Normal u.c.p extension of Schur-multiplier
$begingroup$
I'm struggeling with the proof of a theorem in [BO08]. The first part before the line is what I think I understood. The part after that I don't understand at all.
Let $Gamma$ be a discrete group and $mathbb{C}[Gamma]$ the group ring of $Gamma$. Let $C_lambda^ast(Gamma)$ be the reduced group $C^ast$-algebra, i.e. the completion of $mathbb{C}[Gamma]$ wrt. the norm $|x|=|lambda(x)|$ where λ is the left regular representation of $Gamma$ on $mathbb{B}(ell^2(Gamma)$. Let $$L(Gamma) = C_lambda^ast(Gamma)'' subset mathcal{B}(ell^2(Gamma))$$ be the so called group von Neumann algebra. The full group $C^ast$-algebra is defined as $C^*(Gamma) = overline{mathbb{C}(Gamma)}^{|cdot|_u}$ with $| x|_u = sup{ |pi(x)| ; | ; pi text{ is a unitary representation of } Gamma}$.
For two $C^ast$-algebras $A$ and $B$ we say that a map $varphi_Ato B$ is u.c.p if $varphi$ is unital and $varphi_n:M_n(A)→M_n(B)$ defined by $varphi_n([a_{i,j}])=[varphi(a_{i,j})]$ maps positive matrices to positive matrices for all $nin mathbb{N}$.
$varphi$ is called normal if it is continuous wrt. ultra-weak topology.
A function $varphi:Gammato mathbb{C}$ is called positive definite if for every finite subset $F:={s_1, dots, s_n}subseteq Gamma$ the matrix
$$[varphi(s_i^{-1}s_j)]_{i,j}in M_n(mathbb{C}) $$
is positive semidefinite.
For a function $varphi:Gammatomathbb{C}$ set
begin{equation*}
begin{split}
w_varphi: mathbb{C}[Gamma] &to mathbb{C}\
sum_{tinGamma}alpha_t t &mapsto sum_{tinGamma} alpha_t varphi(t)
end{split}
end{equation*}
and
begin{equation*}
begin{split}
m_varphi: mathbb{C}[Gamma] &to mathbb{C}[Gamma]\
sum_{tinGamma}alpha_t t &mapsto sum_{tinGamma} alpha_t varphi(t)t.
end{split}
end{equation*}
The map $m_varphi$ is also called the Schur-multiplier.
Theorem(2.5.11, [BO08])Let $varphi:Gammatomathbb{C}$ be a function with $varphi(e) =1$. The following conditions are equivalent:
- The functional $w_varphi$ extends to a positive functional on $C^ast(Gamma)$.
- The Schur multiplier $m_varphi$ extends to a u.c.p. map on the two group $C^ast$-algebras $C^ast(Gamma)$ and $C^ast_lambda (Gamma)$ and to a normal u.c.p map on $L(Gamma)$.
Proof:Since $w_varphi$ extends to a functional on $C^ast(Gamma)$ it follows that $w_varphi$ extends to a state on $C^ast(Gamma)$, which will also be denoted by $w_varphi$. Embedding $C^ast(Gamma)subseteq mathcal{B}(H_u)$ where $H_u$ is the Hilbert space of the universal representation $(pi_u, H_u)$ of $C^ast(Gamma)$, we can regard $w_varphi$ as a state on $mathcal{B}(H_u)$.
We define a map
begin{equation*}
begin{split}
phi: C_lambda^ast(Gamma)otimes 1 cong C_lambda^ast(Gamma) &to C_lambda^ast(Gamma)otimes C^ast(Gamma) subseteq C_lambda^ast(Gamma)otimes mathcal{B}(H_u)\
sum_{tinGamma}alpha_tlambda(t)otimes 1 &mapsto sum_{tinGamma}alpha_t(lambda(t)otimes t)
end{split}
end{equation*}
which is a $ast$-homomorphism: By Fell's absorption there is a unitary operator $U$ such that $U^ast(lambda otimes pi_u)(x)U = (lambdaotimes 1)(x)$ for $xin mathbb{C}[Gamma]$ with
begin{equation*}
begin{split}
|phi(sum_{tin Gamma} alpha_t (lambda(t)otimes 1))| &= |sum_{tin Gamma} alpha_t (lambda(t)otimes t)| = |(lambdaotimes pi_u)(sum_{tin Gamma} alpha_t t)|\
&=|U^ast (lambdaotimes1)(sum_{tinGamma} alpha_t t)U| = |sum_{tinGamma} alpha_t(lambda(t)otimes 1)|.
end{split}
end{equation*}
We conclude that $phi$ extends to a normal $ast$-homomorphism $phi:L(Gamma) to L(Gamma)overline{otimes} B(H_u)$(Why?).
Checking that $(id_{L[Gamma)} otimes w_varphi)circ phi$ coincides with $m_varphi$ (identifying $L(Gamma)overline{otimes} 1 cong L(Gamma)$) concludes the group von Neumann algebra case. The reduced group $C^ast$-algebra case follows directly.(Why?)
I would be very thankful if someone could give me a hint or some explanations. Thank you very much in advance!
[BO08] Brown and Ozawa, "C∗-Algebras and Fnite-Dimensional Approximations"
operator-algebras c-star-algebras von-neumann-algebras
$endgroup$
add a comment |
$begingroup$
I'm struggeling with the proof of a theorem in [BO08]. The first part before the line is what I think I understood. The part after that I don't understand at all.
Let $Gamma$ be a discrete group and $mathbb{C}[Gamma]$ the group ring of $Gamma$. Let $C_lambda^ast(Gamma)$ be the reduced group $C^ast$-algebra, i.e. the completion of $mathbb{C}[Gamma]$ wrt. the norm $|x|=|lambda(x)|$ where λ is the left regular representation of $Gamma$ on $mathbb{B}(ell^2(Gamma)$. Let $$L(Gamma) = C_lambda^ast(Gamma)'' subset mathcal{B}(ell^2(Gamma))$$ be the so called group von Neumann algebra. The full group $C^ast$-algebra is defined as $C^*(Gamma) = overline{mathbb{C}(Gamma)}^{|cdot|_u}$ with $| x|_u = sup{ |pi(x)| ; | ; pi text{ is a unitary representation of } Gamma}$.
For two $C^ast$-algebras $A$ and $B$ we say that a map $varphi_Ato B$ is u.c.p if $varphi$ is unital and $varphi_n:M_n(A)→M_n(B)$ defined by $varphi_n([a_{i,j}])=[varphi(a_{i,j})]$ maps positive matrices to positive matrices for all $nin mathbb{N}$.
$varphi$ is called normal if it is continuous wrt. ultra-weak topology.
A function $varphi:Gammato mathbb{C}$ is called positive definite if for every finite subset $F:={s_1, dots, s_n}subseteq Gamma$ the matrix
$$[varphi(s_i^{-1}s_j)]_{i,j}in M_n(mathbb{C}) $$
is positive semidefinite.
For a function $varphi:Gammatomathbb{C}$ set
begin{equation*}
begin{split}
w_varphi: mathbb{C}[Gamma] &to mathbb{C}\
sum_{tinGamma}alpha_t t &mapsto sum_{tinGamma} alpha_t varphi(t)
end{split}
end{equation*}
and
begin{equation*}
begin{split}
m_varphi: mathbb{C}[Gamma] &to mathbb{C}[Gamma]\
sum_{tinGamma}alpha_t t &mapsto sum_{tinGamma} alpha_t varphi(t)t.
end{split}
end{equation*}
The map $m_varphi$ is also called the Schur-multiplier.
Theorem(2.5.11, [BO08])Let $varphi:Gammatomathbb{C}$ be a function with $varphi(e) =1$. The following conditions are equivalent:
- The functional $w_varphi$ extends to a positive functional on $C^ast(Gamma)$.
- The Schur multiplier $m_varphi$ extends to a u.c.p. map on the two group $C^ast$-algebras $C^ast(Gamma)$ and $C^ast_lambda (Gamma)$ and to a normal u.c.p map on $L(Gamma)$.
Proof:Since $w_varphi$ extends to a functional on $C^ast(Gamma)$ it follows that $w_varphi$ extends to a state on $C^ast(Gamma)$, which will also be denoted by $w_varphi$. Embedding $C^ast(Gamma)subseteq mathcal{B}(H_u)$ where $H_u$ is the Hilbert space of the universal representation $(pi_u, H_u)$ of $C^ast(Gamma)$, we can regard $w_varphi$ as a state on $mathcal{B}(H_u)$.
We define a map
begin{equation*}
begin{split}
phi: C_lambda^ast(Gamma)otimes 1 cong C_lambda^ast(Gamma) &to C_lambda^ast(Gamma)otimes C^ast(Gamma) subseteq C_lambda^ast(Gamma)otimes mathcal{B}(H_u)\
sum_{tinGamma}alpha_tlambda(t)otimes 1 &mapsto sum_{tinGamma}alpha_t(lambda(t)otimes t)
end{split}
end{equation*}
which is a $ast$-homomorphism: By Fell's absorption there is a unitary operator $U$ such that $U^ast(lambda otimes pi_u)(x)U = (lambdaotimes 1)(x)$ for $xin mathbb{C}[Gamma]$ with
begin{equation*}
begin{split}
|phi(sum_{tin Gamma} alpha_t (lambda(t)otimes 1))| &= |sum_{tin Gamma} alpha_t (lambda(t)otimes t)| = |(lambdaotimes pi_u)(sum_{tin Gamma} alpha_t t)|\
&=|U^ast (lambdaotimes1)(sum_{tinGamma} alpha_t t)U| = |sum_{tinGamma} alpha_t(lambda(t)otimes 1)|.
end{split}
end{equation*}
We conclude that $phi$ extends to a normal $ast$-homomorphism $phi:L(Gamma) to L(Gamma)overline{otimes} B(H_u)$(Why?).
Checking that $(id_{L[Gamma)} otimes w_varphi)circ phi$ coincides with $m_varphi$ (identifying $L(Gamma)overline{otimes} 1 cong L(Gamma)$) concludes the group von Neumann algebra case. The reduced group $C^ast$-algebra case follows directly.(Why?)
I would be very thankful if someone could give me a hint or some explanations. Thank you very much in advance!
[BO08] Brown and Ozawa, "C∗-Algebras and Fnite-Dimensional Approximations"
operator-algebras c-star-algebras von-neumann-algebras
$endgroup$
add a comment |
$begingroup$
I'm struggeling with the proof of a theorem in [BO08]. The first part before the line is what I think I understood. The part after that I don't understand at all.
Let $Gamma$ be a discrete group and $mathbb{C}[Gamma]$ the group ring of $Gamma$. Let $C_lambda^ast(Gamma)$ be the reduced group $C^ast$-algebra, i.e. the completion of $mathbb{C}[Gamma]$ wrt. the norm $|x|=|lambda(x)|$ where λ is the left regular representation of $Gamma$ on $mathbb{B}(ell^2(Gamma)$. Let $$L(Gamma) = C_lambda^ast(Gamma)'' subset mathcal{B}(ell^2(Gamma))$$ be the so called group von Neumann algebra. The full group $C^ast$-algebra is defined as $C^*(Gamma) = overline{mathbb{C}(Gamma)}^{|cdot|_u}$ with $| x|_u = sup{ |pi(x)| ; | ; pi text{ is a unitary representation of } Gamma}$.
For two $C^ast$-algebras $A$ and $B$ we say that a map $varphi_Ato B$ is u.c.p if $varphi$ is unital and $varphi_n:M_n(A)→M_n(B)$ defined by $varphi_n([a_{i,j}])=[varphi(a_{i,j})]$ maps positive matrices to positive matrices for all $nin mathbb{N}$.
$varphi$ is called normal if it is continuous wrt. ultra-weak topology.
A function $varphi:Gammato mathbb{C}$ is called positive definite if for every finite subset $F:={s_1, dots, s_n}subseteq Gamma$ the matrix
$$[varphi(s_i^{-1}s_j)]_{i,j}in M_n(mathbb{C}) $$
is positive semidefinite.
For a function $varphi:Gammatomathbb{C}$ set
begin{equation*}
begin{split}
w_varphi: mathbb{C}[Gamma] &to mathbb{C}\
sum_{tinGamma}alpha_t t &mapsto sum_{tinGamma} alpha_t varphi(t)
end{split}
end{equation*}
and
begin{equation*}
begin{split}
m_varphi: mathbb{C}[Gamma] &to mathbb{C}[Gamma]\
sum_{tinGamma}alpha_t t &mapsto sum_{tinGamma} alpha_t varphi(t)t.
end{split}
end{equation*}
The map $m_varphi$ is also called the Schur-multiplier.
Theorem(2.5.11, [BO08])Let $varphi:Gammatomathbb{C}$ be a function with $varphi(e) =1$. The following conditions are equivalent:
- The functional $w_varphi$ extends to a positive functional on $C^ast(Gamma)$.
- The Schur multiplier $m_varphi$ extends to a u.c.p. map on the two group $C^ast$-algebras $C^ast(Gamma)$ and $C^ast_lambda (Gamma)$ and to a normal u.c.p map on $L(Gamma)$.
Proof:Since $w_varphi$ extends to a functional on $C^ast(Gamma)$ it follows that $w_varphi$ extends to a state on $C^ast(Gamma)$, which will also be denoted by $w_varphi$. Embedding $C^ast(Gamma)subseteq mathcal{B}(H_u)$ where $H_u$ is the Hilbert space of the universal representation $(pi_u, H_u)$ of $C^ast(Gamma)$, we can regard $w_varphi$ as a state on $mathcal{B}(H_u)$.
We define a map
begin{equation*}
begin{split}
phi: C_lambda^ast(Gamma)otimes 1 cong C_lambda^ast(Gamma) &to C_lambda^ast(Gamma)otimes C^ast(Gamma) subseteq C_lambda^ast(Gamma)otimes mathcal{B}(H_u)\
sum_{tinGamma}alpha_tlambda(t)otimes 1 &mapsto sum_{tinGamma}alpha_t(lambda(t)otimes t)
end{split}
end{equation*}
which is a $ast$-homomorphism: By Fell's absorption there is a unitary operator $U$ such that $U^ast(lambda otimes pi_u)(x)U = (lambdaotimes 1)(x)$ for $xin mathbb{C}[Gamma]$ with
begin{equation*}
begin{split}
|phi(sum_{tin Gamma} alpha_t (lambda(t)otimes 1))| &= |sum_{tin Gamma} alpha_t (lambda(t)otimes t)| = |(lambdaotimes pi_u)(sum_{tin Gamma} alpha_t t)|\
&=|U^ast (lambdaotimes1)(sum_{tinGamma} alpha_t t)U| = |sum_{tinGamma} alpha_t(lambda(t)otimes 1)|.
end{split}
end{equation*}
We conclude that $phi$ extends to a normal $ast$-homomorphism $phi:L(Gamma) to L(Gamma)overline{otimes} B(H_u)$(Why?).
Checking that $(id_{L[Gamma)} otimes w_varphi)circ phi$ coincides with $m_varphi$ (identifying $L(Gamma)overline{otimes} 1 cong L(Gamma)$) concludes the group von Neumann algebra case. The reduced group $C^ast$-algebra case follows directly.(Why?)
I would be very thankful if someone could give me a hint or some explanations. Thank you very much in advance!
[BO08] Brown and Ozawa, "C∗-Algebras and Fnite-Dimensional Approximations"
operator-algebras c-star-algebras von-neumann-algebras
$endgroup$
I'm struggeling with the proof of a theorem in [BO08]. The first part before the line is what I think I understood. The part after that I don't understand at all.
Let $Gamma$ be a discrete group and $mathbb{C}[Gamma]$ the group ring of $Gamma$. Let $C_lambda^ast(Gamma)$ be the reduced group $C^ast$-algebra, i.e. the completion of $mathbb{C}[Gamma]$ wrt. the norm $|x|=|lambda(x)|$ where λ is the left regular representation of $Gamma$ on $mathbb{B}(ell^2(Gamma)$. Let $$L(Gamma) = C_lambda^ast(Gamma)'' subset mathcal{B}(ell^2(Gamma))$$ be the so called group von Neumann algebra. The full group $C^ast$-algebra is defined as $C^*(Gamma) = overline{mathbb{C}(Gamma)}^{|cdot|_u}$ with $| x|_u = sup{ |pi(x)| ; | ; pi text{ is a unitary representation of } Gamma}$.
For two $C^ast$-algebras $A$ and $B$ we say that a map $varphi_Ato B$ is u.c.p if $varphi$ is unital and $varphi_n:M_n(A)→M_n(B)$ defined by $varphi_n([a_{i,j}])=[varphi(a_{i,j})]$ maps positive matrices to positive matrices for all $nin mathbb{N}$.
$varphi$ is called normal if it is continuous wrt. ultra-weak topology.
A function $varphi:Gammato mathbb{C}$ is called positive definite if for every finite subset $F:={s_1, dots, s_n}subseteq Gamma$ the matrix
$$[varphi(s_i^{-1}s_j)]_{i,j}in M_n(mathbb{C}) $$
is positive semidefinite.
For a function $varphi:Gammatomathbb{C}$ set
begin{equation*}
begin{split}
w_varphi: mathbb{C}[Gamma] &to mathbb{C}\
sum_{tinGamma}alpha_t t &mapsto sum_{tinGamma} alpha_t varphi(t)
end{split}
end{equation*}
and
begin{equation*}
begin{split}
m_varphi: mathbb{C}[Gamma] &to mathbb{C}[Gamma]\
sum_{tinGamma}alpha_t t &mapsto sum_{tinGamma} alpha_t varphi(t)t.
end{split}
end{equation*}
The map $m_varphi$ is also called the Schur-multiplier.
Theorem(2.5.11, [BO08])Let $varphi:Gammatomathbb{C}$ be a function with $varphi(e) =1$. The following conditions are equivalent:
- The functional $w_varphi$ extends to a positive functional on $C^ast(Gamma)$.
- The Schur multiplier $m_varphi$ extends to a u.c.p. map on the two group $C^ast$-algebras $C^ast(Gamma)$ and $C^ast_lambda (Gamma)$ and to a normal u.c.p map on $L(Gamma)$.
Proof:Since $w_varphi$ extends to a functional on $C^ast(Gamma)$ it follows that $w_varphi$ extends to a state on $C^ast(Gamma)$, which will also be denoted by $w_varphi$. Embedding $C^ast(Gamma)subseteq mathcal{B}(H_u)$ where $H_u$ is the Hilbert space of the universal representation $(pi_u, H_u)$ of $C^ast(Gamma)$, we can regard $w_varphi$ as a state on $mathcal{B}(H_u)$.
We define a map
begin{equation*}
begin{split}
phi: C_lambda^ast(Gamma)otimes 1 cong C_lambda^ast(Gamma) &to C_lambda^ast(Gamma)otimes C^ast(Gamma) subseteq C_lambda^ast(Gamma)otimes mathcal{B}(H_u)\
sum_{tinGamma}alpha_tlambda(t)otimes 1 &mapsto sum_{tinGamma}alpha_t(lambda(t)otimes t)
end{split}
end{equation*}
which is a $ast$-homomorphism: By Fell's absorption there is a unitary operator $U$ such that $U^ast(lambda otimes pi_u)(x)U = (lambdaotimes 1)(x)$ for $xin mathbb{C}[Gamma]$ with
begin{equation*}
begin{split}
|phi(sum_{tin Gamma} alpha_t (lambda(t)otimes 1))| &= |sum_{tin Gamma} alpha_t (lambda(t)otimes t)| = |(lambdaotimes pi_u)(sum_{tin Gamma} alpha_t t)|\
&=|U^ast (lambdaotimes1)(sum_{tinGamma} alpha_t t)U| = |sum_{tinGamma} alpha_t(lambda(t)otimes 1)|.
end{split}
end{equation*}
We conclude that $phi$ extends to a normal $ast$-homomorphism $phi:L(Gamma) to L(Gamma)overline{otimes} B(H_u)$(Why?).
Checking that $(id_{L[Gamma)} otimes w_varphi)circ phi$ coincides with $m_varphi$ (identifying $L(Gamma)overline{otimes} 1 cong L(Gamma)$) concludes the group von Neumann algebra case. The reduced group $C^ast$-algebra case follows directly.(Why?)
I would be very thankful if someone could give me a hint or some explanations. Thank you very much in advance!
[BO08] Brown and Ozawa, "C∗-Algebras and Fnite-Dimensional Approximations"
operator-algebras c-star-algebras von-neumann-algebras
operator-algebras c-star-algebras von-neumann-algebras
edited Jan 18 at 21:15
Opalgal
asked Jan 18 at 18:30
OpalgalOpalgal
595
595
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
It says in [BO08] that "Fell's principle is spatially implemented". That is,
$$
phi:sum_talpha_tlambda_tlongmapsto sum_talpha_t(lambda_totimes1)=U^*left(sum_talpha_t(lambda_totimes pi_u)right),Ulongmapsto sum_talpha_t(lambda_totimes pi_u).
$$
As mentioned in the book, both maps in the composition above are spatial, so they are sot continuous; so in particular $phi$ is normal.
The argument given in book works for the reduced C$^*$-algebra case if you just don't extend to $L(Gamma)$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078603%2fnormal-u-c-p-extension-of-schur-multiplier%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It says in [BO08] that "Fell's principle is spatially implemented". That is,
$$
phi:sum_talpha_tlambda_tlongmapsto sum_talpha_t(lambda_totimes1)=U^*left(sum_talpha_t(lambda_totimes pi_u)right),Ulongmapsto sum_talpha_t(lambda_totimes pi_u).
$$
As mentioned in the book, both maps in the composition above are spatial, so they are sot continuous; so in particular $phi$ is normal.
The argument given in book works for the reduced C$^*$-algebra case if you just don't extend to $L(Gamma)$.
$endgroup$
add a comment |
$begingroup$
It says in [BO08] that "Fell's principle is spatially implemented". That is,
$$
phi:sum_talpha_tlambda_tlongmapsto sum_talpha_t(lambda_totimes1)=U^*left(sum_talpha_t(lambda_totimes pi_u)right),Ulongmapsto sum_talpha_t(lambda_totimes pi_u).
$$
As mentioned in the book, both maps in the composition above are spatial, so they are sot continuous; so in particular $phi$ is normal.
The argument given in book works for the reduced C$^*$-algebra case if you just don't extend to $L(Gamma)$.
$endgroup$
add a comment |
$begingroup$
It says in [BO08] that "Fell's principle is spatially implemented". That is,
$$
phi:sum_talpha_tlambda_tlongmapsto sum_talpha_t(lambda_totimes1)=U^*left(sum_talpha_t(lambda_totimes pi_u)right),Ulongmapsto sum_talpha_t(lambda_totimes pi_u).
$$
As mentioned in the book, both maps in the composition above are spatial, so they are sot continuous; so in particular $phi$ is normal.
The argument given in book works for the reduced C$^*$-algebra case if you just don't extend to $L(Gamma)$.
$endgroup$
It says in [BO08] that "Fell's principle is spatially implemented". That is,
$$
phi:sum_talpha_tlambda_tlongmapsto sum_talpha_t(lambda_totimes1)=U^*left(sum_talpha_t(lambda_totimes pi_u)right),Ulongmapsto sum_talpha_t(lambda_totimes pi_u).
$$
As mentioned in the book, both maps in the composition above are spatial, so they are sot continuous; so in particular $phi$ is normal.
The argument given in book works for the reduced C$^*$-algebra case if you just don't extend to $L(Gamma)$.
answered Jan 19 at 1:10


Martin ArgeramiMartin Argerami
127k1182183
127k1182183
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078603%2fnormal-u-c-p-extension-of-schur-multiplier%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown