frac{pi^2}{6} - 1 + frac{1}{2} cdot 2 = frac{pi^2}{6}.$$






                              share|cite|improve this answer











                              $endgroup$



                              Here is another, slightly longer, approach. It will use a double integral in order to evaluate the sum.



                              Noting that
                              $$int_0^1 x^{n - 1} , dx = frac{1}{n} quad text{and} quad int_0^1 y^n , dy = frac{1}{n + 1},$$
                              the sum can be written as
                              $$sum_{n = 1}^infty frac{H_n}{n(n + 1)} = int_0^1 int_0^1 frac{1}{x} sum_{n = 1}^infty H_n (xy)^n , dx dy.tag1$$
                              Here the order of the summation with the double integral has been changed and can be done due to the dominated convergence theorem.



                              Making use of the generating function for the Harmonic number, namely
                              $$-frac{log(1-x)}{1 - x}~=~sum_{n=1}^infty H_n x^n,$$
                              the infinity sum appearing inside the integral in (1) can be written as
                              $$sum_{n = 1}^infty frac{H_n}{n(n + 1)} = -int_0^1 int_0^1 frac{ln (1 - xy)}{x(1 - xy)} , dx dy.$$
                              Enforcing a substitution of $x mapsto x/y$ gives
                              begin{align}
                              sum_{n = 1}^infty frac{H_n}{n(n + 1)} &= -int_0^1 int_0^y frac{ln (1 - x)}{x (1 - x)} , dx dy\
                              &= -int_0^1 int_0^y left [frac{ln (1 - x)}{x} + frac{ln (1 - x)}{1 - x} right ] , dx , dy\
                              &= int_0^1 operatorname{Li}_2 (y) , dy + frac{1}{2} int_0^1 ln^2 (1 - y) , dy\
                              &= I_1 + frac{1}{2} I_2.
                              end{align}

                              Here $operatorname{Li}_2 (y)$ is the dilogarithm function.



                              For the first of these integrals, writing the dilogarithm function in terms of its series representation, we have
                              begin{align}
                              I_1 &= int_0^1 sum_{n = 1}^infty frac{y^n}{n^2} , dy\
                              &= sum_{n = 1}^infty frac{1}{n^2} int_0^1 y^n , dy\
                              &= sum_{n = 1}^infty frac{1}{n^2(n + 1)}\
                              &= sum_{n = 1}^infty left [frac{1}{n^2} + frac{1}{n + 1} - frac{1}{n} right ]\
                              &= sum_{n = 1}^infty frac{1}{n^2} - sum_{n = 1}^infty left (frac{1}{n} - frac{1}{n + 1} right )\
                              &= frac{pi^2}{6} - 1,
                              end{align}

                              where the first of the series is the well-known Basel problem while the second telescopes.



                              For the second of the integrals, define
                              $$I(a) = int_0^1 (1 - y)^a , dy, quad a > - 1.$$
                              Observe that
                              $$I''(0) = int_0^1 ln^2 ( 1 - y) , dy,$$
                              where the derivative is with respect to $a$. Now, as
                              $$I(a) = operatorname{B} (1, a + 1) = frac{Gamma (a + 1)}{Gamma (a + 2)} = frac{1}{a + 1},$$
                              where $operatorname{B}(x,y)$ is the Beta function, one readily has
                              $$I''(a) = frac{2}{(a + 1)^3},$$
                              yielding $I''(0) = I_2 = 2$.



                              Thus
                              $$sum_{n = 1}^infty frac{H_n}{n (n + 1)} = frac{pi^2}{6} - 1 + frac{1}{2} cdot 2 = frac{pi^2}{6}.$$







                              share|cite|improve this answer














                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited Jan 8 at 13:04

























                              answered Jan 8 at 3:23









                              omegadotomegadot

                              5,1922727




                              5,1922727























                                  1












                                  $begingroup$

                                  Using summation by parts we have $$sum_{nleq N}frac{H_{n}}{nleft(n+1right)}=H_{N}sum_{nleq N}frac{1}{nleft(n+1right)}-sum_{nleq N-1}frac{1}{n+1}left(sum_{kleq n}frac{1}{kleft(k+1right)}right).$$ Clearly $$sum_{nleq N}frac{1}{nleft(n+1right)}=left(1-frac{1}{N+1}right)$$ then $$sum_{nleq N}frac{H_{n}}{nleft(n+1right)}=H_{N}left(1-frac{1}{N+1}right)-H_{N}+sum_{nleq N-1}frac{1}{left(n+1right)^{2}}.$$ Now, since $H_{N}simlogleft(Nright)$ as $Nrightarrow+infty$, the claim follows.






                                  share|cite|improve this answer









                                  $endgroup$


















                                    1












                                    $begingroup$

                                    Using summation by parts we have $$sum_{nleq N}frac{H_{n}}{nleft(n+1right)}=H_{N}sum_{nleq N}frac{1}{nleft(n+1right)}-sum_{nleq N-1}frac{1}{n+1}left(sum_{kleq n}frac{1}{kleft(k+1right)}right).$$ Clearly $$sum_{nleq N}frac{1}{nleft(n+1right)}=left(1-frac{1}{N+1}right)$$ then $$sum_{nleq N}frac{H_{n}}{nleft(n+1right)}=H_{N}left(1-frac{1}{N+1}right)-H_{N}+sum_{nleq N-1}frac{1}{left(n+1right)^{2}}.$$ Now, since $H_{N}simlogleft(Nright)$ as $Nrightarrow+infty$, the claim follows.






                                    share|cite|improve this answer









                                    $endgroup$
















                                      1












                                      1








                                      1





                                      $begingroup$

                                      Using summation by parts we have $$sum_{nleq N}frac{H_{n}}{nleft(n+1right)}=H_{N}sum_{nleq N}frac{1}{nleft(n+1right)}-sum_{nleq N-1}frac{1}{n+1}left(sum_{kleq n}frac{1}{kleft(k+1right)}right).$$ Clearly $$sum_{nleq N}frac{1}{nleft(n+1right)}=left(1-frac{1}{N+1}right)$$ then $$sum_{nleq N}frac{H_{n}}{nleft(n+1right)}=H_{N}left(1-frac{1}{N+1}right)-H_{N}+sum_{nleq N-1}frac{1}{left(n+1right)^{2}}.$$ Now, since $H_{N}simlogleft(Nright)$ as $Nrightarrow+infty$, the claim follows.






                                      share|cite|improve this answer









                                      $endgroup$



                                      Using summation by parts we have $$sum_{nleq N}frac{H_{n}}{nleft(n+1right)}=H_{N}sum_{nleq N}frac{1}{nleft(n+1right)}-sum_{nleq N-1}frac{1}{n+1}left(sum_{kleq n}frac{1}{kleft(k+1right)}right).$$ Clearly $$sum_{nleq N}frac{1}{nleft(n+1right)}=left(1-frac{1}{N+1}right)$$ then $$sum_{nleq N}frac{H_{n}}{nleft(n+1right)}=H_{N}left(1-frac{1}{N+1}right)-H_{N}+sum_{nleq N-1}frac{1}{left(n+1right)^{2}}.$$ Now, since $H_{N}simlogleft(Nright)$ as $Nrightarrow+infty$, the claim follows.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Jan 8 at 13:14









                                      Marco CantariniMarco Cantarini

                                      29.1k23373




                                      29.1k23373






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063965%2fhow-to-show-that-sum-n-1-infty-frach-nn2n-frac-pi26%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          MongoDB - Not Authorized To Execute Command

                                          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                                          How to fix TextFormField cause rebuild widget in Flutter