A quick question on in logs












2












$begingroup$


I was solving indefinite integrals



$$int_0^22^x x ,dx$$



I use ILATE as a clue to consider the first function and second function.
$2^x$ is a algebraic function or logarithmic function?










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    It is an exponential function? $2^x=e^{xln 2}.$
    $endgroup$
    – Mohammad Zuhair Khan
    Jan 23 at 15:10






  • 1




    $begingroup$
    wolframalpha.com/input/?i=integral+from+0+to+2+x+*2%5Ex
    $endgroup$
    – Mohammad Zuhair Khan
    Jan 23 at 15:18
















2












$begingroup$


I was solving indefinite integrals



$$int_0^22^x x ,dx$$



I use ILATE as a clue to consider the first function and second function.
$2^x$ is a algebraic function or logarithmic function?










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    It is an exponential function? $2^x=e^{xln 2}.$
    $endgroup$
    – Mohammad Zuhair Khan
    Jan 23 at 15:10






  • 1




    $begingroup$
    wolframalpha.com/input/?i=integral+from+0+to+2+x+*2%5Ex
    $endgroup$
    – Mohammad Zuhair Khan
    Jan 23 at 15:18














2












2








2





$begingroup$


I was solving indefinite integrals



$$int_0^22^x x ,dx$$



I use ILATE as a clue to consider the first function and second function.
$2^x$ is a algebraic function or logarithmic function?










share|cite|improve this question









$endgroup$




I was solving indefinite integrals



$$int_0^22^x x ,dx$$



I use ILATE as a clue to consider the first function and second function.
$2^x$ is a algebraic function or logarithmic function?







calculus indefinite-integrals






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 23 at 15:06









LuciferLucifer

303




303








  • 2




    $begingroup$
    It is an exponential function? $2^x=e^{xln 2}.$
    $endgroup$
    – Mohammad Zuhair Khan
    Jan 23 at 15:10






  • 1




    $begingroup$
    wolframalpha.com/input/?i=integral+from+0+to+2+x+*2%5Ex
    $endgroup$
    – Mohammad Zuhair Khan
    Jan 23 at 15:18














  • 2




    $begingroup$
    It is an exponential function? $2^x=e^{xln 2}.$
    $endgroup$
    – Mohammad Zuhair Khan
    Jan 23 at 15:10






  • 1




    $begingroup$
    wolframalpha.com/input/?i=integral+from+0+to+2+x+*2%5Ex
    $endgroup$
    – Mohammad Zuhair Khan
    Jan 23 at 15:18








2




2




$begingroup$
It is an exponential function? $2^x=e^{xln 2}.$
$endgroup$
– Mohammad Zuhair Khan
Jan 23 at 15:10




$begingroup$
It is an exponential function? $2^x=e^{xln 2}.$
$endgroup$
– Mohammad Zuhair Khan
Jan 23 at 15:10




1




1




$begingroup$
wolframalpha.com/input/?i=integral+from+0+to+2+x+*2%5Ex
$endgroup$
– Mohammad Zuhair Khan
Jan 23 at 15:18




$begingroup$
wolframalpha.com/input/?i=integral+from+0+to+2+x+*2%5Ex
$endgroup$
– Mohammad Zuhair Khan
Jan 23 at 15:18










1 Answer
1






active

oldest

votes


















1












$begingroup$

For:
$$intlimits_{0}^{2} xcdot 2^x:dx$$
Take $2^x =t$, then we get $2^x cdot ln(2) cdot dx=dt$, and, $x=log_2(t)$. Thus:
begin{align}
intlimits_{0}^{2} x cdot 2^x:dx&=frac{1}{ln(2)}intlimits_{1}^{4}log_2(t): dt \
&=frac{1}{(ln(2))^2}intlimits_{1}^{4}ln(t) : dt
end{align}



Now, I leave it for you. Use by parts (Hint: $ln(2)= 1cdotln(2)$).






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084585%2fa-quick-question-on-in-logs%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    For:
    $$intlimits_{0}^{2} xcdot 2^x:dx$$
    Take $2^x =t$, then we get $2^x cdot ln(2) cdot dx=dt$, and, $x=log_2(t)$. Thus:
    begin{align}
    intlimits_{0}^{2} x cdot 2^x:dx&=frac{1}{ln(2)}intlimits_{1}^{4}log_2(t): dt \
    &=frac{1}{(ln(2))^2}intlimits_{1}^{4}ln(t) : dt
    end{align}



    Now, I leave it for you. Use by parts (Hint: $ln(2)= 1cdotln(2)$).






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      For:
      $$intlimits_{0}^{2} xcdot 2^x:dx$$
      Take $2^x =t$, then we get $2^x cdot ln(2) cdot dx=dt$, and, $x=log_2(t)$. Thus:
      begin{align}
      intlimits_{0}^{2} x cdot 2^x:dx&=frac{1}{ln(2)}intlimits_{1}^{4}log_2(t): dt \
      &=frac{1}{(ln(2))^2}intlimits_{1}^{4}ln(t) : dt
      end{align}



      Now, I leave it for you. Use by parts (Hint: $ln(2)= 1cdotln(2)$).






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        For:
        $$intlimits_{0}^{2} xcdot 2^x:dx$$
        Take $2^x =t$, then we get $2^x cdot ln(2) cdot dx=dt$, and, $x=log_2(t)$. Thus:
        begin{align}
        intlimits_{0}^{2} x cdot 2^x:dx&=frac{1}{ln(2)}intlimits_{1}^{4}log_2(t): dt \
        &=frac{1}{(ln(2))^2}intlimits_{1}^{4}ln(t) : dt
        end{align}



        Now, I leave it for you. Use by parts (Hint: $ln(2)= 1cdotln(2)$).






        share|cite|improve this answer











        $endgroup$



        For:
        $$intlimits_{0}^{2} xcdot 2^x:dx$$
        Take $2^x =t$, then we get $2^x cdot ln(2) cdot dx=dt$, and, $x=log_2(t)$. Thus:
        begin{align}
        intlimits_{0}^{2} x cdot 2^x:dx&=frac{1}{ln(2)}intlimits_{1}^{4}log_2(t): dt \
        &=frac{1}{(ln(2))^2}intlimits_{1}^{4}ln(t) : dt
        end{align}



        Now, I leave it for you. Use by parts (Hint: $ln(2)= 1cdotln(2)$).







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 26 at 7:48









        DavidG

        2,5911726




        2,5911726










        answered Jan 23 at 15:14









        Mayank M.Mayank M.

        493413




        493413






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084585%2fa-quick-question-on-in-logs%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

            Npm cannot find a required file even through it is in the searched directory