sum of sequences converging to $0$












2












$begingroup$


Let $I$ a countable set of indices, and for any fixed $iin I$ let $(a^{(n)}_i)_{ninmathbb N}$ be a sequence with values in a non-archimedean local field (e.g. $mathbb Q_p$). Assume that the following hypotheses hold:




  1. For any $iin I$, $lim_{ntoinfty }a^{(n)}_i=0$.

  2. For any fixed $n$, all but finitely $a^{(n)}_i$ are equal to $0$. In other words the sum $sum_{iin I }a^{(n)}_i$ is finite.





Is it true that:



$$lim_{ntoinfty} sum_{iin I }a^{(n)}_i=sum_{iin I
}lim_{ntoinfty}a^{(n)}_i=0 ;;;;;text{?}$$




Remember that for non-archimedean fields: $sum_na_n$ converges if and only if $a_nto 0$










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    Let $I$ a countable set of indices, and for any fixed $iin I$ let $(a^{(n)}_i)_{ninmathbb N}$ be a sequence with values in a non-archimedean local field (e.g. $mathbb Q_p$). Assume that the following hypotheses hold:




    1. For any $iin I$, $lim_{ntoinfty }a^{(n)}_i=0$.

    2. For any fixed $n$, all but finitely $a^{(n)}_i$ are equal to $0$. In other words the sum $sum_{iin I }a^{(n)}_i$ is finite.





    Is it true that:



    $$lim_{ntoinfty} sum_{iin I }a^{(n)}_i=sum_{iin I
    }lim_{ntoinfty}a^{(n)}_i=0 ;;;;;text{?}$$




    Remember that for non-archimedean fields: $sum_na_n$ converges if and only if $a_nto 0$










    share|cite|improve this question











    $endgroup$















      2












      2








      2





      $begingroup$


      Let $I$ a countable set of indices, and for any fixed $iin I$ let $(a^{(n)}_i)_{ninmathbb N}$ be a sequence with values in a non-archimedean local field (e.g. $mathbb Q_p$). Assume that the following hypotheses hold:




      1. For any $iin I$, $lim_{ntoinfty }a^{(n)}_i=0$.

      2. For any fixed $n$, all but finitely $a^{(n)}_i$ are equal to $0$. In other words the sum $sum_{iin I }a^{(n)}_i$ is finite.





      Is it true that:



      $$lim_{ntoinfty} sum_{iin I }a^{(n)}_i=sum_{iin I
      }lim_{ntoinfty}a^{(n)}_i=0 ;;;;;text{?}$$




      Remember that for non-archimedean fields: $sum_na_n$ converges if and only if $a_nto 0$










      share|cite|improve this question











      $endgroup$




      Let $I$ a countable set of indices, and for any fixed $iin I$ let $(a^{(n)}_i)_{ninmathbb N}$ be a sequence with values in a non-archimedean local field (e.g. $mathbb Q_p$). Assume that the following hypotheses hold:




      1. For any $iin I$, $lim_{ntoinfty }a^{(n)}_i=0$.

      2. For any fixed $n$, all but finitely $a^{(n)}_i$ are equal to $0$. In other words the sum $sum_{iin I }a^{(n)}_i$ is finite.





      Is it true that:



      $$lim_{ntoinfty} sum_{iin I }a^{(n)}_i=sum_{iin I
      }lim_{ntoinfty}a^{(n)}_i=0 ;;;;;text{?}$$




      Remember that for non-archimedean fields: $sum_na_n$ converges if and only if $a_nto 0$







      sequences-and-series analysis convergence local-field






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 23 at 19:24







      manifold

















      asked Jan 23 at 19:17









      manifoldmanifold

      302213




      302213






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Consider a list of sequences:



          $$
          a_1^{(n)}=1,0,0,0,0,dots
          $$

          $$
          a_2^{(n)}=0,1,0,0,0,dots
          $$

          $$
          a_3^{(n)}=0,0,1,0,0,dots
          $$

          $$
          a_4^{(n)}=0,0,0,1,0,dots
          $$

          $$
          vdots
          $$



          Then $sum_{iin I }a^{(n)}_i=1$ for any $n$.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084933%2fsum-of-sequences-converging-to-0%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            Consider a list of sequences:



            $$
            a_1^{(n)}=1,0,0,0,0,dots
            $$

            $$
            a_2^{(n)}=0,1,0,0,0,dots
            $$

            $$
            a_3^{(n)}=0,0,1,0,0,dots
            $$

            $$
            a_4^{(n)}=0,0,0,1,0,dots
            $$

            $$
            vdots
            $$



            Then $sum_{iin I }a^{(n)}_i=1$ for any $n$.






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              Consider a list of sequences:



              $$
              a_1^{(n)}=1,0,0,0,0,dots
              $$

              $$
              a_2^{(n)}=0,1,0,0,0,dots
              $$

              $$
              a_3^{(n)}=0,0,1,0,0,dots
              $$

              $$
              a_4^{(n)}=0,0,0,1,0,dots
              $$

              $$
              vdots
              $$



              Then $sum_{iin I }a^{(n)}_i=1$ for any $n$.






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                Consider a list of sequences:



                $$
                a_1^{(n)}=1,0,0,0,0,dots
                $$

                $$
                a_2^{(n)}=0,1,0,0,0,dots
                $$

                $$
                a_3^{(n)}=0,0,1,0,0,dots
                $$

                $$
                a_4^{(n)}=0,0,0,1,0,dots
                $$

                $$
                vdots
                $$



                Then $sum_{iin I }a^{(n)}_i=1$ for any $n$.






                share|cite|improve this answer









                $endgroup$



                Consider a list of sequences:



                $$
                a_1^{(n)}=1,0,0,0,0,dots
                $$

                $$
                a_2^{(n)}=0,1,0,0,0,dots
                $$

                $$
                a_3^{(n)}=0,0,1,0,0,dots
                $$

                $$
                a_4^{(n)}=0,0,0,1,0,dots
                $$

                $$
                vdots
                $$



                Then $sum_{iin I }a^{(n)}_i=1$ for any $n$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 23 at 19:33









                ZeeklessZeekless

                577111




                577111






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084933%2fsum-of-sequences-converging-to-0%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

                    Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

                    A Topological Invariant for $pi_3(U(n))$