What is $lim v_n$ if $v_1=1$ and $v_{n+1}=sqrt{v_n^2+left(frac{1}{5}right)^n}$ for $nge 1$?
$begingroup$
Let ${v_n}$ be a sequence defined by $v_1=1$ and $v_{n+1}=sqrt{v_{n}^2 + left(frac{1}{5}right)^n}$ for $nge 1$. Then find $limlimits_{n rightarrow infty} v_n$.
I take $v_n = v_{n+1} = l$, now i have $l^2 = l^2 + 0$ that is $l = 1$ so $limlimits_{n rightarrow infty} v_n= 1$
Is its correct ? Any hints/solution
real-analysis
$endgroup$
add a comment |
$begingroup$
Let ${v_n}$ be a sequence defined by $v_1=1$ and $v_{n+1}=sqrt{v_{n}^2 + left(frac{1}{5}right)^n}$ for $nge 1$. Then find $limlimits_{n rightarrow infty} v_n$.
I take $v_n = v_{n+1} = l$, now i have $l^2 = l^2 + 0$ that is $l = 1$ so $limlimits_{n rightarrow infty} v_n= 1$
Is its correct ? Any hints/solution
real-analysis
$endgroup$
1
$begingroup$
No, $l^2= l^2+ 0$ does NOT give "l= 1". It is true for all l.
$endgroup$
– user247327
Jan 6 at 15:09
add a comment |
$begingroup$
Let ${v_n}$ be a sequence defined by $v_1=1$ and $v_{n+1}=sqrt{v_{n}^2 + left(frac{1}{5}right)^n}$ for $nge 1$. Then find $limlimits_{n rightarrow infty} v_n$.
I take $v_n = v_{n+1} = l$, now i have $l^2 = l^2 + 0$ that is $l = 1$ so $limlimits_{n rightarrow infty} v_n= 1$
Is its correct ? Any hints/solution
real-analysis
$endgroup$
Let ${v_n}$ be a sequence defined by $v_1=1$ and $v_{n+1}=sqrt{v_{n}^2 + left(frac{1}{5}right)^n}$ for $nge 1$. Then find $limlimits_{n rightarrow infty} v_n$.
I take $v_n = v_{n+1} = l$, now i have $l^2 = l^2 + 0$ that is $l = 1$ so $limlimits_{n rightarrow infty} v_n= 1$
Is its correct ? Any hints/solution
real-analysis
real-analysis
edited Jan 6 at 17:18
rtybase
10.7k21533
10.7k21533
asked Jan 6 at 14:51


Messi fifaMessi fifa
53111
53111
1
$begingroup$
No, $l^2= l^2+ 0$ does NOT give "l= 1". It is true for all l.
$endgroup$
– user247327
Jan 6 at 15:09
add a comment |
1
$begingroup$
No, $l^2= l^2+ 0$ does NOT give "l= 1". It is true for all l.
$endgroup$
– user247327
Jan 6 at 15:09
1
1
$begingroup$
No, $l^2= l^2+ 0$ does NOT give "l= 1". It is true for all l.
$endgroup$
– user247327
Jan 6 at 15:09
$begingroup$
No, $l^2= l^2+ 0$ does NOT give "l= 1". It is true for all l.
$endgroup$
– user247327
Jan 6 at 15:09
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
No, it is not correct. Note that $l^2=l^2$ is true for any number.
Set $x_n:=v_n^2$. From your recursion you get $x_{n+1}=x_n+(frac{1}{5})^n$ and $x_1=1$, and hence the explicit formula
$$
x_n=x_1+sum_{j=1}^{n-1}left(frac{1}{5}right)^j=sum_{j=0}^{n-1}left(frac{1}{5}right)^j.
$$
This geometric series converges to $frac{5}{4}$, and therefore, $(v_n)$ converges to
$$
frac{sqrt{5}}{2}.
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063948%2fwhat-is-lim-v-n-if-v-1-1-and-v-n1-sqrtv-n2-left-frac15-right%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
No, it is not correct. Note that $l^2=l^2$ is true for any number.
Set $x_n:=v_n^2$. From your recursion you get $x_{n+1}=x_n+(frac{1}{5})^n$ and $x_1=1$, and hence the explicit formula
$$
x_n=x_1+sum_{j=1}^{n-1}left(frac{1}{5}right)^j=sum_{j=0}^{n-1}left(frac{1}{5}right)^j.
$$
This geometric series converges to $frac{5}{4}$, and therefore, $(v_n)$ converges to
$$
frac{sqrt{5}}{2}.
$$
$endgroup$
add a comment |
$begingroup$
No, it is not correct. Note that $l^2=l^2$ is true for any number.
Set $x_n:=v_n^2$. From your recursion you get $x_{n+1}=x_n+(frac{1}{5})^n$ and $x_1=1$, and hence the explicit formula
$$
x_n=x_1+sum_{j=1}^{n-1}left(frac{1}{5}right)^j=sum_{j=0}^{n-1}left(frac{1}{5}right)^j.
$$
This geometric series converges to $frac{5}{4}$, and therefore, $(v_n)$ converges to
$$
frac{sqrt{5}}{2}.
$$
$endgroup$
add a comment |
$begingroup$
No, it is not correct. Note that $l^2=l^2$ is true for any number.
Set $x_n:=v_n^2$. From your recursion you get $x_{n+1}=x_n+(frac{1}{5})^n$ and $x_1=1$, and hence the explicit formula
$$
x_n=x_1+sum_{j=1}^{n-1}left(frac{1}{5}right)^j=sum_{j=0}^{n-1}left(frac{1}{5}right)^j.
$$
This geometric series converges to $frac{5}{4}$, and therefore, $(v_n)$ converges to
$$
frac{sqrt{5}}{2}.
$$
$endgroup$
No, it is not correct. Note that $l^2=l^2$ is true for any number.
Set $x_n:=v_n^2$. From your recursion you get $x_{n+1}=x_n+(frac{1}{5})^n$ and $x_1=1$, and hence the explicit formula
$$
x_n=x_1+sum_{j=1}^{n-1}left(frac{1}{5}right)^j=sum_{j=0}^{n-1}left(frac{1}{5}right)^j.
$$
This geometric series converges to $frac{5}{4}$, and therefore, $(v_n)$ converges to
$$
frac{sqrt{5}}{2}.
$$
answered Jan 6 at 16:36
sranthropsranthrop
7,0741925
7,0741925
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063948%2fwhat-is-lim-v-n-if-v-1-1-and-v-n1-sqrtv-n2-left-frac15-right%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
No, $l^2= l^2+ 0$ does NOT give "l= 1". It is true for all l.
$endgroup$
– user247327
Jan 6 at 15:09