Axiomatic proof of $vdash p rightarrow ((prightarrow q) rightarrow q)$
$begingroup$
I'm trying to solve a question which asks me to prove $vdash p rightarrow ((prightarrow q) rightarrow q)$ using the axiomatic proof system with modus ponens as it's only rule, the axioms
PL1: $phirightarrow (psi rightarrow phi)$
PL2: $(phi rightarrow (psi rightarrow chi))rightarrow((phirightarrowpsi)rightarrow(phi rightarrowchi)) $
PL3: $(text{~}psi rightarrow text{~}phi)rightarrow((text{~}psi rightarrow phi)rightarrowpsi)$
using the deduction theorem for propositional logic (if $Gamma, phi vdash psi$ then $Gamma vdash phi rightarrow psi$).
I'm really struggling with this, so I'd appreciate any help you could offer.
logic propositional-calculus
$endgroup$
add a comment |
$begingroup$
I'm trying to solve a question which asks me to prove $vdash p rightarrow ((prightarrow q) rightarrow q)$ using the axiomatic proof system with modus ponens as it's only rule, the axioms
PL1: $phirightarrow (psi rightarrow phi)$
PL2: $(phi rightarrow (psi rightarrow chi))rightarrow((phirightarrowpsi)rightarrow(phi rightarrowchi)) $
PL3: $(text{~}psi rightarrow text{~}phi)rightarrow((text{~}psi rightarrow phi)rightarrowpsi)$
using the deduction theorem for propositional logic (if $Gamma, phi vdash psi$ then $Gamma vdash phi rightarrow psi$).
I'm really struggling with this, so I'd appreciate any help you could offer.
logic propositional-calculus
$endgroup$
$begingroup$
See math.stackexchange.com/questions/2470676/axiomatic-proofs/…
$endgroup$
– Bram28
Jan 31 at 16:36
add a comment |
$begingroup$
I'm trying to solve a question which asks me to prove $vdash p rightarrow ((prightarrow q) rightarrow q)$ using the axiomatic proof system with modus ponens as it's only rule, the axioms
PL1: $phirightarrow (psi rightarrow phi)$
PL2: $(phi rightarrow (psi rightarrow chi))rightarrow((phirightarrowpsi)rightarrow(phi rightarrowchi)) $
PL3: $(text{~}psi rightarrow text{~}phi)rightarrow((text{~}psi rightarrow phi)rightarrowpsi)$
using the deduction theorem for propositional logic (if $Gamma, phi vdash psi$ then $Gamma vdash phi rightarrow psi$).
I'm really struggling with this, so I'd appreciate any help you could offer.
logic propositional-calculus
$endgroup$
I'm trying to solve a question which asks me to prove $vdash p rightarrow ((prightarrow q) rightarrow q)$ using the axiomatic proof system with modus ponens as it's only rule, the axioms
PL1: $phirightarrow (psi rightarrow phi)$
PL2: $(phi rightarrow (psi rightarrow chi))rightarrow((phirightarrowpsi)rightarrow(phi rightarrowchi)) $
PL3: $(text{~}psi rightarrow text{~}phi)rightarrow((text{~}psi rightarrow phi)rightarrowpsi)$
using the deduction theorem for propositional logic (if $Gamma, phi vdash psi$ then $Gamma vdash phi rightarrow psi$).
I'm really struggling with this, so I'd appreciate any help you could offer.
logic propositional-calculus
logic propositional-calculus
edited Jan 28 at 16:04
Mauro ALLEGRANZA
67.5k449117
67.5k449117
asked Jan 28 at 16:00
yuyuyuyu
31
31
$begingroup$
See math.stackexchange.com/questions/2470676/axiomatic-proofs/…
$endgroup$
– Bram28
Jan 31 at 16:36
add a comment |
$begingroup$
See math.stackexchange.com/questions/2470676/axiomatic-proofs/…
$endgroup$
– Bram28
Jan 31 at 16:36
$begingroup$
See math.stackexchange.com/questions/2470676/axiomatic-proofs/…
$endgroup$
– Bram28
Jan 31 at 16:36
$begingroup$
See math.stackexchange.com/questions/2470676/axiomatic-proofs/…
$endgroup$
– Bram28
Jan 31 at 16:36
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint
Use MP to prove :
$p, p to q vdash q$
and then apply Deduction Th twice.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091048%2faxiomatic-proof-of-vdash-p-rightarrow-p-rightarrow-q-rightarrow-q%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint
Use MP to prove :
$p, p to q vdash q$
and then apply Deduction Th twice.
$endgroup$
add a comment |
$begingroup$
Hint
Use MP to prove :
$p, p to q vdash q$
and then apply Deduction Th twice.
$endgroup$
add a comment |
$begingroup$
Hint
Use MP to prove :
$p, p to q vdash q$
and then apply Deduction Th twice.
$endgroup$
Hint
Use MP to prove :
$p, p to q vdash q$
and then apply Deduction Th twice.
answered Jan 28 at 16:04
Mauro ALLEGRANZAMauro ALLEGRANZA
67.5k449117
67.5k449117
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091048%2faxiomatic-proof-of-vdash-p-rightarrow-p-rightarrow-q-rightarrow-q%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
See math.stackexchange.com/questions/2470676/axiomatic-proofs/…
$endgroup$
– Bram28
Jan 31 at 16:36