Compute $int_0^{infty} frac {1}{x^{1/3}(1+x^2)}dx$
$begingroup$
Compute $$I=int_0^{infty} frac {1}{x^{1/3}(1+x^2)}dx$$
My attempt:
$$u=x^{1/3}implies I = 3int_0^{infty}frac {u}{u^6+1}du=frac 32int_0^infty frac {1}{u^3+1}du=frac 32 int_0^infty frac {1}{(x+1)(x^2+x+1)}dx\implies I=frac 32 int_0^{infty} frac 1{x+1}-frac x{x^2+x+1}dx$$ And I'm stuck here, what can I do from here?
integration definite-integrals improper-integrals
$endgroup$
add a comment |
$begingroup$
Compute $$I=int_0^{infty} frac {1}{x^{1/3}(1+x^2)}dx$$
My attempt:
$$u=x^{1/3}implies I = 3int_0^{infty}frac {u}{u^6+1}du=frac 32int_0^infty frac {1}{u^3+1}du=frac 32 int_0^infty frac {1}{(x+1)(x^2+x+1)}dx\implies I=frac 32 int_0^{infty} frac 1{x+1}-frac x{x^2+x+1}dx$$ And I'm stuck here, what can I do from here?
integration definite-integrals improper-integrals
$endgroup$
$begingroup$
Note that with the substitution $xmapsto sqrt{x}$, we see that $$int_0^infty frac{1}{x^{1/3}(1+x^2)},dx=frac12int_0^infty frac{x^{-2/3}}{1+x},dx=frac12B(1/3,2/3)=frac12Gamma(1/3)Gamma(2/3)=frac{pi}{2sin(pi/3)}=frac{pi}{sqrt 3}$$
$endgroup$
– Mark Viola
Jan 24 at 21:18
add a comment |
$begingroup$
Compute $$I=int_0^{infty} frac {1}{x^{1/3}(1+x^2)}dx$$
My attempt:
$$u=x^{1/3}implies I = 3int_0^{infty}frac {u}{u^6+1}du=frac 32int_0^infty frac {1}{u^3+1}du=frac 32 int_0^infty frac {1}{(x+1)(x^2+x+1)}dx\implies I=frac 32 int_0^{infty} frac 1{x+1}-frac x{x^2+x+1}dx$$ And I'm stuck here, what can I do from here?
integration definite-integrals improper-integrals
$endgroup$
Compute $$I=int_0^{infty} frac {1}{x^{1/3}(1+x^2)}dx$$
My attempt:
$$u=x^{1/3}implies I = 3int_0^{infty}frac {u}{u^6+1}du=frac 32int_0^infty frac {1}{u^3+1}du=frac 32 int_0^infty frac {1}{(x+1)(x^2+x+1)}dx\implies I=frac 32 int_0^{infty} frac 1{x+1}-frac x{x^2+x+1}dx$$ And I'm stuck here, what can I do from here?
integration definite-integrals improper-integrals
integration definite-integrals improper-integrals
edited Jan 24 at 17:44


Larry
2,53531131
2,53531131
asked Jan 24 at 17:37


C. CristiC. Cristi
1,634218
1,634218
$begingroup$
Note that with the substitution $xmapsto sqrt{x}$, we see that $$int_0^infty frac{1}{x^{1/3}(1+x^2)},dx=frac12int_0^infty frac{x^{-2/3}}{1+x},dx=frac12B(1/3,2/3)=frac12Gamma(1/3)Gamma(2/3)=frac{pi}{2sin(pi/3)}=frac{pi}{sqrt 3}$$
$endgroup$
– Mark Viola
Jan 24 at 21:18
add a comment |
$begingroup$
Note that with the substitution $xmapsto sqrt{x}$, we see that $$int_0^infty frac{1}{x^{1/3}(1+x^2)},dx=frac12int_0^infty frac{x^{-2/3}}{1+x},dx=frac12B(1/3,2/3)=frac12Gamma(1/3)Gamma(2/3)=frac{pi}{2sin(pi/3)}=frac{pi}{sqrt 3}$$
$endgroup$
– Mark Viola
Jan 24 at 21:18
$begingroup$
Note that with the substitution $xmapsto sqrt{x}$, we see that $$int_0^infty frac{1}{x^{1/3}(1+x^2)},dx=frac12int_0^infty frac{x^{-2/3}}{1+x},dx=frac12B(1/3,2/3)=frac12Gamma(1/3)Gamma(2/3)=frac{pi}{2sin(pi/3)}=frac{pi}{sqrt 3}$$
$endgroup$
– Mark Viola
Jan 24 at 21:18
$begingroup$
Note that with the substitution $xmapsto sqrt{x}$, we see that $$int_0^infty frac{1}{x^{1/3}(1+x^2)},dx=frac12int_0^infty frac{x^{-2/3}}{1+x},dx=frac12B(1/3,2/3)=frac12Gamma(1/3)Gamma(2/3)=frac{pi}{2sin(pi/3)}=frac{pi}{sqrt 3}$$
$endgroup$
– Mark Viola
Jan 24 at 21:18
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
Hint. Taking from your last step,
$$intfrac x{x^2+x+1}dx=frac{1}{2}intfrac{D(x^2+x+1)}{x^2+x+1}dx-frac{1}{2}intfrac{1}{(x+1/2)^2+3/4}dx.$$
Can you take it from here?
$endgroup$
$begingroup$
Okay so you added and $x+1$ and subtracted it? that's nice but after the calculation as the primitive I get : $$ln (sqrt{ frac {(x+1^3)}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
$endgroup$
– C. Cristi
Jan 24 at 17:45
$begingroup$
Yes. Now that you have the primitive evaluate it at 0 and the limit at $+infty$ and take the difference. The primitive should be $3$ multiplied by $$ln (sqrt{ frac {(x+1)^2}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
$endgroup$
– Robert Z
Jan 24 at 17:53
$begingroup$
What if there was actually $int_0^infty frac 1{x^{2/3}(1+x^3)}dx$ What substitution would you use?
$endgroup$
– C. Cristi
Jan 24 at 18:04
$begingroup$
I would try again $t=x^{1/3}$, but don't think that the primitive is "easy" here. Maybe it's better to change the approach and use complex analysis.
$endgroup$
– Robert Z
Jan 24 at 18:09
$begingroup$
Already tried $x^{1/3}$ but it's clearly a lot harder, what kind of complex analysis?
$endgroup$
– C. Cristi
Jan 24 at 18:11
|
show 1 more comment
$begingroup$
As an alternative approach:$$I=int_0^{infty} frac {1}{x^{1/3}(1+x^2)}dx,overset{large x^{2/3}=u}=,frac32 int_0^infty frac{1}{u^3+1}du$$
We will substitute $displaystyle{u=frac{1-t}{1+t}Rightarrow du=-frac{2}{(1+t)^2}dt}$.
The reason behind it is that $(1-t)^3+(1+t)^3=2(3t^2+1)$, thus we get rid of the third powers.
$$Rightarrow I=frac32 int_{-1}^1 frac{t+1}{3t^2+1}dt=frac32 cdot 2int_0^1 frac{dt}{3t^2+1}dt=3cdot frac{1}{sqrt 3}arctan(sqrt 3 t)bigg|_0^1=frac{pi}{sqrt 3}$$
$endgroup$
add a comment |
$begingroup$
Also using the Beta function, but in a different way.
Recall that
$$mathrm{B}(a,b)=int_0^1t^{a-1}(1-t)^{b-1}mathrm dt$$
Using the substitution $w=frac{1-t}t$, we see that
$$mathrm{B}(a,b)=int_0^inftyfrac{w^{b-1}}{(1+w)^{a+b}}mathrm dw$$
Then using the sub $w=u^2$,
$$mathrm{B}(a,b)=2int_0^inftyfrac{u^{2b-1}}{(1+u^2)^{a+b}}mathrm du$$
So setting $2b-1=-1/3$, and $a+b=1$, we see that
$$int_0^infty frac{mathrm dx}{x^{1/3}(1+x^2)}=frac12mathrm{B}(1/3,2/3)$$
$endgroup$
add a comment |
$begingroup$
Quickest way would be to let $xmapstotan x$ and use the beta function$$begin{align*}mathfrak{I} & =intlimits_0^{pi/2}mathrm dx,tan^{-1/3}x\ & =intlimits_0^{pi/2}mathrm dx,sin^{-1/3}xcos^{1/3}x\ & =frac 12operatorname{B}left(frac 13,frac 23right)end{align*}$$A direct application of Euler’s Reflection formula gives$$intlimits_0^{infty}frac {mathrm dx}{x^{1/3}(1+x^2)}color{blue}{=frac {pi}{sqrt3}}$$
$endgroup$
$begingroup$
How do you get $B(frac 13, frac 23)$ and why not $B(frac {-1}6, frac 16)?$
$endgroup$
– C. Cristi
Jan 24 at 18:02
$begingroup$
@C.Cristi Because$$frac {1}2left(frac 13+1right)=frac 12frac 43=frac 23$$And similarly...
$endgroup$
– Frank W.
Jan 24 at 18:16
add a comment |
$begingroup$
Yet another approach.
begin{align}
int_0^infty frac{dx}{sqrt[3]{x} (1 + x^2)} &overset{large x mapsto x^{3/2}}=frac{3}{2} int_0^infty frac{dx}{1 + x^3}\
&= frac{3}{2} int_0^1 frac{dx}{1 + x^3} + frac{3}{2} int_1^infty frac{dx}{1 + x^3}.
end{align}
Enforcing a substitution of $x mapsto 1/x$ in the second of the integrals leads to
begin{align}
int_0^infty frac{dx}{sqrt[3]{x} (1 + x^2)} &= frac{3}{2} int_0^1 frac{1 + x}{1 + x^3} , dx\
&= frac{3}{2} int_0^1 frac{dx}{x^2 - x + 1}\
&= frac{3}{2} int_0^1 frac{dx}{left (x - frac{1}{2} right )^2 + frac{3}{4}}\
&= sqrt{3} left [tan^{-1} left (frac{2x - 1}{sqrt{3}} right ) right ]_0^1\
&= frac{pi}{sqrt{3}}.
end{align}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086162%2fcompute-int-0-infty-frac-1x1-31x2dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint. Taking from your last step,
$$intfrac x{x^2+x+1}dx=frac{1}{2}intfrac{D(x^2+x+1)}{x^2+x+1}dx-frac{1}{2}intfrac{1}{(x+1/2)^2+3/4}dx.$$
Can you take it from here?
$endgroup$
$begingroup$
Okay so you added and $x+1$ and subtracted it? that's nice but after the calculation as the primitive I get : $$ln (sqrt{ frac {(x+1^3)}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
$endgroup$
– C. Cristi
Jan 24 at 17:45
$begingroup$
Yes. Now that you have the primitive evaluate it at 0 and the limit at $+infty$ and take the difference. The primitive should be $3$ multiplied by $$ln (sqrt{ frac {(x+1)^2}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
$endgroup$
– Robert Z
Jan 24 at 17:53
$begingroup$
What if there was actually $int_0^infty frac 1{x^{2/3}(1+x^3)}dx$ What substitution would you use?
$endgroup$
– C. Cristi
Jan 24 at 18:04
$begingroup$
I would try again $t=x^{1/3}$, but don't think that the primitive is "easy" here. Maybe it's better to change the approach and use complex analysis.
$endgroup$
– Robert Z
Jan 24 at 18:09
$begingroup$
Already tried $x^{1/3}$ but it's clearly a lot harder, what kind of complex analysis?
$endgroup$
– C. Cristi
Jan 24 at 18:11
|
show 1 more comment
$begingroup$
Hint. Taking from your last step,
$$intfrac x{x^2+x+1}dx=frac{1}{2}intfrac{D(x^2+x+1)}{x^2+x+1}dx-frac{1}{2}intfrac{1}{(x+1/2)^2+3/4}dx.$$
Can you take it from here?
$endgroup$
$begingroup$
Okay so you added and $x+1$ and subtracted it? that's nice but after the calculation as the primitive I get : $$ln (sqrt{ frac {(x+1^3)}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
$endgroup$
– C. Cristi
Jan 24 at 17:45
$begingroup$
Yes. Now that you have the primitive evaluate it at 0 and the limit at $+infty$ and take the difference. The primitive should be $3$ multiplied by $$ln (sqrt{ frac {(x+1)^2}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
$endgroup$
– Robert Z
Jan 24 at 17:53
$begingroup$
What if there was actually $int_0^infty frac 1{x^{2/3}(1+x^3)}dx$ What substitution would you use?
$endgroup$
– C. Cristi
Jan 24 at 18:04
$begingroup$
I would try again $t=x^{1/3}$, but don't think that the primitive is "easy" here. Maybe it's better to change the approach and use complex analysis.
$endgroup$
– Robert Z
Jan 24 at 18:09
$begingroup$
Already tried $x^{1/3}$ but it's clearly a lot harder, what kind of complex analysis?
$endgroup$
– C. Cristi
Jan 24 at 18:11
|
show 1 more comment
$begingroup$
Hint. Taking from your last step,
$$intfrac x{x^2+x+1}dx=frac{1}{2}intfrac{D(x^2+x+1)}{x^2+x+1}dx-frac{1}{2}intfrac{1}{(x+1/2)^2+3/4}dx.$$
Can you take it from here?
$endgroup$
Hint. Taking from your last step,
$$intfrac x{x^2+x+1}dx=frac{1}{2}intfrac{D(x^2+x+1)}{x^2+x+1}dx-frac{1}{2}intfrac{1}{(x+1/2)^2+3/4}dx.$$
Can you take it from here?
edited Jan 24 at 17:45
answered Jan 24 at 17:41


Robert ZRobert Z
101k1069142
101k1069142
$begingroup$
Okay so you added and $x+1$ and subtracted it? that's nice but after the calculation as the primitive I get : $$ln (sqrt{ frac {(x+1^3)}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
$endgroup$
– C. Cristi
Jan 24 at 17:45
$begingroup$
Yes. Now that you have the primitive evaluate it at 0 and the limit at $+infty$ and take the difference. The primitive should be $3$ multiplied by $$ln (sqrt{ frac {(x+1)^2}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
$endgroup$
– Robert Z
Jan 24 at 17:53
$begingroup$
What if there was actually $int_0^infty frac 1{x^{2/3}(1+x^3)}dx$ What substitution would you use?
$endgroup$
– C. Cristi
Jan 24 at 18:04
$begingroup$
I would try again $t=x^{1/3}$, but don't think that the primitive is "easy" here. Maybe it's better to change the approach and use complex analysis.
$endgroup$
– Robert Z
Jan 24 at 18:09
$begingroup$
Already tried $x^{1/3}$ but it's clearly a lot harder, what kind of complex analysis?
$endgroup$
– C. Cristi
Jan 24 at 18:11
|
show 1 more comment
$begingroup$
Okay so you added and $x+1$ and subtracted it? that's nice but after the calculation as the primitive I get : $$ln (sqrt{ frac {(x+1^3)}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
$endgroup$
– C. Cristi
Jan 24 at 17:45
$begingroup$
Yes. Now that you have the primitive evaluate it at 0 and the limit at $+infty$ and take the difference. The primitive should be $3$ multiplied by $$ln (sqrt{ frac {(x+1)^2}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
$endgroup$
– Robert Z
Jan 24 at 17:53
$begingroup$
What if there was actually $int_0^infty frac 1{x^{2/3}(1+x^3)}dx$ What substitution would you use?
$endgroup$
– C. Cristi
Jan 24 at 18:04
$begingroup$
I would try again $t=x^{1/3}$, but don't think that the primitive is "easy" here. Maybe it's better to change the approach and use complex analysis.
$endgroup$
– Robert Z
Jan 24 at 18:09
$begingroup$
Already tried $x^{1/3}$ but it's clearly a lot harder, what kind of complex analysis?
$endgroup$
– C. Cristi
Jan 24 at 18:11
$begingroup$
Okay so you added and $x+1$ and subtracted it? that's nice but after the calculation as the primitive I get : $$ln (sqrt{ frac {(x+1^3)}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
$endgroup$
– C. Cristi
Jan 24 at 17:45
$begingroup$
Okay so you added and $x+1$ and subtracted it? that's nice but after the calculation as the primitive I get : $$ln (sqrt{ frac {(x+1^3)}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
$endgroup$
– C. Cristi
Jan 24 at 17:45
$begingroup$
Yes. Now that you have the primitive evaluate it at 0 and the limit at $+infty$ and take the difference. The primitive should be $3$ multiplied by $$ln (sqrt{ frac {(x+1)^2}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
$endgroup$
– Robert Z
Jan 24 at 17:53
$begingroup$
Yes. Now that you have the primitive evaluate it at 0 and the limit at $+infty$ and take the difference. The primitive should be $3$ multiplied by $$ln (sqrt{ frac {(x+1)^2}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
$endgroup$
– Robert Z
Jan 24 at 17:53
$begingroup$
What if there was actually $int_0^infty frac 1{x^{2/3}(1+x^3)}dx$ What substitution would you use?
$endgroup$
– C. Cristi
Jan 24 at 18:04
$begingroup$
What if there was actually $int_0^infty frac 1{x^{2/3}(1+x^3)}dx$ What substitution would you use?
$endgroup$
– C. Cristi
Jan 24 at 18:04
$begingroup$
I would try again $t=x^{1/3}$, but don't think that the primitive is "easy" here. Maybe it's better to change the approach and use complex analysis.
$endgroup$
– Robert Z
Jan 24 at 18:09
$begingroup$
I would try again $t=x^{1/3}$, but don't think that the primitive is "easy" here. Maybe it's better to change the approach and use complex analysis.
$endgroup$
– Robert Z
Jan 24 at 18:09
$begingroup$
Already tried $x^{1/3}$ but it's clearly a lot harder, what kind of complex analysis?
$endgroup$
– C. Cristi
Jan 24 at 18:11
$begingroup$
Already tried $x^{1/3}$ but it's clearly a lot harder, what kind of complex analysis?
$endgroup$
– C. Cristi
Jan 24 at 18:11
|
show 1 more comment
$begingroup$
As an alternative approach:$$I=int_0^{infty} frac {1}{x^{1/3}(1+x^2)}dx,overset{large x^{2/3}=u}=,frac32 int_0^infty frac{1}{u^3+1}du$$
We will substitute $displaystyle{u=frac{1-t}{1+t}Rightarrow du=-frac{2}{(1+t)^2}dt}$.
The reason behind it is that $(1-t)^3+(1+t)^3=2(3t^2+1)$, thus we get rid of the third powers.
$$Rightarrow I=frac32 int_{-1}^1 frac{t+1}{3t^2+1}dt=frac32 cdot 2int_0^1 frac{dt}{3t^2+1}dt=3cdot frac{1}{sqrt 3}arctan(sqrt 3 t)bigg|_0^1=frac{pi}{sqrt 3}$$
$endgroup$
add a comment |
$begingroup$
As an alternative approach:$$I=int_0^{infty} frac {1}{x^{1/3}(1+x^2)}dx,overset{large x^{2/3}=u}=,frac32 int_0^infty frac{1}{u^3+1}du$$
We will substitute $displaystyle{u=frac{1-t}{1+t}Rightarrow du=-frac{2}{(1+t)^2}dt}$.
The reason behind it is that $(1-t)^3+(1+t)^3=2(3t^2+1)$, thus we get rid of the third powers.
$$Rightarrow I=frac32 int_{-1}^1 frac{t+1}{3t^2+1}dt=frac32 cdot 2int_0^1 frac{dt}{3t^2+1}dt=3cdot frac{1}{sqrt 3}arctan(sqrt 3 t)bigg|_0^1=frac{pi}{sqrt 3}$$
$endgroup$
add a comment |
$begingroup$
As an alternative approach:$$I=int_0^{infty} frac {1}{x^{1/3}(1+x^2)}dx,overset{large x^{2/3}=u}=,frac32 int_0^infty frac{1}{u^3+1}du$$
We will substitute $displaystyle{u=frac{1-t}{1+t}Rightarrow du=-frac{2}{(1+t)^2}dt}$.
The reason behind it is that $(1-t)^3+(1+t)^3=2(3t^2+1)$, thus we get rid of the third powers.
$$Rightarrow I=frac32 int_{-1}^1 frac{t+1}{3t^2+1}dt=frac32 cdot 2int_0^1 frac{dt}{3t^2+1}dt=3cdot frac{1}{sqrt 3}arctan(sqrt 3 t)bigg|_0^1=frac{pi}{sqrt 3}$$
$endgroup$
As an alternative approach:$$I=int_0^{infty} frac {1}{x^{1/3}(1+x^2)}dx,overset{large x^{2/3}=u}=,frac32 int_0^infty frac{1}{u^3+1}du$$
We will substitute $displaystyle{u=frac{1-t}{1+t}Rightarrow du=-frac{2}{(1+t)^2}dt}$.
The reason behind it is that $(1-t)^3+(1+t)^3=2(3t^2+1)$, thus we get rid of the third powers.
$$Rightarrow I=frac32 int_{-1}^1 frac{t+1}{3t^2+1}dt=frac32 cdot 2int_0^1 frac{dt}{3t^2+1}dt=3cdot frac{1}{sqrt 3}arctan(sqrt 3 t)bigg|_0^1=frac{pi}{sqrt 3}$$
edited Jan 24 at 17:53
answered Jan 24 at 17:42


ZackyZacky
7,86011061
7,86011061
add a comment |
add a comment |
$begingroup$
Also using the Beta function, but in a different way.
Recall that
$$mathrm{B}(a,b)=int_0^1t^{a-1}(1-t)^{b-1}mathrm dt$$
Using the substitution $w=frac{1-t}t$, we see that
$$mathrm{B}(a,b)=int_0^inftyfrac{w^{b-1}}{(1+w)^{a+b}}mathrm dw$$
Then using the sub $w=u^2$,
$$mathrm{B}(a,b)=2int_0^inftyfrac{u^{2b-1}}{(1+u^2)^{a+b}}mathrm du$$
So setting $2b-1=-1/3$, and $a+b=1$, we see that
$$int_0^infty frac{mathrm dx}{x^{1/3}(1+x^2)}=frac12mathrm{B}(1/3,2/3)$$
$endgroup$
add a comment |
$begingroup$
Also using the Beta function, but in a different way.
Recall that
$$mathrm{B}(a,b)=int_0^1t^{a-1}(1-t)^{b-1}mathrm dt$$
Using the substitution $w=frac{1-t}t$, we see that
$$mathrm{B}(a,b)=int_0^inftyfrac{w^{b-1}}{(1+w)^{a+b}}mathrm dw$$
Then using the sub $w=u^2$,
$$mathrm{B}(a,b)=2int_0^inftyfrac{u^{2b-1}}{(1+u^2)^{a+b}}mathrm du$$
So setting $2b-1=-1/3$, and $a+b=1$, we see that
$$int_0^infty frac{mathrm dx}{x^{1/3}(1+x^2)}=frac12mathrm{B}(1/3,2/3)$$
$endgroup$
add a comment |
$begingroup$
Also using the Beta function, but in a different way.
Recall that
$$mathrm{B}(a,b)=int_0^1t^{a-1}(1-t)^{b-1}mathrm dt$$
Using the substitution $w=frac{1-t}t$, we see that
$$mathrm{B}(a,b)=int_0^inftyfrac{w^{b-1}}{(1+w)^{a+b}}mathrm dw$$
Then using the sub $w=u^2$,
$$mathrm{B}(a,b)=2int_0^inftyfrac{u^{2b-1}}{(1+u^2)^{a+b}}mathrm du$$
So setting $2b-1=-1/3$, and $a+b=1$, we see that
$$int_0^infty frac{mathrm dx}{x^{1/3}(1+x^2)}=frac12mathrm{B}(1/3,2/3)$$
$endgroup$
Also using the Beta function, but in a different way.
Recall that
$$mathrm{B}(a,b)=int_0^1t^{a-1}(1-t)^{b-1}mathrm dt$$
Using the substitution $w=frac{1-t}t$, we see that
$$mathrm{B}(a,b)=int_0^inftyfrac{w^{b-1}}{(1+w)^{a+b}}mathrm dw$$
Then using the sub $w=u^2$,
$$mathrm{B}(a,b)=2int_0^inftyfrac{u^{2b-1}}{(1+u^2)^{a+b}}mathrm du$$
So setting $2b-1=-1/3$, and $a+b=1$, we see that
$$int_0^infty frac{mathrm dx}{x^{1/3}(1+x^2)}=frac12mathrm{B}(1/3,2/3)$$
answered Jan 24 at 19:47


clathratusclathratus
5,0351338
5,0351338
add a comment |
add a comment |
$begingroup$
Quickest way would be to let $xmapstotan x$ and use the beta function$$begin{align*}mathfrak{I} & =intlimits_0^{pi/2}mathrm dx,tan^{-1/3}x\ & =intlimits_0^{pi/2}mathrm dx,sin^{-1/3}xcos^{1/3}x\ & =frac 12operatorname{B}left(frac 13,frac 23right)end{align*}$$A direct application of Euler’s Reflection formula gives$$intlimits_0^{infty}frac {mathrm dx}{x^{1/3}(1+x^2)}color{blue}{=frac {pi}{sqrt3}}$$
$endgroup$
$begingroup$
How do you get $B(frac 13, frac 23)$ and why not $B(frac {-1}6, frac 16)?$
$endgroup$
– C. Cristi
Jan 24 at 18:02
$begingroup$
@C.Cristi Because$$frac {1}2left(frac 13+1right)=frac 12frac 43=frac 23$$And similarly...
$endgroup$
– Frank W.
Jan 24 at 18:16
add a comment |
$begingroup$
Quickest way would be to let $xmapstotan x$ and use the beta function$$begin{align*}mathfrak{I} & =intlimits_0^{pi/2}mathrm dx,tan^{-1/3}x\ & =intlimits_0^{pi/2}mathrm dx,sin^{-1/3}xcos^{1/3}x\ & =frac 12operatorname{B}left(frac 13,frac 23right)end{align*}$$A direct application of Euler’s Reflection formula gives$$intlimits_0^{infty}frac {mathrm dx}{x^{1/3}(1+x^2)}color{blue}{=frac {pi}{sqrt3}}$$
$endgroup$
$begingroup$
How do you get $B(frac 13, frac 23)$ and why not $B(frac {-1}6, frac 16)?$
$endgroup$
– C. Cristi
Jan 24 at 18:02
$begingroup$
@C.Cristi Because$$frac {1}2left(frac 13+1right)=frac 12frac 43=frac 23$$And similarly...
$endgroup$
– Frank W.
Jan 24 at 18:16
add a comment |
$begingroup$
Quickest way would be to let $xmapstotan x$ and use the beta function$$begin{align*}mathfrak{I} & =intlimits_0^{pi/2}mathrm dx,tan^{-1/3}x\ & =intlimits_0^{pi/2}mathrm dx,sin^{-1/3}xcos^{1/3}x\ & =frac 12operatorname{B}left(frac 13,frac 23right)end{align*}$$A direct application of Euler’s Reflection formula gives$$intlimits_0^{infty}frac {mathrm dx}{x^{1/3}(1+x^2)}color{blue}{=frac {pi}{sqrt3}}$$
$endgroup$
Quickest way would be to let $xmapstotan x$ and use the beta function$$begin{align*}mathfrak{I} & =intlimits_0^{pi/2}mathrm dx,tan^{-1/3}x\ & =intlimits_0^{pi/2}mathrm dx,sin^{-1/3}xcos^{1/3}x\ & =frac 12operatorname{B}left(frac 13,frac 23right)end{align*}$$A direct application of Euler’s Reflection formula gives$$intlimits_0^{infty}frac {mathrm dx}{x^{1/3}(1+x^2)}color{blue}{=frac {pi}{sqrt3}}$$
answered Jan 24 at 17:50
Frank W.Frank W.
3,8101321
3,8101321
$begingroup$
How do you get $B(frac 13, frac 23)$ and why not $B(frac {-1}6, frac 16)?$
$endgroup$
– C. Cristi
Jan 24 at 18:02
$begingroup$
@C.Cristi Because$$frac {1}2left(frac 13+1right)=frac 12frac 43=frac 23$$And similarly...
$endgroup$
– Frank W.
Jan 24 at 18:16
add a comment |
$begingroup$
How do you get $B(frac 13, frac 23)$ and why not $B(frac {-1}6, frac 16)?$
$endgroup$
– C. Cristi
Jan 24 at 18:02
$begingroup$
@C.Cristi Because$$frac {1}2left(frac 13+1right)=frac 12frac 43=frac 23$$And similarly...
$endgroup$
– Frank W.
Jan 24 at 18:16
$begingroup$
How do you get $B(frac 13, frac 23)$ and why not $B(frac {-1}6, frac 16)?$
$endgroup$
– C. Cristi
Jan 24 at 18:02
$begingroup$
How do you get $B(frac 13, frac 23)$ and why not $B(frac {-1}6, frac 16)?$
$endgroup$
– C. Cristi
Jan 24 at 18:02
$begingroup$
@C.Cristi Because$$frac {1}2left(frac 13+1right)=frac 12frac 43=frac 23$$And similarly...
$endgroup$
– Frank W.
Jan 24 at 18:16
$begingroup$
@C.Cristi Because$$frac {1}2left(frac 13+1right)=frac 12frac 43=frac 23$$And similarly...
$endgroup$
– Frank W.
Jan 24 at 18:16
add a comment |
$begingroup$
Yet another approach.
begin{align}
int_0^infty frac{dx}{sqrt[3]{x} (1 + x^2)} &overset{large x mapsto x^{3/2}}=frac{3}{2} int_0^infty frac{dx}{1 + x^3}\
&= frac{3}{2} int_0^1 frac{dx}{1 + x^3} + frac{3}{2} int_1^infty frac{dx}{1 + x^3}.
end{align}
Enforcing a substitution of $x mapsto 1/x$ in the second of the integrals leads to
begin{align}
int_0^infty frac{dx}{sqrt[3]{x} (1 + x^2)} &= frac{3}{2} int_0^1 frac{1 + x}{1 + x^3} , dx\
&= frac{3}{2} int_0^1 frac{dx}{x^2 - x + 1}\
&= frac{3}{2} int_0^1 frac{dx}{left (x - frac{1}{2} right )^2 + frac{3}{4}}\
&= sqrt{3} left [tan^{-1} left (frac{2x - 1}{sqrt{3}} right ) right ]_0^1\
&= frac{pi}{sqrt{3}}.
end{align}
$endgroup$
add a comment |
$begingroup$
Yet another approach.
begin{align}
int_0^infty frac{dx}{sqrt[3]{x} (1 + x^2)} &overset{large x mapsto x^{3/2}}=frac{3}{2} int_0^infty frac{dx}{1 + x^3}\
&= frac{3}{2} int_0^1 frac{dx}{1 + x^3} + frac{3}{2} int_1^infty frac{dx}{1 + x^3}.
end{align}
Enforcing a substitution of $x mapsto 1/x$ in the second of the integrals leads to
begin{align}
int_0^infty frac{dx}{sqrt[3]{x} (1 + x^2)} &= frac{3}{2} int_0^1 frac{1 + x}{1 + x^3} , dx\
&= frac{3}{2} int_0^1 frac{dx}{x^2 - x + 1}\
&= frac{3}{2} int_0^1 frac{dx}{left (x - frac{1}{2} right )^2 + frac{3}{4}}\
&= sqrt{3} left [tan^{-1} left (frac{2x - 1}{sqrt{3}} right ) right ]_0^1\
&= frac{pi}{sqrt{3}}.
end{align}
$endgroup$
add a comment |
$begingroup$
Yet another approach.
begin{align}
int_0^infty frac{dx}{sqrt[3]{x} (1 + x^2)} &overset{large x mapsto x^{3/2}}=frac{3}{2} int_0^infty frac{dx}{1 + x^3}\
&= frac{3}{2} int_0^1 frac{dx}{1 + x^3} + frac{3}{2} int_1^infty frac{dx}{1 + x^3}.
end{align}
Enforcing a substitution of $x mapsto 1/x$ in the second of the integrals leads to
begin{align}
int_0^infty frac{dx}{sqrt[3]{x} (1 + x^2)} &= frac{3}{2} int_0^1 frac{1 + x}{1 + x^3} , dx\
&= frac{3}{2} int_0^1 frac{dx}{x^2 - x + 1}\
&= frac{3}{2} int_0^1 frac{dx}{left (x - frac{1}{2} right )^2 + frac{3}{4}}\
&= sqrt{3} left [tan^{-1} left (frac{2x - 1}{sqrt{3}} right ) right ]_0^1\
&= frac{pi}{sqrt{3}}.
end{align}
$endgroup$
Yet another approach.
begin{align}
int_0^infty frac{dx}{sqrt[3]{x} (1 + x^2)} &overset{large x mapsto x^{3/2}}=frac{3}{2} int_0^infty frac{dx}{1 + x^3}\
&= frac{3}{2} int_0^1 frac{dx}{1 + x^3} + frac{3}{2} int_1^infty frac{dx}{1 + x^3}.
end{align}
Enforcing a substitution of $x mapsto 1/x$ in the second of the integrals leads to
begin{align}
int_0^infty frac{dx}{sqrt[3]{x} (1 + x^2)} &= frac{3}{2} int_0^1 frac{1 + x}{1 + x^3} , dx\
&= frac{3}{2} int_0^1 frac{dx}{x^2 - x + 1}\
&= frac{3}{2} int_0^1 frac{dx}{left (x - frac{1}{2} right )^2 + frac{3}{4}}\
&= sqrt{3} left [tan^{-1} left (frac{2x - 1}{sqrt{3}} right ) right ]_0^1\
&= frac{pi}{sqrt{3}}.
end{align}
edited Jan 25 at 13:07
answered Jan 25 at 6:38


omegadotomegadot
6,4072829
6,4072829
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086162%2fcompute-int-0-infty-frac-1x1-31x2dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Note that with the substitution $xmapsto sqrt{x}$, we see that $$int_0^infty frac{1}{x^{1/3}(1+x^2)},dx=frac12int_0^infty frac{x^{-2/3}}{1+x},dx=frac12B(1/3,2/3)=frac12Gamma(1/3)Gamma(2/3)=frac{pi}{2sin(pi/3)}=frac{pi}{sqrt 3}$$
$endgroup$
– Mark Viola
Jan 24 at 21:18