What is $lim v_n$ if $v_1=1$ and $v_{n+1}=sqrt{v_n^2+left(frac{1}{5}right)^n}$ for $nge 1$?












1












$begingroup$



Let ${v_n}$ be a sequence defined by $v_1=1$ and $v_{n+1}=sqrt{v_{n}^2 + left(frac{1}{5}right)^n}$ for $nge 1$. Then find $limlimits_{n rightarrow infty} v_n$.




I take $v_n = v_{n+1} = l$, now i have $l^2 = l^2 + 0$ that is $l = 1$ so $limlimits_{n rightarrow infty} v_n= 1$



Is its correct ? Any hints/solution










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    No, $l^2= l^2+ 0$ does NOT give "l= 1". It is true for all l.
    $endgroup$
    – user247327
    Jan 6 at 15:09
















1












$begingroup$



Let ${v_n}$ be a sequence defined by $v_1=1$ and $v_{n+1}=sqrt{v_{n}^2 + left(frac{1}{5}right)^n}$ for $nge 1$. Then find $limlimits_{n rightarrow infty} v_n$.




I take $v_n = v_{n+1} = l$, now i have $l^2 = l^2 + 0$ that is $l = 1$ so $limlimits_{n rightarrow infty} v_n= 1$



Is its correct ? Any hints/solution










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    No, $l^2= l^2+ 0$ does NOT give "l= 1". It is true for all l.
    $endgroup$
    – user247327
    Jan 6 at 15:09














1












1








1


0



$begingroup$



Let ${v_n}$ be a sequence defined by $v_1=1$ and $v_{n+1}=sqrt{v_{n}^2 + left(frac{1}{5}right)^n}$ for $nge 1$. Then find $limlimits_{n rightarrow infty} v_n$.




I take $v_n = v_{n+1} = l$, now i have $l^2 = l^2 + 0$ that is $l = 1$ so $limlimits_{n rightarrow infty} v_n= 1$



Is its correct ? Any hints/solution










share|cite|improve this question











$endgroup$





Let ${v_n}$ be a sequence defined by $v_1=1$ and $v_{n+1}=sqrt{v_{n}^2 + left(frac{1}{5}right)^n}$ for $nge 1$. Then find $limlimits_{n rightarrow infty} v_n$.




I take $v_n = v_{n+1} = l$, now i have $l^2 = l^2 + 0$ that is $l = 1$ so $limlimits_{n rightarrow infty} v_n= 1$



Is its correct ? Any hints/solution







real-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 6 at 17:18









rtybase

10.7k21533




10.7k21533










asked Jan 6 at 14:51









Messi fifaMessi fifa

53111




53111








  • 1




    $begingroup$
    No, $l^2= l^2+ 0$ does NOT give "l= 1". It is true for all l.
    $endgroup$
    – user247327
    Jan 6 at 15:09














  • 1




    $begingroup$
    No, $l^2= l^2+ 0$ does NOT give "l= 1". It is true for all l.
    $endgroup$
    – user247327
    Jan 6 at 15:09








1




1




$begingroup$
No, $l^2= l^2+ 0$ does NOT give "l= 1". It is true for all l.
$endgroup$
– user247327
Jan 6 at 15:09




$begingroup$
No, $l^2= l^2+ 0$ does NOT give "l= 1". It is true for all l.
$endgroup$
– user247327
Jan 6 at 15:09










1 Answer
1






active

oldest

votes


















4












$begingroup$

No, it is not correct. Note that $l^2=l^2$ is true for any number.



Set $x_n:=v_n^2$. From your recursion you get $x_{n+1}=x_n+(frac{1}{5})^n$ and $x_1=1$, and hence the explicit formula
$$
x_n=x_1+sum_{j=1}^{n-1}left(frac{1}{5}right)^j=sum_{j=0}^{n-1}left(frac{1}{5}right)^j.
$$

This geometric series converges to $frac{5}{4}$, and therefore, $(v_n)$ converges to
$$
frac{sqrt{5}}{2}.
$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063948%2fwhat-is-lim-v-n-if-v-1-1-and-v-n1-sqrtv-n2-left-frac15-right%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    No, it is not correct. Note that $l^2=l^2$ is true for any number.



    Set $x_n:=v_n^2$. From your recursion you get $x_{n+1}=x_n+(frac{1}{5})^n$ and $x_1=1$, and hence the explicit formula
    $$
    x_n=x_1+sum_{j=1}^{n-1}left(frac{1}{5}right)^j=sum_{j=0}^{n-1}left(frac{1}{5}right)^j.
    $$

    This geometric series converges to $frac{5}{4}$, and therefore, $(v_n)$ converges to
    $$
    frac{sqrt{5}}{2}.
    $$






    share|cite|improve this answer









    $endgroup$


















      4












      $begingroup$

      No, it is not correct. Note that $l^2=l^2$ is true for any number.



      Set $x_n:=v_n^2$. From your recursion you get $x_{n+1}=x_n+(frac{1}{5})^n$ and $x_1=1$, and hence the explicit formula
      $$
      x_n=x_1+sum_{j=1}^{n-1}left(frac{1}{5}right)^j=sum_{j=0}^{n-1}left(frac{1}{5}right)^j.
      $$

      This geometric series converges to $frac{5}{4}$, and therefore, $(v_n)$ converges to
      $$
      frac{sqrt{5}}{2}.
      $$






      share|cite|improve this answer









      $endgroup$
















        4












        4








        4





        $begingroup$

        No, it is not correct. Note that $l^2=l^2$ is true for any number.



        Set $x_n:=v_n^2$. From your recursion you get $x_{n+1}=x_n+(frac{1}{5})^n$ and $x_1=1$, and hence the explicit formula
        $$
        x_n=x_1+sum_{j=1}^{n-1}left(frac{1}{5}right)^j=sum_{j=0}^{n-1}left(frac{1}{5}right)^j.
        $$

        This geometric series converges to $frac{5}{4}$, and therefore, $(v_n)$ converges to
        $$
        frac{sqrt{5}}{2}.
        $$






        share|cite|improve this answer









        $endgroup$



        No, it is not correct. Note that $l^2=l^2$ is true for any number.



        Set $x_n:=v_n^2$. From your recursion you get $x_{n+1}=x_n+(frac{1}{5})^n$ and $x_1=1$, and hence the explicit formula
        $$
        x_n=x_1+sum_{j=1}^{n-1}left(frac{1}{5}right)^j=sum_{j=0}^{n-1}left(frac{1}{5}right)^j.
        $$

        This geometric series converges to $frac{5}{4}$, and therefore, $(v_n)$ converges to
        $$
        frac{sqrt{5}}{2}.
        $$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 6 at 16:36









        sranthropsranthrop

        7,0741925




        7,0741925






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063948%2fwhat-is-lim-v-n-if-v-1-1-and-v-n1-sqrtv-n2-left-frac15-right%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

            How to fix TextFormField cause rebuild widget in Flutter