Sufficient statistic for a Uniform distribution uniform($itheta$)
$begingroup$
Let $X_1, X_2, ..., X_n$ be $n$ independent random variables, where $X_i$~uniform($itheta$), $i=1,2,...,n$. Find a sufficient statistics for $theta$.
My Attempt
The conditional distribution :
$$ f( x_1 ,ldots ,x_n mid itheta ) = frac 1 {(itheta)^n}, text{ where } ( x_i leq itheta , i=1,2,ldots,n).$$
Rewriting the conditional distribution as:
$$ f( x_1 ,ldots ,x_n mid itheta ) = {(itheta)^{-n}} quad ( x_i leq itheta , i=1,2,ldots,n) tag 1$$
So,
$$ f( x_1 ,ldots ,x_n mid theta ) = {(itheta)^{-n}} quad ( max(x_i) leq itheta)tag 1$$
Thus, the sufficient statistic $max(x_i/i)%$ is taken.
My question is, how to I take into account uniform($itheta$) for the discrete case as the question implies?
statistics statistical-inference
$endgroup$
add a comment |
$begingroup$
Let $X_1, X_2, ..., X_n$ be $n$ independent random variables, where $X_i$~uniform($itheta$), $i=1,2,...,n$. Find a sufficient statistics for $theta$.
My Attempt
The conditional distribution :
$$ f( x_1 ,ldots ,x_n mid itheta ) = frac 1 {(itheta)^n}, text{ where } ( x_i leq itheta , i=1,2,ldots,n).$$
Rewriting the conditional distribution as:
$$ f( x_1 ,ldots ,x_n mid itheta ) = {(itheta)^{-n}} quad ( x_i leq itheta , i=1,2,ldots,n) tag 1$$
So,
$$ f( x_1 ,ldots ,x_n mid theta ) = {(itheta)^{-n}} quad ( max(x_i) leq itheta)tag 1$$
Thus, the sufficient statistic $max(x_i/i)%$ is taken.
My question is, how to I take into account uniform($itheta$) for the discrete case as the question implies?
statistics statistical-inference
$endgroup$
$begingroup$
You mean, $max(x_i/i)$?
$endgroup$
– Did
Jan 23 at 19:12
$begingroup$
@Did, yes! I made the correction. But is the steps right?
$endgroup$
– Lady
Jan 23 at 19:17
add a comment |
$begingroup$
Let $X_1, X_2, ..., X_n$ be $n$ independent random variables, where $X_i$~uniform($itheta$), $i=1,2,...,n$. Find a sufficient statistics for $theta$.
My Attempt
The conditional distribution :
$$ f( x_1 ,ldots ,x_n mid itheta ) = frac 1 {(itheta)^n}, text{ where } ( x_i leq itheta , i=1,2,ldots,n).$$
Rewriting the conditional distribution as:
$$ f( x_1 ,ldots ,x_n mid itheta ) = {(itheta)^{-n}} quad ( x_i leq itheta , i=1,2,ldots,n) tag 1$$
So,
$$ f( x_1 ,ldots ,x_n mid theta ) = {(itheta)^{-n}} quad ( max(x_i) leq itheta)tag 1$$
Thus, the sufficient statistic $max(x_i/i)%$ is taken.
My question is, how to I take into account uniform($itheta$) for the discrete case as the question implies?
statistics statistical-inference
$endgroup$
Let $X_1, X_2, ..., X_n$ be $n$ independent random variables, where $X_i$~uniform($itheta$), $i=1,2,...,n$. Find a sufficient statistics for $theta$.
My Attempt
The conditional distribution :
$$ f( x_1 ,ldots ,x_n mid itheta ) = frac 1 {(itheta)^n}, text{ where } ( x_i leq itheta , i=1,2,ldots,n).$$
Rewriting the conditional distribution as:
$$ f( x_1 ,ldots ,x_n mid itheta ) = {(itheta)^{-n}} quad ( x_i leq itheta , i=1,2,ldots,n) tag 1$$
So,
$$ f( x_1 ,ldots ,x_n mid theta ) = {(itheta)^{-n}} quad ( max(x_i) leq itheta)tag 1$$
Thus, the sufficient statistic $max(x_i/i)%$ is taken.
My question is, how to I take into account uniform($itheta$) for the discrete case as the question implies?
statistics statistical-inference
statistics statistical-inference
edited Jan 23 at 19:16
Lady
asked Jan 23 at 18:59
LadyLady
1198
1198
$begingroup$
You mean, $max(x_i/i)$?
$endgroup$
– Did
Jan 23 at 19:12
$begingroup$
@Did, yes! I made the correction. But is the steps right?
$endgroup$
– Lady
Jan 23 at 19:17
add a comment |
$begingroup$
You mean, $max(x_i/i)$?
$endgroup$
– Did
Jan 23 at 19:12
$begingroup$
@Did, yes! I made the correction. But is the steps right?
$endgroup$
– Lady
Jan 23 at 19:17
$begingroup$
You mean, $max(x_i/i)$?
$endgroup$
– Did
Jan 23 at 19:12
$begingroup$
You mean, $max(x_i/i)$?
$endgroup$
– Did
Jan 23 at 19:12
$begingroup$
@Did, yes! I made the correction. But is the steps right?
$endgroup$
– Lady
Jan 23 at 19:17
$begingroup$
@Did, yes! I made the correction. But is the steps right?
$endgroup$
– Lady
Jan 23 at 19:17
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084912%2fsufficient-statistic-for-a-uniform-distribution-uniformi-theta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084912%2fsufficient-statistic-for-a-uniform-distribution-uniformi-theta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You mean, $max(x_i/i)$?
$endgroup$
– Did
Jan 23 at 19:12
$begingroup$
@Did, yes! I made the correction. But is the steps right?
$endgroup$
– Lady
Jan 23 at 19:17