Sufficient statistic for a Uniform distribution uniform($itheta$)












0












$begingroup$


Let $X_1, X_2, ..., X_n$ be $n$ independent random variables, where $X_i$~uniform($itheta$), $i=1,2,...,n$. Find a sufficient statistics for $theta$.



My Attempt



The conditional distribution :



$$ f( x_1 ,ldots ,x_n mid itheta ) = frac 1 {(itheta)^n}, text{ where } ( x_i leq itheta , i=1,2,ldots,n).$$



Rewriting the conditional distribution as:



$$ f( x_1 ,ldots ,x_n mid itheta ) = {(itheta)^{-n}} quad ( x_i leq itheta , i=1,2,ldots,n) tag 1$$



So,



$$ f( x_1 ,ldots ,x_n mid theta ) = {(itheta)^{-n}} quad ( max(x_i) leq itheta)tag 1$$



Thus, the sufficient statistic $max(x_i/i)%$ is taken.



My question is, how to I take into account uniform($itheta$) for the discrete case as the question implies?










share|cite|improve this question











$endgroup$












  • $begingroup$
    You mean, $max(x_i/i)$?
    $endgroup$
    – Did
    Jan 23 at 19:12










  • $begingroup$
    @Did, yes! I made the correction. But is the steps right?
    $endgroup$
    – Lady
    Jan 23 at 19:17
















0












$begingroup$


Let $X_1, X_2, ..., X_n$ be $n$ independent random variables, where $X_i$~uniform($itheta$), $i=1,2,...,n$. Find a sufficient statistics for $theta$.



My Attempt



The conditional distribution :



$$ f( x_1 ,ldots ,x_n mid itheta ) = frac 1 {(itheta)^n}, text{ where } ( x_i leq itheta , i=1,2,ldots,n).$$



Rewriting the conditional distribution as:



$$ f( x_1 ,ldots ,x_n mid itheta ) = {(itheta)^{-n}} quad ( x_i leq itheta , i=1,2,ldots,n) tag 1$$



So,



$$ f( x_1 ,ldots ,x_n mid theta ) = {(itheta)^{-n}} quad ( max(x_i) leq itheta)tag 1$$



Thus, the sufficient statistic $max(x_i/i)%$ is taken.



My question is, how to I take into account uniform($itheta$) for the discrete case as the question implies?










share|cite|improve this question











$endgroup$












  • $begingroup$
    You mean, $max(x_i/i)$?
    $endgroup$
    – Did
    Jan 23 at 19:12










  • $begingroup$
    @Did, yes! I made the correction. But is the steps right?
    $endgroup$
    – Lady
    Jan 23 at 19:17














0












0








0


0



$begingroup$


Let $X_1, X_2, ..., X_n$ be $n$ independent random variables, where $X_i$~uniform($itheta$), $i=1,2,...,n$. Find a sufficient statistics for $theta$.



My Attempt



The conditional distribution :



$$ f( x_1 ,ldots ,x_n mid itheta ) = frac 1 {(itheta)^n}, text{ where } ( x_i leq itheta , i=1,2,ldots,n).$$



Rewriting the conditional distribution as:



$$ f( x_1 ,ldots ,x_n mid itheta ) = {(itheta)^{-n}} quad ( x_i leq itheta , i=1,2,ldots,n) tag 1$$



So,



$$ f( x_1 ,ldots ,x_n mid theta ) = {(itheta)^{-n}} quad ( max(x_i) leq itheta)tag 1$$



Thus, the sufficient statistic $max(x_i/i)%$ is taken.



My question is, how to I take into account uniform($itheta$) for the discrete case as the question implies?










share|cite|improve this question











$endgroup$




Let $X_1, X_2, ..., X_n$ be $n$ independent random variables, where $X_i$~uniform($itheta$), $i=1,2,...,n$. Find a sufficient statistics for $theta$.



My Attempt



The conditional distribution :



$$ f( x_1 ,ldots ,x_n mid itheta ) = frac 1 {(itheta)^n}, text{ where } ( x_i leq itheta , i=1,2,ldots,n).$$



Rewriting the conditional distribution as:



$$ f( x_1 ,ldots ,x_n mid itheta ) = {(itheta)^{-n}} quad ( x_i leq itheta , i=1,2,ldots,n) tag 1$$



So,



$$ f( x_1 ,ldots ,x_n mid theta ) = {(itheta)^{-n}} quad ( max(x_i) leq itheta)tag 1$$



Thus, the sufficient statistic $max(x_i/i)%$ is taken.



My question is, how to I take into account uniform($itheta$) for the discrete case as the question implies?







statistics statistical-inference






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 23 at 19:16







Lady

















asked Jan 23 at 18:59









LadyLady

1198




1198












  • $begingroup$
    You mean, $max(x_i/i)$?
    $endgroup$
    – Did
    Jan 23 at 19:12










  • $begingroup$
    @Did, yes! I made the correction. But is the steps right?
    $endgroup$
    – Lady
    Jan 23 at 19:17


















  • $begingroup$
    You mean, $max(x_i/i)$?
    $endgroup$
    – Did
    Jan 23 at 19:12










  • $begingroup$
    @Did, yes! I made the correction. But is the steps right?
    $endgroup$
    – Lady
    Jan 23 at 19:17
















$begingroup$
You mean, $max(x_i/i)$?
$endgroup$
– Did
Jan 23 at 19:12




$begingroup$
You mean, $max(x_i/i)$?
$endgroup$
– Did
Jan 23 at 19:12












$begingroup$
@Did, yes! I made the correction. But is the steps right?
$endgroup$
– Lady
Jan 23 at 19:17




$begingroup$
@Did, yes! I made the correction. But is the steps right?
$endgroup$
– Lady
Jan 23 at 19:17










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084912%2fsufficient-statistic-for-a-uniform-distribution-uniformi-theta%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084912%2fsufficient-statistic-for-a-uniform-distribution-uniformi-theta%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

WPF add header to Image with URL pettitions [duplicate]