$sum_{n=1}^{infty}p_{n}<infty iff X_{n} to 0$ a.s.
$begingroup$
Let $(p_{n})_{n}subset [0,1]$ and $(X_{n})_{n}$ independent random variables, so that $X_{n}$~ $Ber(p_{n})$
Prove that:
$sum_{n=1}^{infty}p_{n}<infty iff X_{n} to 0$ a.s
Ideas:
"$Rightarrow$"
$sum_{n=1}^{infty}P(X_{n}=1)=sum_{n=1}^{infty}p_{n}<infty$
I would attempt to use the Lemma of Borel-Cantelli, but have no idea how to use the independence aspect.
"$Leftarrow$"
$P(X_{n} to 0)=P(omegain Omega: exists N in mathbb N, X_{n}(omega)=0, forall n geq N)=1$. Let fix this $N$ accordingly, this then means
$sum_{n=1}^{infty}P(X_{n}=1)=sum_{n=1}^{N-1}P(X_{n}=1)+sum_{n=N}^{infty}P(X_{n}=1)=sum_{n=1}^{N-1}P(X_{n}=1)+0=sum_{n=1}^{N-1}p_{n}<infty$
da $p_{n} in [0,1], forall n in mathbb N$
probability-theory random-variables independence borel-cantelli-lemmas
$endgroup$
add a comment |
$begingroup$
Let $(p_{n})_{n}subset [0,1]$ and $(X_{n})_{n}$ independent random variables, so that $X_{n}$~ $Ber(p_{n})$
Prove that:
$sum_{n=1}^{infty}p_{n}<infty iff X_{n} to 0$ a.s
Ideas:
"$Rightarrow$"
$sum_{n=1}^{infty}P(X_{n}=1)=sum_{n=1}^{infty}p_{n}<infty$
I would attempt to use the Lemma of Borel-Cantelli, but have no idea how to use the independence aspect.
"$Leftarrow$"
$P(X_{n} to 0)=P(omegain Omega: exists N in mathbb N, X_{n}(omega)=0, forall n geq N)=1$. Let fix this $N$ accordingly, this then means
$sum_{n=1}^{infty}P(X_{n}=1)=sum_{n=1}^{N-1}P(X_{n}=1)+sum_{n=N}^{infty}P(X_{n}=1)=sum_{n=1}^{N-1}P(X_{n}=1)+0=sum_{n=1}^{N-1}p_{n}<infty$
da $p_{n} in [0,1], forall n in mathbb N$
probability-theory random-variables independence borel-cantelli-lemmas
$endgroup$
$begingroup$
Can you use the Kolmogorov 0-1 law?
$endgroup$
– ncmathsadist
Jan 6 at 23:38
$begingroup$
Yes, but why would the event $X_{n} to 0$ be asymptotic?
$endgroup$
– SABOY
Jan 6 at 23:42
add a comment |
$begingroup$
Let $(p_{n})_{n}subset [0,1]$ and $(X_{n})_{n}$ independent random variables, so that $X_{n}$~ $Ber(p_{n})$
Prove that:
$sum_{n=1}^{infty}p_{n}<infty iff X_{n} to 0$ a.s
Ideas:
"$Rightarrow$"
$sum_{n=1}^{infty}P(X_{n}=1)=sum_{n=1}^{infty}p_{n}<infty$
I would attempt to use the Lemma of Borel-Cantelli, but have no idea how to use the independence aspect.
"$Leftarrow$"
$P(X_{n} to 0)=P(omegain Omega: exists N in mathbb N, X_{n}(omega)=0, forall n geq N)=1$. Let fix this $N$ accordingly, this then means
$sum_{n=1}^{infty}P(X_{n}=1)=sum_{n=1}^{N-1}P(X_{n}=1)+sum_{n=N}^{infty}P(X_{n}=1)=sum_{n=1}^{N-1}P(X_{n}=1)+0=sum_{n=1}^{N-1}p_{n}<infty$
da $p_{n} in [0,1], forall n in mathbb N$
probability-theory random-variables independence borel-cantelli-lemmas
$endgroup$
Let $(p_{n})_{n}subset [0,1]$ and $(X_{n})_{n}$ independent random variables, so that $X_{n}$~ $Ber(p_{n})$
Prove that:
$sum_{n=1}^{infty}p_{n}<infty iff X_{n} to 0$ a.s
Ideas:
"$Rightarrow$"
$sum_{n=1}^{infty}P(X_{n}=1)=sum_{n=1}^{infty}p_{n}<infty$
I would attempt to use the Lemma of Borel-Cantelli, but have no idea how to use the independence aspect.
"$Leftarrow$"
$P(X_{n} to 0)=P(omegain Omega: exists N in mathbb N, X_{n}(omega)=0, forall n geq N)=1$. Let fix this $N$ accordingly, this then means
$sum_{n=1}^{infty}P(X_{n}=1)=sum_{n=1}^{N-1}P(X_{n}=1)+sum_{n=N}^{infty}P(X_{n}=1)=sum_{n=1}^{N-1}P(X_{n}=1)+0=sum_{n=1}^{N-1}p_{n}<infty$
da $p_{n} in [0,1], forall n in mathbb N$
probability-theory random-variables independence borel-cantelli-lemmas
probability-theory random-variables independence borel-cantelli-lemmas
asked Jan 6 at 23:36
SABOYSABOY
614311
614311
$begingroup$
Can you use the Kolmogorov 0-1 law?
$endgroup$
– ncmathsadist
Jan 6 at 23:38
$begingroup$
Yes, but why would the event $X_{n} to 0$ be asymptotic?
$endgroup$
– SABOY
Jan 6 at 23:42
add a comment |
$begingroup$
Can you use the Kolmogorov 0-1 law?
$endgroup$
– ncmathsadist
Jan 6 at 23:38
$begingroup$
Yes, but why would the event $X_{n} to 0$ be asymptotic?
$endgroup$
– SABOY
Jan 6 at 23:42
$begingroup$
Can you use the Kolmogorov 0-1 law?
$endgroup$
– ncmathsadist
Jan 6 at 23:38
$begingroup$
Can you use the Kolmogorov 0-1 law?
$endgroup$
– ncmathsadist
Jan 6 at 23:38
$begingroup$
Yes, but why would the event $X_{n} to 0$ be asymptotic?
$endgroup$
– SABOY
Jan 6 at 23:42
$begingroup$
Yes, but why would the event $X_{n} to 0$ be asymptotic?
$endgroup$
– SABOY
Jan 6 at 23:42
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Note that
$
X_nstackrel{text{a.s}}{to} 0
$
iff $P(|X_n|>varepsilon ; text{i.o})=0$ for every $varepsilon>0$. Since we are dealing with bernoulli random variables we only care about $0<varepsilon<1$. So fix $0<varepsilon<1$.
In this case, $sum_n P(|X_n|>varepsilon)=sum_n p_n$. By the first Borel Cantelli lemma, if $sum_n p_n<infty$, then $X_nto 0$ almost surely. By the second Borel cantelli lemma (the $X_n$ are independent), if $sum_n p_n=infty$, then $P(|X_n|>varepsilon ; text{i.o})=1$, so $X_nnotto0$ almost surely.
$endgroup$
$begingroup$
How is $X_{n} to 0$ the $lim sup $ of $|X_{n}|>epsilon$ ?
$endgroup$
– SABOY
Jan 7 at 0:19
$begingroup$
Oh wait $X_{n} to 0$ is the complement of $lim sup |X_{n}| > epsilon$
$endgroup$
– SABOY
Jan 7 at 0:22
add a comment |
$begingroup$
Since $X_n$'s are $0,1$ valued we see that $X_n to 0$ a.s iff $P{X_n=1 , text {i.o.}}=0$. By independence and Borel Cantelli this is so iff $sum P{X_n=1} <infty$ or $sum p_n<infty$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064521%2fsum-n-1-inftyp-n-infty-iff-x-n-to-0-a-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that
$
X_nstackrel{text{a.s}}{to} 0
$
iff $P(|X_n|>varepsilon ; text{i.o})=0$ for every $varepsilon>0$. Since we are dealing with bernoulli random variables we only care about $0<varepsilon<1$. So fix $0<varepsilon<1$.
In this case, $sum_n P(|X_n|>varepsilon)=sum_n p_n$. By the first Borel Cantelli lemma, if $sum_n p_n<infty$, then $X_nto 0$ almost surely. By the second Borel cantelli lemma (the $X_n$ are independent), if $sum_n p_n=infty$, then $P(|X_n|>varepsilon ; text{i.o})=1$, so $X_nnotto0$ almost surely.
$endgroup$
$begingroup$
How is $X_{n} to 0$ the $lim sup $ of $|X_{n}|>epsilon$ ?
$endgroup$
– SABOY
Jan 7 at 0:19
$begingroup$
Oh wait $X_{n} to 0$ is the complement of $lim sup |X_{n}| > epsilon$
$endgroup$
– SABOY
Jan 7 at 0:22
add a comment |
$begingroup$
Note that
$
X_nstackrel{text{a.s}}{to} 0
$
iff $P(|X_n|>varepsilon ; text{i.o})=0$ for every $varepsilon>0$. Since we are dealing with bernoulli random variables we only care about $0<varepsilon<1$. So fix $0<varepsilon<1$.
In this case, $sum_n P(|X_n|>varepsilon)=sum_n p_n$. By the first Borel Cantelli lemma, if $sum_n p_n<infty$, then $X_nto 0$ almost surely. By the second Borel cantelli lemma (the $X_n$ are independent), if $sum_n p_n=infty$, then $P(|X_n|>varepsilon ; text{i.o})=1$, so $X_nnotto0$ almost surely.
$endgroup$
$begingroup$
How is $X_{n} to 0$ the $lim sup $ of $|X_{n}|>epsilon$ ?
$endgroup$
– SABOY
Jan 7 at 0:19
$begingroup$
Oh wait $X_{n} to 0$ is the complement of $lim sup |X_{n}| > epsilon$
$endgroup$
– SABOY
Jan 7 at 0:22
add a comment |
$begingroup$
Note that
$
X_nstackrel{text{a.s}}{to} 0
$
iff $P(|X_n|>varepsilon ; text{i.o})=0$ for every $varepsilon>0$. Since we are dealing with bernoulli random variables we only care about $0<varepsilon<1$. So fix $0<varepsilon<1$.
In this case, $sum_n P(|X_n|>varepsilon)=sum_n p_n$. By the first Borel Cantelli lemma, if $sum_n p_n<infty$, then $X_nto 0$ almost surely. By the second Borel cantelli lemma (the $X_n$ are independent), if $sum_n p_n=infty$, then $P(|X_n|>varepsilon ; text{i.o})=1$, so $X_nnotto0$ almost surely.
$endgroup$
Note that
$
X_nstackrel{text{a.s}}{to} 0
$
iff $P(|X_n|>varepsilon ; text{i.o})=0$ for every $varepsilon>0$. Since we are dealing with bernoulli random variables we only care about $0<varepsilon<1$. So fix $0<varepsilon<1$.
In this case, $sum_n P(|X_n|>varepsilon)=sum_n p_n$. By the first Borel Cantelli lemma, if $sum_n p_n<infty$, then $X_nto 0$ almost surely. By the second Borel cantelli lemma (the $X_n$ are independent), if $sum_n p_n=infty$, then $P(|X_n|>varepsilon ; text{i.o})=1$, so $X_nnotto0$ almost surely.
edited Jan 6 at 23:57
answered Jan 6 at 23:51
Foobaz JohnFoobaz John
21.9k41352
21.9k41352
$begingroup$
How is $X_{n} to 0$ the $lim sup $ of $|X_{n}|>epsilon$ ?
$endgroup$
– SABOY
Jan 7 at 0:19
$begingroup$
Oh wait $X_{n} to 0$ is the complement of $lim sup |X_{n}| > epsilon$
$endgroup$
– SABOY
Jan 7 at 0:22
add a comment |
$begingroup$
How is $X_{n} to 0$ the $lim sup $ of $|X_{n}|>epsilon$ ?
$endgroup$
– SABOY
Jan 7 at 0:19
$begingroup$
Oh wait $X_{n} to 0$ is the complement of $lim sup |X_{n}| > epsilon$
$endgroup$
– SABOY
Jan 7 at 0:22
$begingroup$
How is $X_{n} to 0$ the $lim sup $ of $|X_{n}|>epsilon$ ?
$endgroup$
– SABOY
Jan 7 at 0:19
$begingroup$
How is $X_{n} to 0$ the $lim sup $ of $|X_{n}|>epsilon$ ?
$endgroup$
– SABOY
Jan 7 at 0:19
$begingroup$
Oh wait $X_{n} to 0$ is the complement of $lim sup |X_{n}| > epsilon$
$endgroup$
– SABOY
Jan 7 at 0:22
$begingroup$
Oh wait $X_{n} to 0$ is the complement of $lim sup |X_{n}| > epsilon$
$endgroup$
– SABOY
Jan 7 at 0:22
add a comment |
$begingroup$
Since $X_n$'s are $0,1$ valued we see that $X_n to 0$ a.s iff $P{X_n=1 , text {i.o.}}=0$. By independence and Borel Cantelli this is so iff $sum P{X_n=1} <infty$ or $sum p_n<infty$
$endgroup$
add a comment |
$begingroup$
Since $X_n$'s are $0,1$ valued we see that $X_n to 0$ a.s iff $P{X_n=1 , text {i.o.}}=0$. By independence and Borel Cantelli this is so iff $sum P{X_n=1} <infty$ or $sum p_n<infty$
$endgroup$
add a comment |
$begingroup$
Since $X_n$'s are $0,1$ valued we see that $X_n to 0$ a.s iff $P{X_n=1 , text {i.o.}}=0$. By independence and Borel Cantelli this is so iff $sum P{X_n=1} <infty$ or $sum p_n<infty$
$endgroup$
Since $X_n$'s are $0,1$ valued we see that $X_n to 0$ a.s iff $P{X_n=1 , text {i.o.}}=0$. By independence and Borel Cantelli this is so iff $sum P{X_n=1} <infty$ or $sum p_n<infty$
answered Jan 7 at 0:12
Kavi Rama MurthyKavi Rama Murthy
56k42158
56k42158
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064521%2fsum-n-1-inftyp-n-infty-iff-x-n-to-0-a-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown

$begingroup$
Can you use the Kolmogorov 0-1 law?
$endgroup$
– ncmathsadist
Jan 6 at 23:38
$begingroup$
Yes, but why would the event $X_{n} to 0$ be asymptotic?
$endgroup$
– SABOY
Jan 6 at 23:42