$sum_{n=1}^{infty}p_{n}<infty iff X_{n} to 0$ a.s.












0












$begingroup$


Let $(p_{n})_{n}subset [0,1]$ and $(X_{n})_{n}$ independent random variables, so that $X_{n}$~ $Ber(p_{n})$



Prove that:



$sum_{n=1}^{infty}p_{n}<infty iff X_{n} to 0$ a.s



Ideas:



"$Rightarrow$"



$sum_{n=1}^{infty}P(X_{n}=1)=sum_{n=1}^{infty}p_{n}<infty$



I would attempt to use the Lemma of Borel-Cantelli, but have no idea how to use the independence aspect.



"$Leftarrow$"
$P(X_{n} to 0)=P(omegain Omega: exists N in mathbb N, X_{n}(omega)=0, forall n geq N)=1$. Let fix this $N$ accordingly, this then means
$sum_{n=1}^{infty}P(X_{n}=1)=sum_{n=1}^{N-1}P(X_{n}=1)+sum_{n=N}^{infty}P(X_{n}=1)=sum_{n=1}^{N-1}P(X_{n}=1)+0=sum_{n=1}^{N-1}p_{n}<infty$



da $p_{n} in [0,1], forall n in mathbb N$










share|cite|improve this question









$endgroup$












  • $begingroup$
    Can you use the Kolmogorov 0-1 law?
    $endgroup$
    – ncmathsadist
    Jan 6 at 23:38










  • $begingroup$
    Yes, but why would the event $X_{n} to 0$ be asymptotic?
    $endgroup$
    – SABOY
    Jan 6 at 23:42
















0












$begingroup$


Let $(p_{n})_{n}subset [0,1]$ and $(X_{n})_{n}$ independent random variables, so that $X_{n}$~ $Ber(p_{n})$



Prove that:



$sum_{n=1}^{infty}p_{n}<infty iff X_{n} to 0$ a.s



Ideas:



"$Rightarrow$"



$sum_{n=1}^{infty}P(X_{n}=1)=sum_{n=1}^{infty}p_{n}<infty$



I would attempt to use the Lemma of Borel-Cantelli, but have no idea how to use the independence aspect.



"$Leftarrow$"
$P(X_{n} to 0)=P(omegain Omega: exists N in mathbb N, X_{n}(omega)=0, forall n geq N)=1$. Let fix this $N$ accordingly, this then means
$sum_{n=1}^{infty}P(X_{n}=1)=sum_{n=1}^{N-1}P(X_{n}=1)+sum_{n=N}^{infty}P(X_{n}=1)=sum_{n=1}^{N-1}P(X_{n}=1)+0=sum_{n=1}^{N-1}p_{n}<infty$



da $p_{n} in [0,1], forall n in mathbb N$










share|cite|improve this question









$endgroup$












  • $begingroup$
    Can you use the Kolmogorov 0-1 law?
    $endgroup$
    – ncmathsadist
    Jan 6 at 23:38










  • $begingroup$
    Yes, but why would the event $X_{n} to 0$ be asymptotic?
    $endgroup$
    – SABOY
    Jan 6 at 23:42














0












0








0





$begingroup$


Let $(p_{n})_{n}subset [0,1]$ and $(X_{n})_{n}$ independent random variables, so that $X_{n}$~ $Ber(p_{n})$



Prove that:



$sum_{n=1}^{infty}p_{n}<infty iff X_{n} to 0$ a.s



Ideas:



"$Rightarrow$"



$sum_{n=1}^{infty}P(X_{n}=1)=sum_{n=1}^{infty}p_{n}<infty$



I would attempt to use the Lemma of Borel-Cantelli, but have no idea how to use the independence aspect.



"$Leftarrow$"
$P(X_{n} to 0)=P(omegain Omega: exists N in mathbb N, X_{n}(omega)=0, forall n geq N)=1$. Let fix this $N$ accordingly, this then means
$sum_{n=1}^{infty}P(X_{n}=1)=sum_{n=1}^{N-1}P(X_{n}=1)+sum_{n=N}^{infty}P(X_{n}=1)=sum_{n=1}^{N-1}P(X_{n}=1)+0=sum_{n=1}^{N-1}p_{n}<infty$



da $p_{n} in [0,1], forall n in mathbb N$










share|cite|improve this question









$endgroup$




Let $(p_{n})_{n}subset [0,1]$ and $(X_{n})_{n}$ independent random variables, so that $X_{n}$~ $Ber(p_{n})$



Prove that:



$sum_{n=1}^{infty}p_{n}<infty iff X_{n} to 0$ a.s



Ideas:



"$Rightarrow$"



$sum_{n=1}^{infty}P(X_{n}=1)=sum_{n=1}^{infty}p_{n}<infty$



I would attempt to use the Lemma of Borel-Cantelli, but have no idea how to use the independence aspect.



"$Leftarrow$"
$P(X_{n} to 0)=P(omegain Omega: exists N in mathbb N, X_{n}(omega)=0, forall n geq N)=1$. Let fix this $N$ accordingly, this then means
$sum_{n=1}^{infty}P(X_{n}=1)=sum_{n=1}^{N-1}P(X_{n}=1)+sum_{n=N}^{infty}P(X_{n}=1)=sum_{n=1}^{N-1}P(X_{n}=1)+0=sum_{n=1}^{N-1}p_{n}<infty$



da $p_{n} in [0,1], forall n in mathbb N$







probability-theory random-variables independence borel-cantelli-lemmas






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 6 at 23:36









SABOYSABOY

614311




614311












  • $begingroup$
    Can you use the Kolmogorov 0-1 law?
    $endgroup$
    – ncmathsadist
    Jan 6 at 23:38










  • $begingroup$
    Yes, but why would the event $X_{n} to 0$ be asymptotic?
    $endgroup$
    – SABOY
    Jan 6 at 23:42


















  • $begingroup$
    Can you use the Kolmogorov 0-1 law?
    $endgroup$
    – ncmathsadist
    Jan 6 at 23:38










  • $begingroup$
    Yes, but why would the event $X_{n} to 0$ be asymptotic?
    $endgroup$
    – SABOY
    Jan 6 at 23:42
















$begingroup$
Can you use the Kolmogorov 0-1 law?
$endgroup$
– ncmathsadist
Jan 6 at 23:38




$begingroup$
Can you use the Kolmogorov 0-1 law?
$endgroup$
– ncmathsadist
Jan 6 at 23:38












$begingroup$
Yes, but why would the event $X_{n} to 0$ be asymptotic?
$endgroup$
– SABOY
Jan 6 at 23:42




$begingroup$
Yes, but why would the event $X_{n} to 0$ be asymptotic?
$endgroup$
– SABOY
Jan 6 at 23:42










2 Answers
2






active

oldest

votes


















1












$begingroup$

Note that
$
X_nstackrel{text{a.s}}{to} 0
$

iff $P(|X_n|>varepsilon ; text{i.o})=0$ for every $varepsilon>0$. Since we are dealing with bernoulli random variables we only care about $0<varepsilon<1$. So fix $0<varepsilon<1$.



In this case, $sum_n P(|X_n|>varepsilon)=sum_n p_n$. By the first Borel Cantelli lemma, if $sum_n p_n<infty$, then $X_nto 0$ almost surely. By the second Borel cantelli lemma (the $X_n$ are independent), if $sum_n p_n=infty$, then $P(|X_n|>varepsilon ; text{i.o})=1$, so $X_nnotto0$ almost surely.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    How is $X_{n} to 0$ the $lim sup $ of $|X_{n}|>epsilon$ ?
    $endgroup$
    – SABOY
    Jan 7 at 0:19












  • $begingroup$
    Oh wait $X_{n} to 0$ is the complement of $lim sup |X_{n}| > epsilon$
    $endgroup$
    – SABOY
    Jan 7 at 0:22



















1












$begingroup$

Since $X_n$'s are $0,1$ valued we see that $X_n to 0$ a.s iff $P{X_n=1 , text {i.o.}}=0$. By independence and Borel Cantelli this is so iff $sum P{X_n=1} <infty$ or $sum p_n<infty$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064521%2fsum-n-1-inftyp-n-infty-iff-x-n-to-0-a-s%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Note that
    $
    X_nstackrel{text{a.s}}{to} 0
    $

    iff $P(|X_n|>varepsilon ; text{i.o})=0$ for every $varepsilon>0$. Since we are dealing with bernoulli random variables we only care about $0<varepsilon<1$. So fix $0<varepsilon<1$.



    In this case, $sum_n P(|X_n|>varepsilon)=sum_n p_n$. By the first Borel Cantelli lemma, if $sum_n p_n<infty$, then $X_nto 0$ almost surely. By the second Borel cantelli lemma (the $X_n$ are independent), if $sum_n p_n=infty$, then $P(|X_n|>varepsilon ; text{i.o})=1$, so $X_nnotto0$ almost surely.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      How is $X_{n} to 0$ the $lim sup $ of $|X_{n}|>epsilon$ ?
      $endgroup$
      – SABOY
      Jan 7 at 0:19












    • $begingroup$
      Oh wait $X_{n} to 0$ is the complement of $lim sup |X_{n}| > epsilon$
      $endgroup$
      – SABOY
      Jan 7 at 0:22
















    1












    $begingroup$

    Note that
    $
    X_nstackrel{text{a.s}}{to} 0
    $

    iff $P(|X_n|>varepsilon ; text{i.o})=0$ for every $varepsilon>0$. Since we are dealing with bernoulli random variables we only care about $0<varepsilon<1$. So fix $0<varepsilon<1$.



    In this case, $sum_n P(|X_n|>varepsilon)=sum_n p_n$. By the first Borel Cantelli lemma, if $sum_n p_n<infty$, then $X_nto 0$ almost surely. By the second Borel cantelli lemma (the $X_n$ are independent), if $sum_n p_n=infty$, then $P(|X_n|>varepsilon ; text{i.o})=1$, so $X_nnotto0$ almost surely.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      How is $X_{n} to 0$ the $lim sup $ of $|X_{n}|>epsilon$ ?
      $endgroup$
      – SABOY
      Jan 7 at 0:19












    • $begingroup$
      Oh wait $X_{n} to 0$ is the complement of $lim sup |X_{n}| > epsilon$
      $endgroup$
      – SABOY
      Jan 7 at 0:22














    1












    1








    1





    $begingroup$

    Note that
    $
    X_nstackrel{text{a.s}}{to} 0
    $

    iff $P(|X_n|>varepsilon ; text{i.o})=0$ for every $varepsilon>0$. Since we are dealing with bernoulli random variables we only care about $0<varepsilon<1$. So fix $0<varepsilon<1$.



    In this case, $sum_n P(|X_n|>varepsilon)=sum_n p_n$. By the first Borel Cantelli lemma, if $sum_n p_n<infty$, then $X_nto 0$ almost surely. By the second Borel cantelli lemma (the $X_n$ are independent), if $sum_n p_n=infty$, then $P(|X_n|>varepsilon ; text{i.o})=1$, so $X_nnotto0$ almost surely.






    share|cite|improve this answer











    $endgroup$



    Note that
    $
    X_nstackrel{text{a.s}}{to} 0
    $

    iff $P(|X_n|>varepsilon ; text{i.o})=0$ for every $varepsilon>0$. Since we are dealing with bernoulli random variables we only care about $0<varepsilon<1$. So fix $0<varepsilon<1$.



    In this case, $sum_n P(|X_n|>varepsilon)=sum_n p_n$. By the first Borel Cantelli lemma, if $sum_n p_n<infty$, then $X_nto 0$ almost surely. By the second Borel cantelli lemma (the $X_n$ are independent), if $sum_n p_n=infty$, then $P(|X_n|>varepsilon ; text{i.o})=1$, so $X_nnotto0$ almost surely.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Jan 6 at 23:57

























    answered Jan 6 at 23:51









    Foobaz JohnFoobaz John

    21.9k41352




    21.9k41352












    • $begingroup$
      How is $X_{n} to 0$ the $lim sup $ of $|X_{n}|>epsilon$ ?
      $endgroup$
      – SABOY
      Jan 7 at 0:19












    • $begingroup$
      Oh wait $X_{n} to 0$ is the complement of $lim sup |X_{n}| > epsilon$
      $endgroup$
      – SABOY
      Jan 7 at 0:22


















    • $begingroup$
      How is $X_{n} to 0$ the $lim sup $ of $|X_{n}|>epsilon$ ?
      $endgroup$
      – SABOY
      Jan 7 at 0:19












    • $begingroup$
      Oh wait $X_{n} to 0$ is the complement of $lim sup |X_{n}| > epsilon$
      $endgroup$
      – SABOY
      Jan 7 at 0:22
















    $begingroup$
    How is $X_{n} to 0$ the $lim sup $ of $|X_{n}|>epsilon$ ?
    $endgroup$
    – SABOY
    Jan 7 at 0:19






    $begingroup$
    How is $X_{n} to 0$ the $lim sup $ of $|X_{n}|>epsilon$ ?
    $endgroup$
    – SABOY
    Jan 7 at 0:19














    $begingroup$
    Oh wait $X_{n} to 0$ is the complement of $lim sup |X_{n}| > epsilon$
    $endgroup$
    – SABOY
    Jan 7 at 0:22




    $begingroup$
    Oh wait $X_{n} to 0$ is the complement of $lim sup |X_{n}| > epsilon$
    $endgroup$
    – SABOY
    Jan 7 at 0:22











    1












    $begingroup$

    Since $X_n$'s are $0,1$ valued we see that $X_n to 0$ a.s iff $P{X_n=1 , text {i.o.}}=0$. By independence and Borel Cantelli this is so iff $sum P{X_n=1} <infty$ or $sum p_n<infty$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Since $X_n$'s are $0,1$ valued we see that $X_n to 0$ a.s iff $P{X_n=1 , text {i.o.}}=0$. By independence and Borel Cantelli this is so iff $sum P{X_n=1} <infty$ or $sum p_n<infty$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Since $X_n$'s are $0,1$ valued we see that $X_n to 0$ a.s iff $P{X_n=1 , text {i.o.}}=0$. By independence and Borel Cantelli this is so iff $sum P{X_n=1} <infty$ or $sum p_n<infty$






        share|cite|improve this answer









        $endgroup$



        Since $X_n$'s are $0,1$ valued we see that $X_n to 0$ a.s iff $P{X_n=1 , text {i.o.}}=0$. By independence and Borel Cantelli this is so iff $sum P{X_n=1} <infty$ or $sum p_n<infty$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 7 at 0:12









        Kavi Rama MurthyKavi Rama Murthy

        56k42158




        56k42158






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064521%2fsum-n-1-inftyp-n-infty-iff-x-n-to-0-a-s%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith