Uniform Boundedness Principle for Functionals
$begingroup$
Kindly check if my proof is correct. Alternative proofs are welcome too!
Let $Delta$ be an arbitrary index set and let $E$ be a complete metric space and ${ f_alpha }_{alpha in Delta}$ be a family of real-valued continuous functionals on $E.$ Then, there exists an open set $U$ in $E$ on which ${ f_alpha }_{alpha in Delta}$ is uniformly bounded.
My Attempt
Let $ B(X,Bbb{R})$ be the space of bounded linear functionals. Then,
${ f_alpha }_{alpha in Delta}in B(X,Bbb{R})$, since $f_alpha $ is continuous for each $alpha in Delta.$
$forall;xin X$, there exists $M_xgeq 0,$ such that $;left|f_alpha(x) right|leq M_x,;forall;alpha in Delta.$
Fix $nin Bbb{N}$ and define $$gamma_{n}={xin X:; left|f_alpha(x) right| leq n,;alpha in Delta }.$$
Then, $gamma_{n}$ is closed for each $n$ and $X=bigcuplimits_{nin Bbb{N}}gamma_{n}$. Then, by Baire's Lemma, there exists $n_0$ such that $$gamma_{n_0}strut^mathrm{o}neq phi.$$
Let $x_0in gamma_{n_0}strut^mathrm{o}$, then there exists $r>0$ such that $B(x_0,r)subseteq gamma_{n_0}strut^mathrm{o}subseteq gamma_{n_0}.$ Let $zin B(0,1)$, then
$$x_0+rz in B(x_0,r).$$
This implies that $$rleft|f_alpha(z) right|-left|f_alpha(x_0) right|leq left|f_alpha(x_0)+r f_alpha(z) right| =left|f_alpha(x_0+rz) right| leq n_0$$
and so, $$left|f_alpha(z) right|leqdfrac{2n_0}{r}:=M,;forall;zin B(0,1),;;text{since};;x_0in gamma_{n_0}.$$
Take $U=B(0,1)$, then $$left|f_alpha(x) right|leq M,;;forall;zin B(0,1),;forall;alpha in Delta.$$
real-analysis general-topology functional-analysis baire-category
$endgroup$
add a comment |
$begingroup$
Kindly check if my proof is correct. Alternative proofs are welcome too!
Let $Delta$ be an arbitrary index set and let $E$ be a complete metric space and ${ f_alpha }_{alpha in Delta}$ be a family of real-valued continuous functionals on $E.$ Then, there exists an open set $U$ in $E$ on which ${ f_alpha }_{alpha in Delta}$ is uniformly bounded.
My Attempt
Let $ B(X,Bbb{R})$ be the space of bounded linear functionals. Then,
${ f_alpha }_{alpha in Delta}in B(X,Bbb{R})$, since $f_alpha $ is continuous for each $alpha in Delta.$
$forall;xin X$, there exists $M_xgeq 0,$ such that $;left|f_alpha(x) right|leq M_x,;forall;alpha in Delta.$
Fix $nin Bbb{N}$ and define $$gamma_{n}={xin X:; left|f_alpha(x) right| leq n,;alpha in Delta }.$$
Then, $gamma_{n}$ is closed for each $n$ and $X=bigcuplimits_{nin Bbb{N}}gamma_{n}$. Then, by Baire's Lemma, there exists $n_0$ such that $$gamma_{n_0}strut^mathrm{o}neq phi.$$
Let $x_0in gamma_{n_0}strut^mathrm{o}$, then there exists $r>0$ such that $B(x_0,r)subseteq gamma_{n_0}strut^mathrm{o}subseteq gamma_{n_0}.$ Let $zin B(0,1)$, then
$$x_0+rz in B(x_0,r).$$
This implies that $$rleft|f_alpha(z) right|-left|f_alpha(x_0) right|leq left|f_alpha(x_0)+r f_alpha(z) right| =left|f_alpha(x_0+rz) right| leq n_0$$
and so, $$left|f_alpha(z) right|leqdfrac{2n_0}{r}:=M,;forall;zin B(0,1),;;text{since};;x_0in gamma_{n_0}.$$
Take $U=B(0,1)$, then $$left|f_alpha(x) right|leq M,;;forall;zin B(0,1),;forall;alpha in Delta.$$
real-analysis general-topology functional-analysis baire-category
$endgroup$
$begingroup$
I'll try to construct a counterexample. Let $E=[0,1]$ and $f_alpha(x)=alpha$, $alphain Delta=(0,infty)$. No boundedness then.
$endgroup$
– pabodu
Feb 8 at 3:58
add a comment |
$begingroup$
Kindly check if my proof is correct. Alternative proofs are welcome too!
Let $Delta$ be an arbitrary index set and let $E$ be a complete metric space and ${ f_alpha }_{alpha in Delta}$ be a family of real-valued continuous functionals on $E.$ Then, there exists an open set $U$ in $E$ on which ${ f_alpha }_{alpha in Delta}$ is uniformly bounded.
My Attempt
Let $ B(X,Bbb{R})$ be the space of bounded linear functionals. Then,
${ f_alpha }_{alpha in Delta}in B(X,Bbb{R})$, since $f_alpha $ is continuous for each $alpha in Delta.$
$forall;xin X$, there exists $M_xgeq 0,$ such that $;left|f_alpha(x) right|leq M_x,;forall;alpha in Delta.$
Fix $nin Bbb{N}$ and define $$gamma_{n}={xin X:; left|f_alpha(x) right| leq n,;alpha in Delta }.$$
Then, $gamma_{n}$ is closed for each $n$ and $X=bigcuplimits_{nin Bbb{N}}gamma_{n}$. Then, by Baire's Lemma, there exists $n_0$ such that $$gamma_{n_0}strut^mathrm{o}neq phi.$$
Let $x_0in gamma_{n_0}strut^mathrm{o}$, then there exists $r>0$ such that $B(x_0,r)subseteq gamma_{n_0}strut^mathrm{o}subseteq gamma_{n_0}.$ Let $zin B(0,1)$, then
$$x_0+rz in B(x_0,r).$$
This implies that $$rleft|f_alpha(z) right|-left|f_alpha(x_0) right|leq left|f_alpha(x_0)+r f_alpha(z) right| =left|f_alpha(x_0+rz) right| leq n_0$$
and so, $$left|f_alpha(z) right|leqdfrac{2n_0}{r}:=M,;forall;zin B(0,1),;;text{since};;x_0in gamma_{n_0}.$$
Take $U=B(0,1)$, then $$left|f_alpha(x) right|leq M,;;forall;zin B(0,1),;forall;alpha in Delta.$$
real-analysis general-topology functional-analysis baire-category
$endgroup$
Kindly check if my proof is correct. Alternative proofs are welcome too!
Let $Delta$ be an arbitrary index set and let $E$ be a complete metric space and ${ f_alpha }_{alpha in Delta}$ be a family of real-valued continuous functionals on $E.$ Then, there exists an open set $U$ in $E$ on which ${ f_alpha }_{alpha in Delta}$ is uniformly bounded.
My Attempt
Let $ B(X,Bbb{R})$ be the space of bounded linear functionals. Then,
${ f_alpha }_{alpha in Delta}in B(X,Bbb{R})$, since $f_alpha $ is continuous for each $alpha in Delta.$
$forall;xin X$, there exists $M_xgeq 0,$ such that $;left|f_alpha(x) right|leq M_x,;forall;alpha in Delta.$
Fix $nin Bbb{N}$ and define $$gamma_{n}={xin X:; left|f_alpha(x) right| leq n,;alpha in Delta }.$$
Then, $gamma_{n}$ is closed for each $n$ and $X=bigcuplimits_{nin Bbb{N}}gamma_{n}$. Then, by Baire's Lemma, there exists $n_0$ such that $$gamma_{n_0}strut^mathrm{o}neq phi.$$
Let $x_0in gamma_{n_0}strut^mathrm{o}$, then there exists $r>0$ such that $B(x_0,r)subseteq gamma_{n_0}strut^mathrm{o}subseteq gamma_{n_0}.$ Let $zin B(0,1)$, then
$$x_0+rz in B(x_0,r).$$
This implies that $$rleft|f_alpha(z) right|-left|f_alpha(x_0) right|leq left|f_alpha(x_0)+r f_alpha(z) right| =left|f_alpha(x_0+rz) right| leq n_0$$
and so, $$left|f_alpha(z) right|leqdfrac{2n_0}{r}:=M,;forall;zin B(0,1),;;text{since};;x_0in gamma_{n_0}.$$
Take $U=B(0,1)$, then $$left|f_alpha(x) right|leq M,;;forall;zin B(0,1),;forall;alpha in Delta.$$
real-analysis general-topology functional-analysis baire-category
real-analysis general-topology functional-analysis baire-category
edited Jan 19 at 0:25
Omojola Micheal
asked Jan 18 at 21:34


Omojola MichealOmojola Micheal
1,920324
1,920324
$begingroup$
I'll try to construct a counterexample. Let $E=[0,1]$ and $f_alpha(x)=alpha$, $alphain Delta=(0,infty)$. No boundedness then.
$endgroup$
– pabodu
Feb 8 at 3:58
add a comment |
$begingroup$
I'll try to construct a counterexample. Let $E=[0,1]$ and $f_alpha(x)=alpha$, $alphain Delta=(0,infty)$. No boundedness then.
$endgroup$
– pabodu
Feb 8 at 3:58
$begingroup$
I'll try to construct a counterexample. Let $E=[0,1]$ and $f_alpha(x)=alpha$, $alphain Delta=(0,infty)$. No boundedness then.
$endgroup$
– pabodu
Feb 8 at 3:58
$begingroup$
I'll try to construct a counterexample. Let $E=[0,1]$ and $f_alpha(x)=alpha$, $alphain Delta=(0,infty)$. No boundedness then.
$endgroup$
– pabodu
Feb 8 at 3:58
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078783%2funiform-boundedness-principle-for-functionals%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078783%2funiform-boundedness-principle-for-functionals%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I'll try to construct a counterexample. Let $E=[0,1]$ and $f_alpha(x)=alpha$, $alphain Delta=(0,infty)$. No boundedness then.
$endgroup$
– pabodu
Feb 8 at 3:58