Compute $int_0^{infty} frac {1}{x^{1/3}(1+x^2)}dx$












4












$begingroup$


Compute $$I=int_0^{infty} frac {1}{x^{1/3}(1+x^2)}dx$$



My attempt:



$$u=x^{1/3}implies I = 3int_0^{infty}frac {u}{u^6+1}du=frac 32int_0^infty frac {1}{u^3+1}du=frac 32 int_0^infty frac {1}{(x+1)(x^2+x+1)}dx\implies I=frac 32 int_0^{infty} frac 1{x+1}-frac x{x^2+x+1}dx$$ And I'm stuck here, what can I do from here?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Note that with the substitution $xmapsto sqrt{x}$, we see that $$int_0^infty frac{1}{x^{1/3}(1+x^2)},dx=frac12int_0^infty frac{x^{-2/3}}{1+x},dx=frac12B(1/3,2/3)=frac12Gamma(1/3)Gamma(2/3)=frac{pi}{2sin(pi/3)}=frac{pi}{sqrt 3}$$
    $endgroup$
    – Mark Viola
    Jan 24 at 21:18
















4












$begingroup$


Compute $$I=int_0^{infty} frac {1}{x^{1/3}(1+x^2)}dx$$



My attempt:



$$u=x^{1/3}implies I = 3int_0^{infty}frac {u}{u^6+1}du=frac 32int_0^infty frac {1}{u^3+1}du=frac 32 int_0^infty frac {1}{(x+1)(x^2+x+1)}dx\implies I=frac 32 int_0^{infty} frac 1{x+1}-frac x{x^2+x+1}dx$$ And I'm stuck here, what can I do from here?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Note that with the substitution $xmapsto sqrt{x}$, we see that $$int_0^infty frac{1}{x^{1/3}(1+x^2)},dx=frac12int_0^infty frac{x^{-2/3}}{1+x},dx=frac12B(1/3,2/3)=frac12Gamma(1/3)Gamma(2/3)=frac{pi}{2sin(pi/3)}=frac{pi}{sqrt 3}$$
    $endgroup$
    – Mark Viola
    Jan 24 at 21:18














4












4








4





$begingroup$


Compute $$I=int_0^{infty} frac {1}{x^{1/3}(1+x^2)}dx$$



My attempt:



$$u=x^{1/3}implies I = 3int_0^{infty}frac {u}{u^6+1}du=frac 32int_0^infty frac {1}{u^3+1}du=frac 32 int_0^infty frac {1}{(x+1)(x^2+x+1)}dx\implies I=frac 32 int_0^{infty} frac 1{x+1}-frac x{x^2+x+1}dx$$ And I'm stuck here, what can I do from here?










share|cite|improve this question











$endgroup$




Compute $$I=int_0^{infty} frac {1}{x^{1/3}(1+x^2)}dx$$



My attempt:



$$u=x^{1/3}implies I = 3int_0^{infty}frac {u}{u^6+1}du=frac 32int_0^infty frac {1}{u^3+1}du=frac 32 int_0^infty frac {1}{(x+1)(x^2+x+1)}dx\implies I=frac 32 int_0^{infty} frac 1{x+1}-frac x{x^2+x+1}dx$$ And I'm stuck here, what can I do from here?







integration definite-integrals improper-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 24 at 17:44









Larry

2,53531131




2,53531131










asked Jan 24 at 17:37









C. CristiC. Cristi

1,634218




1,634218












  • $begingroup$
    Note that with the substitution $xmapsto sqrt{x}$, we see that $$int_0^infty frac{1}{x^{1/3}(1+x^2)},dx=frac12int_0^infty frac{x^{-2/3}}{1+x},dx=frac12B(1/3,2/3)=frac12Gamma(1/3)Gamma(2/3)=frac{pi}{2sin(pi/3)}=frac{pi}{sqrt 3}$$
    $endgroup$
    – Mark Viola
    Jan 24 at 21:18


















  • $begingroup$
    Note that with the substitution $xmapsto sqrt{x}$, we see that $$int_0^infty frac{1}{x^{1/3}(1+x^2)},dx=frac12int_0^infty frac{x^{-2/3}}{1+x},dx=frac12B(1/3,2/3)=frac12Gamma(1/3)Gamma(2/3)=frac{pi}{2sin(pi/3)}=frac{pi}{sqrt 3}$$
    $endgroup$
    – Mark Viola
    Jan 24 at 21:18
















$begingroup$
Note that with the substitution $xmapsto sqrt{x}$, we see that $$int_0^infty frac{1}{x^{1/3}(1+x^2)},dx=frac12int_0^infty frac{x^{-2/3}}{1+x},dx=frac12B(1/3,2/3)=frac12Gamma(1/3)Gamma(2/3)=frac{pi}{2sin(pi/3)}=frac{pi}{sqrt 3}$$
$endgroup$
– Mark Viola
Jan 24 at 21:18




$begingroup$
Note that with the substitution $xmapsto sqrt{x}$, we see that $$int_0^infty frac{1}{x^{1/3}(1+x^2)},dx=frac12int_0^infty frac{x^{-2/3}}{1+x},dx=frac12B(1/3,2/3)=frac12Gamma(1/3)Gamma(2/3)=frac{pi}{2sin(pi/3)}=frac{pi}{sqrt 3}$$
$endgroup$
– Mark Viola
Jan 24 at 21:18










5 Answers
5






active

oldest

votes


















4












$begingroup$

Hint. Taking from your last step,
$$intfrac x{x^2+x+1}dx=frac{1}{2}intfrac{D(x^2+x+1)}{x^2+x+1}dx-frac{1}{2}intfrac{1}{(x+1/2)^2+3/4}dx.$$
Can you take it from here?






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Okay so you added and $x+1$ and subtracted it? that's nice but after the calculation as the primitive I get : $$ln (sqrt{ frac {(x+1^3)}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
    $endgroup$
    – C. Cristi
    Jan 24 at 17:45












  • $begingroup$
    Yes. Now that you have the primitive evaluate it at 0 and the limit at $+infty$ and take the difference. The primitive should be $3$ multiplied by $$ln (sqrt{ frac {(x+1)^2}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
    $endgroup$
    – Robert Z
    Jan 24 at 17:53










  • $begingroup$
    What if there was actually $int_0^infty frac 1{x^{2/3}(1+x^3)}dx$ What substitution would you use?
    $endgroup$
    – C. Cristi
    Jan 24 at 18:04










  • $begingroup$
    I would try again $t=x^{1/3}$, but don't think that the primitive is "easy" here. Maybe it's better to change the approach and use complex analysis.
    $endgroup$
    – Robert Z
    Jan 24 at 18:09










  • $begingroup$
    Already tried $x^{1/3}$ but it's clearly a lot harder, what kind of complex analysis?
    $endgroup$
    – C. Cristi
    Jan 24 at 18:11



















5












$begingroup$

As an alternative approach:$$I=int_0^{infty} frac {1}{x^{1/3}(1+x^2)}dx,overset{large x^{2/3}=u}=,frac32 int_0^infty frac{1}{u^3+1}du$$
We will substitute $displaystyle{u=frac{1-t}{1+t}Rightarrow du=-frac{2}{(1+t)^2}dt}$.
The reason behind it is that $(1-t)^3+(1+t)^3=2(3t^2+1)$, thus we get rid of the third powers.
$$Rightarrow I=frac32 int_{-1}^1 frac{t+1}{3t^2+1}dt=frac32 cdot 2int_0^1 frac{dt}{3t^2+1}dt=3cdot frac{1}{sqrt 3}arctan(sqrt 3 t)bigg|_0^1=frac{pi}{sqrt 3}$$






share|cite|improve this answer











$endgroup$





















    3












    $begingroup$

    Also using the Beta function, but in a different way.



    Recall that
    $$mathrm{B}(a,b)=int_0^1t^{a-1}(1-t)^{b-1}mathrm dt$$
    Using the substitution $w=frac{1-t}t$, we see that
    $$mathrm{B}(a,b)=int_0^inftyfrac{w^{b-1}}{(1+w)^{a+b}}mathrm dw$$
    Then using the sub $w=u^2$,
    $$mathrm{B}(a,b)=2int_0^inftyfrac{u^{2b-1}}{(1+u^2)^{a+b}}mathrm du$$
    So setting $2b-1=-1/3$, and $a+b=1$, we see that
    $$int_0^infty frac{mathrm dx}{x^{1/3}(1+x^2)}=frac12mathrm{B}(1/3,2/3)$$






    share|cite|improve this answer









    $endgroup$





















      1












      $begingroup$

      Quickest way would be to let $xmapstotan x$ and use the beta function$$begin{align*}mathfrak{I} & =intlimits_0^{pi/2}mathrm dx,tan^{-1/3}x\ & =intlimits_0^{pi/2}mathrm dx,sin^{-1/3}xcos^{1/3}x\ & =frac 12operatorname{B}left(frac 13,frac 23right)end{align*}$$A direct application of Euler’s Reflection formula gives$$intlimits_0^{infty}frac {mathrm dx}{x^{1/3}(1+x^2)}color{blue}{=frac {pi}{sqrt3}}$$






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        How do you get $B(frac 13, frac 23)$ and why not $B(frac {-1}6, frac 16)?$
        $endgroup$
        – C. Cristi
        Jan 24 at 18:02












      • $begingroup$
        @C.Cristi Because$$frac {1}2left(frac 13+1right)=frac 12frac 43=frac 23$$And similarly...
        $endgroup$
        – Frank W.
        Jan 24 at 18:16



















      1












      $begingroup$

      Yet another approach.



      begin{align}
      int_0^infty frac{dx}{sqrt[3]{x} (1 + x^2)} &overset{large x mapsto x^{3/2}}=frac{3}{2} int_0^infty frac{dx}{1 + x^3}\
      &= frac{3}{2} int_0^1 frac{dx}{1 + x^3} + frac{3}{2} int_1^infty frac{dx}{1 + x^3}.
      end{align}

      Enforcing a substitution of $x mapsto 1/x$ in the second of the integrals leads to
      begin{align}
      int_0^infty frac{dx}{sqrt[3]{x} (1 + x^2)} &= frac{3}{2} int_0^1 frac{1 + x}{1 + x^3} , dx\
      &= frac{3}{2} int_0^1 frac{dx}{x^2 - x + 1}\
      &= frac{3}{2} int_0^1 frac{dx}{left (x - frac{1}{2} right )^2 + frac{3}{4}}\
      &= sqrt{3} left [tan^{-1} left (frac{2x - 1}{sqrt{3}} right ) right ]_0^1\
      &= frac{pi}{sqrt{3}}.
      end{align}






      share|cite|improve this answer











      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086162%2fcompute-int-0-infty-frac-1x1-31x2dx%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        5 Answers
        5






        active

        oldest

        votes








        5 Answers
        5






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        4












        $begingroup$

        Hint. Taking from your last step,
        $$intfrac x{x^2+x+1}dx=frac{1}{2}intfrac{D(x^2+x+1)}{x^2+x+1}dx-frac{1}{2}intfrac{1}{(x+1/2)^2+3/4}dx.$$
        Can you take it from here?






        share|cite|improve this answer











        $endgroup$













        • $begingroup$
          Okay so you added and $x+1$ and subtracted it? that's nice but after the calculation as the primitive I get : $$ln (sqrt{ frac {(x+1^3)}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
          $endgroup$
          – C. Cristi
          Jan 24 at 17:45












        • $begingroup$
          Yes. Now that you have the primitive evaluate it at 0 and the limit at $+infty$ and take the difference. The primitive should be $3$ multiplied by $$ln (sqrt{ frac {(x+1)^2}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
          $endgroup$
          – Robert Z
          Jan 24 at 17:53










        • $begingroup$
          What if there was actually $int_0^infty frac 1{x^{2/3}(1+x^3)}dx$ What substitution would you use?
          $endgroup$
          – C. Cristi
          Jan 24 at 18:04










        • $begingroup$
          I would try again $t=x^{1/3}$, but don't think that the primitive is "easy" here. Maybe it's better to change the approach and use complex analysis.
          $endgroup$
          – Robert Z
          Jan 24 at 18:09










        • $begingroup$
          Already tried $x^{1/3}$ but it's clearly a lot harder, what kind of complex analysis?
          $endgroup$
          – C. Cristi
          Jan 24 at 18:11
















        4












        $begingroup$

        Hint. Taking from your last step,
        $$intfrac x{x^2+x+1}dx=frac{1}{2}intfrac{D(x^2+x+1)}{x^2+x+1}dx-frac{1}{2}intfrac{1}{(x+1/2)^2+3/4}dx.$$
        Can you take it from here?






        share|cite|improve this answer











        $endgroup$













        • $begingroup$
          Okay so you added and $x+1$ and subtracted it? that's nice but after the calculation as the primitive I get : $$ln (sqrt{ frac {(x+1^3)}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
          $endgroup$
          – C. Cristi
          Jan 24 at 17:45












        • $begingroup$
          Yes. Now that you have the primitive evaluate it at 0 and the limit at $+infty$ and take the difference. The primitive should be $3$ multiplied by $$ln (sqrt{ frac {(x+1)^2}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
          $endgroup$
          – Robert Z
          Jan 24 at 17:53










        • $begingroup$
          What if there was actually $int_0^infty frac 1{x^{2/3}(1+x^3)}dx$ What substitution would you use?
          $endgroup$
          – C. Cristi
          Jan 24 at 18:04










        • $begingroup$
          I would try again $t=x^{1/3}$, but don't think that the primitive is "easy" here. Maybe it's better to change the approach and use complex analysis.
          $endgroup$
          – Robert Z
          Jan 24 at 18:09










        • $begingroup$
          Already tried $x^{1/3}$ but it's clearly a lot harder, what kind of complex analysis?
          $endgroup$
          – C. Cristi
          Jan 24 at 18:11














        4












        4








        4





        $begingroup$

        Hint. Taking from your last step,
        $$intfrac x{x^2+x+1}dx=frac{1}{2}intfrac{D(x^2+x+1)}{x^2+x+1}dx-frac{1}{2}intfrac{1}{(x+1/2)^2+3/4}dx.$$
        Can you take it from here?






        share|cite|improve this answer











        $endgroup$



        Hint. Taking from your last step,
        $$intfrac x{x^2+x+1}dx=frac{1}{2}intfrac{D(x^2+x+1)}{x^2+x+1}dx-frac{1}{2}intfrac{1}{(x+1/2)^2+3/4}dx.$$
        Can you take it from here?







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 24 at 17:45

























        answered Jan 24 at 17:41









        Robert ZRobert Z

        101k1069142




        101k1069142












        • $begingroup$
          Okay so you added and $x+1$ and subtracted it? that's nice but after the calculation as the primitive I get : $$ln (sqrt{ frac {(x+1^3)}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
          $endgroup$
          – C. Cristi
          Jan 24 at 17:45












        • $begingroup$
          Yes. Now that you have the primitive evaluate it at 0 and the limit at $+infty$ and take the difference. The primitive should be $3$ multiplied by $$ln (sqrt{ frac {(x+1)^2}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
          $endgroup$
          – Robert Z
          Jan 24 at 17:53










        • $begingroup$
          What if there was actually $int_0^infty frac 1{x^{2/3}(1+x^3)}dx$ What substitution would you use?
          $endgroup$
          – C. Cristi
          Jan 24 at 18:04










        • $begingroup$
          I would try again $t=x^{1/3}$, but don't think that the primitive is "easy" here. Maybe it's better to change the approach and use complex analysis.
          $endgroup$
          – Robert Z
          Jan 24 at 18:09










        • $begingroup$
          Already tried $x^{1/3}$ but it's clearly a lot harder, what kind of complex analysis?
          $endgroup$
          – C. Cristi
          Jan 24 at 18:11


















        • $begingroup$
          Okay so you added and $x+1$ and subtracted it? that's nice but after the calculation as the primitive I get : $$ln (sqrt{ frac {(x+1^3)}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
          $endgroup$
          – C. Cristi
          Jan 24 at 17:45












        • $begingroup$
          Yes. Now that you have the primitive evaluate it at 0 and the limit at $+infty$ and take the difference. The primitive should be $3$ multiplied by $$ln (sqrt{ frac {(x+1)^2}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
          $endgroup$
          – Robert Z
          Jan 24 at 17:53










        • $begingroup$
          What if there was actually $int_0^infty frac 1{x^{2/3}(1+x^3)}dx$ What substitution would you use?
          $endgroup$
          – C. Cristi
          Jan 24 at 18:04










        • $begingroup$
          I would try again $t=x^{1/3}$, but don't think that the primitive is "easy" here. Maybe it's better to change the approach and use complex analysis.
          $endgroup$
          – Robert Z
          Jan 24 at 18:09










        • $begingroup$
          Already tried $x^{1/3}$ but it's clearly a lot harder, what kind of complex analysis?
          $endgroup$
          – C. Cristi
          Jan 24 at 18:11
















        $begingroup$
        Okay so you added and $x+1$ and subtracted it? that's nice but after the calculation as the primitive I get : $$ln (sqrt{ frac {(x+1^3)}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
        $endgroup$
        – C. Cristi
        Jan 24 at 17:45






        $begingroup$
        Okay so you added and $x+1$ and subtracted it? that's nice but after the calculation as the primitive I get : $$ln (sqrt{ frac {(x+1^3)}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
        $endgroup$
        – C. Cristi
        Jan 24 at 17:45














        $begingroup$
        Yes. Now that you have the primitive evaluate it at 0 and the limit at $+infty$ and take the difference. The primitive should be $3$ multiplied by $$ln (sqrt{ frac {(x+1)^2}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
        $endgroup$
        – Robert Z
        Jan 24 at 17:53




        $begingroup$
        Yes. Now that you have the primitive evaluate it at 0 and the limit at $+infty$ and take the difference. The primitive should be $3$ multiplied by $$ln (sqrt{ frac {(x+1)^2}{x^2+x+1} }) + frac 1{sqrt{3}} arctan (frac {(2x+1)}{sqrt{3}})$$
        $endgroup$
        – Robert Z
        Jan 24 at 17:53












        $begingroup$
        What if there was actually $int_0^infty frac 1{x^{2/3}(1+x^3)}dx$ What substitution would you use?
        $endgroup$
        – C. Cristi
        Jan 24 at 18:04




        $begingroup$
        What if there was actually $int_0^infty frac 1{x^{2/3}(1+x^3)}dx$ What substitution would you use?
        $endgroup$
        – C. Cristi
        Jan 24 at 18:04












        $begingroup$
        I would try again $t=x^{1/3}$, but don't think that the primitive is "easy" here. Maybe it's better to change the approach and use complex analysis.
        $endgroup$
        – Robert Z
        Jan 24 at 18:09




        $begingroup$
        I would try again $t=x^{1/3}$, but don't think that the primitive is "easy" here. Maybe it's better to change the approach and use complex analysis.
        $endgroup$
        – Robert Z
        Jan 24 at 18:09












        $begingroup$
        Already tried $x^{1/3}$ but it's clearly a lot harder, what kind of complex analysis?
        $endgroup$
        – C. Cristi
        Jan 24 at 18:11




        $begingroup$
        Already tried $x^{1/3}$ but it's clearly a lot harder, what kind of complex analysis?
        $endgroup$
        – C. Cristi
        Jan 24 at 18:11











        5












        $begingroup$

        As an alternative approach:$$I=int_0^{infty} frac {1}{x^{1/3}(1+x^2)}dx,overset{large x^{2/3}=u}=,frac32 int_0^infty frac{1}{u^3+1}du$$
        We will substitute $displaystyle{u=frac{1-t}{1+t}Rightarrow du=-frac{2}{(1+t)^2}dt}$.
        The reason behind it is that $(1-t)^3+(1+t)^3=2(3t^2+1)$, thus we get rid of the third powers.
        $$Rightarrow I=frac32 int_{-1}^1 frac{t+1}{3t^2+1}dt=frac32 cdot 2int_0^1 frac{dt}{3t^2+1}dt=3cdot frac{1}{sqrt 3}arctan(sqrt 3 t)bigg|_0^1=frac{pi}{sqrt 3}$$






        share|cite|improve this answer











        $endgroup$


















          5












          $begingroup$

          As an alternative approach:$$I=int_0^{infty} frac {1}{x^{1/3}(1+x^2)}dx,overset{large x^{2/3}=u}=,frac32 int_0^infty frac{1}{u^3+1}du$$
          We will substitute $displaystyle{u=frac{1-t}{1+t}Rightarrow du=-frac{2}{(1+t)^2}dt}$.
          The reason behind it is that $(1-t)^3+(1+t)^3=2(3t^2+1)$, thus we get rid of the third powers.
          $$Rightarrow I=frac32 int_{-1}^1 frac{t+1}{3t^2+1}dt=frac32 cdot 2int_0^1 frac{dt}{3t^2+1}dt=3cdot frac{1}{sqrt 3}arctan(sqrt 3 t)bigg|_0^1=frac{pi}{sqrt 3}$$






          share|cite|improve this answer











          $endgroup$
















            5












            5








            5





            $begingroup$

            As an alternative approach:$$I=int_0^{infty} frac {1}{x^{1/3}(1+x^2)}dx,overset{large x^{2/3}=u}=,frac32 int_0^infty frac{1}{u^3+1}du$$
            We will substitute $displaystyle{u=frac{1-t}{1+t}Rightarrow du=-frac{2}{(1+t)^2}dt}$.
            The reason behind it is that $(1-t)^3+(1+t)^3=2(3t^2+1)$, thus we get rid of the third powers.
            $$Rightarrow I=frac32 int_{-1}^1 frac{t+1}{3t^2+1}dt=frac32 cdot 2int_0^1 frac{dt}{3t^2+1}dt=3cdot frac{1}{sqrt 3}arctan(sqrt 3 t)bigg|_0^1=frac{pi}{sqrt 3}$$






            share|cite|improve this answer











            $endgroup$



            As an alternative approach:$$I=int_0^{infty} frac {1}{x^{1/3}(1+x^2)}dx,overset{large x^{2/3}=u}=,frac32 int_0^infty frac{1}{u^3+1}du$$
            We will substitute $displaystyle{u=frac{1-t}{1+t}Rightarrow du=-frac{2}{(1+t)^2}dt}$.
            The reason behind it is that $(1-t)^3+(1+t)^3=2(3t^2+1)$, thus we get rid of the third powers.
            $$Rightarrow I=frac32 int_{-1}^1 frac{t+1}{3t^2+1}dt=frac32 cdot 2int_0^1 frac{dt}{3t^2+1}dt=3cdot frac{1}{sqrt 3}arctan(sqrt 3 t)bigg|_0^1=frac{pi}{sqrt 3}$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 24 at 17:53

























            answered Jan 24 at 17:42









            ZackyZacky

            7,86011061




            7,86011061























                3












                $begingroup$

                Also using the Beta function, but in a different way.



                Recall that
                $$mathrm{B}(a,b)=int_0^1t^{a-1}(1-t)^{b-1}mathrm dt$$
                Using the substitution $w=frac{1-t}t$, we see that
                $$mathrm{B}(a,b)=int_0^inftyfrac{w^{b-1}}{(1+w)^{a+b}}mathrm dw$$
                Then using the sub $w=u^2$,
                $$mathrm{B}(a,b)=2int_0^inftyfrac{u^{2b-1}}{(1+u^2)^{a+b}}mathrm du$$
                So setting $2b-1=-1/3$, and $a+b=1$, we see that
                $$int_0^infty frac{mathrm dx}{x^{1/3}(1+x^2)}=frac12mathrm{B}(1/3,2/3)$$






                share|cite|improve this answer









                $endgroup$


















                  3












                  $begingroup$

                  Also using the Beta function, but in a different way.



                  Recall that
                  $$mathrm{B}(a,b)=int_0^1t^{a-1}(1-t)^{b-1}mathrm dt$$
                  Using the substitution $w=frac{1-t}t$, we see that
                  $$mathrm{B}(a,b)=int_0^inftyfrac{w^{b-1}}{(1+w)^{a+b}}mathrm dw$$
                  Then using the sub $w=u^2$,
                  $$mathrm{B}(a,b)=2int_0^inftyfrac{u^{2b-1}}{(1+u^2)^{a+b}}mathrm du$$
                  So setting $2b-1=-1/3$, and $a+b=1$, we see that
                  $$int_0^infty frac{mathrm dx}{x^{1/3}(1+x^2)}=frac12mathrm{B}(1/3,2/3)$$






                  share|cite|improve this answer









                  $endgroup$
















                    3












                    3








                    3





                    $begingroup$

                    Also using the Beta function, but in a different way.



                    Recall that
                    $$mathrm{B}(a,b)=int_0^1t^{a-1}(1-t)^{b-1}mathrm dt$$
                    Using the substitution $w=frac{1-t}t$, we see that
                    $$mathrm{B}(a,b)=int_0^inftyfrac{w^{b-1}}{(1+w)^{a+b}}mathrm dw$$
                    Then using the sub $w=u^2$,
                    $$mathrm{B}(a,b)=2int_0^inftyfrac{u^{2b-1}}{(1+u^2)^{a+b}}mathrm du$$
                    So setting $2b-1=-1/3$, and $a+b=1$, we see that
                    $$int_0^infty frac{mathrm dx}{x^{1/3}(1+x^2)}=frac12mathrm{B}(1/3,2/3)$$






                    share|cite|improve this answer









                    $endgroup$



                    Also using the Beta function, but in a different way.



                    Recall that
                    $$mathrm{B}(a,b)=int_0^1t^{a-1}(1-t)^{b-1}mathrm dt$$
                    Using the substitution $w=frac{1-t}t$, we see that
                    $$mathrm{B}(a,b)=int_0^inftyfrac{w^{b-1}}{(1+w)^{a+b}}mathrm dw$$
                    Then using the sub $w=u^2$,
                    $$mathrm{B}(a,b)=2int_0^inftyfrac{u^{2b-1}}{(1+u^2)^{a+b}}mathrm du$$
                    So setting $2b-1=-1/3$, and $a+b=1$, we see that
                    $$int_0^infty frac{mathrm dx}{x^{1/3}(1+x^2)}=frac12mathrm{B}(1/3,2/3)$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 24 at 19:47









                    clathratusclathratus

                    5,0351338




                    5,0351338























                        1












                        $begingroup$

                        Quickest way would be to let $xmapstotan x$ and use the beta function$$begin{align*}mathfrak{I} & =intlimits_0^{pi/2}mathrm dx,tan^{-1/3}x\ & =intlimits_0^{pi/2}mathrm dx,sin^{-1/3}xcos^{1/3}x\ & =frac 12operatorname{B}left(frac 13,frac 23right)end{align*}$$A direct application of Euler’s Reflection formula gives$$intlimits_0^{infty}frac {mathrm dx}{x^{1/3}(1+x^2)}color{blue}{=frac {pi}{sqrt3}}$$






                        share|cite|improve this answer









                        $endgroup$













                        • $begingroup$
                          How do you get $B(frac 13, frac 23)$ and why not $B(frac {-1}6, frac 16)?$
                          $endgroup$
                          – C. Cristi
                          Jan 24 at 18:02












                        • $begingroup$
                          @C.Cristi Because$$frac {1}2left(frac 13+1right)=frac 12frac 43=frac 23$$And similarly...
                          $endgroup$
                          – Frank W.
                          Jan 24 at 18:16
















                        1












                        $begingroup$

                        Quickest way would be to let $xmapstotan x$ and use the beta function$$begin{align*}mathfrak{I} & =intlimits_0^{pi/2}mathrm dx,tan^{-1/3}x\ & =intlimits_0^{pi/2}mathrm dx,sin^{-1/3}xcos^{1/3}x\ & =frac 12operatorname{B}left(frac 13,frac 23right)end{align*}$$A direct application of Euler’s Reflection formula gives$$intlimits_0^{infty}frac {mathrm dx}{x^{1/3}(1+x^2)}color{blue}{=frac {pi}{sqrt3}}$$






                        share|cite|improve this answer









                        $endgroup$













                        • $begingroup$
                          How do you get $B(frac 13, frac 23)$ and why not $B(frac {-1}6, frac 16)?$
                          $endgroup$
                          – C. Cristi
                          Jan 24 at 18:02












                        • $begingroup$
                          @C.Cristi Because$$frac {1}2left(frac 13+1right)=frac 12frac 43=frac 23$$And similarly...
                          $endgroup$
                          – Frank W.
                          Jan 24 at 18:16














                        1












                        1








                        1





                        $begingroup$

                        Quickest way would be to let $xmapstotan x$ and use the beta function$$begin{align*}mathfrak{I} & =intlimits_0^{pi/2}mathrm dx,tan^{-1/3}x\ & =intlimits_0^{pi/2}mathrm dx,sin^{-1/3}xcos^{1/3}x\ & =frac 12operatorname{B}left(frac 13,frac 23right)end{align*}$$A direct application of Euler’s Reflection formula gives$$intlimits_0^{infty}frac {mathrm dx}{x^{1/3}(1+x^2)}color{blue}{=frac {pi}{sqrt3}}$$






                        share|cite|improve this answer









                        $endgroup$



                        Quickest way would be to let $xmapstotan x$ and use the beta function$$begin{align*}mathfrak{I} & =intlimits_0^{pi/2}mathrm dx,tan^{-1/3}x\ & =intlimits_0^{pi/2}mathrm dx,sin^{-1/3}xcos^{1/3}x\ & =frac 12operatorname{B}left(frac 13,frac 23right)end{align*}$$A direct application of Euler’s Reflection formula gives$$intlimits_0^{infty}frac {mathrm dx}{x^{1/3}(1+x^2)}color{blue}{=frac {pi}{sqrt3}}$$







                        share|cite|improve this answer












                        share|cite|improve this answer



                        share|cite|improve this answer










                        answered Jan 24 at 17:50









                        Frank W.Frank W.

                        3,8101321




                        3,8101321












                        • $begingroup$
                          How do you get $B(frac 13, frac 23)$ and why not $B(frac {-1}6, frac 16)?$
                          $endgroup$
                          – C. Cristi
                          Jan 24 at 18:02












                        • $begingroup$
                          @C.Cristi Because$$frac {1}2left(frac 13+1right)=frac 12frac 43=frac 23$$And similarly...
                          $endgroup$
                          – Frank W.
                          Jan 24 at 18:16


















                        • $begingroup$
                          How do you get $B(frac 13, frac 23)$ and why not $B(frac {-1}6, frac 16)?$
                          $endgroup$
                          – C. Cristi
                          Jan 24 at 18:02












                        • $begingroup$
                          @C.Cristi Because$$frac {1}2left(frac 13+1right)=frac 12frac 43=frac 23$$And similarly...
                          $endgroup$
                          – Frank W.
                          Jan 24 at 18:16
















                        $begingroup$
                        How do you get $B(frac 13, frac 23)$ and why not $B(frac {-1}6, frac 16)?$
                        $endgroup$
                        – C. Cristi
                        Jan 24 at 18:02






                        $begingroup$
                        How do you get $B(frac 13, frac 23)$ and why not $B(frac {-1}6, frac 16)?$
                        $endgroup$
                        – C. Cristi
                        Jan 24 at 18:02














                        $begingroup$
                        @C.Cristi Because$$frac {1}2left(frac 13+1right)=frac 12frac 43=frac 23$$And similarly...
                        $endgroup$
                        – Frank W.
                        Jan 24 at 18:16




                        $begingroup$
                        @C.Cristi Because$$frac {1}2left(frac 13+1right)=frac 12frac 43=frac 23$$And similarly...
                        $endgroup$
                        – Frank W.
                        Jan 24 at 18:16











                        1












                        $begingroup$

                        Yet another approach.



                        begin{align}
                        int_0^infty frac{dx}{sqrt[3]{x} (1 + x^2)} &overset{large x mapsto x^{3/2}}=frac{3}{2} int_0^infty frac{dx}{1 + x^3}\
                        &= frac{3}{2} int_0^1 frac{dx}{1 + x^3} + frac{3}{2} int_1^infty frac{dx}{1 + x^3}.
                        end{align}

                        Enforcing a substitution of $x mapsto 1/x$ in the second of the integrals leads to
                        begin{align}
                        int_0^infty frac{dx}{sqrt[3]{x} (1 + x^2)} &= frac{3}{2} int_0^1 frac{1 + x}{1 + x^3} , dx\
                        &= frac{3}{2} int_0^1 frac{dx}{x^2 - x + 1}\
                        &= frac{3}{2} int_0^1 frac{dx}{left (x - frac{1}{2} right )^2 + frac{3}{4}}\
                        &= sqrt{3} left [tan^{-1} left (frac{2x - 1}{sqrt{3}} right ) right ]_0^1\
                        &= frac{pi}{sqrt{3}}.
                        end{align}






                        share|cite|improve this answer











                        $endgroup$


















                          1












                          $begingroup$

                          Yet another approach.



                          begin{align}
                          int_0^infty frac{dx}{sqrt[3]{x} (1 + x^2)} &overset{large x mapsto x^{3/2}}=frac{3}{2} int_0^infty frac{dx}{1 + x^3}\
                          &= frac{3}{2} int_0^1 frac{dx}{1 + x^3} + frac{3}{2} int_1^infty frac{dx}{1 + x^3}.
                          end{align}

                          Enforcing a substitution of $x mapsto 1/x$ in the second of the integrals leads to
                          begin{align}
                          int_0^infty frac{dx}{sqrt[3]{x} (1 + x^2)} &= frac{3}{2} int_0^1 frac{1 + x}{1 + x^3} , dx\
                          &= frac{3}{2} int_0^1 frac{dx}{x^2 - x + 1}\
                          &= frac{3}{2} int_0^1 frac{dx}{left (x - frac{1}{2} right )^2 + frac{3}{4}}\
                          &= sqrt{3} left [tan^{-1} left (frac{2x - 1}{sqrt{3}} right ) right ]_0^1\
                          &= frac{pi}{sqrt{3}}.
                          end{align}






                          share|cite|improve this answer











                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            Yet another approach.



                            begin{align}
                            int_0^infty frac{dx}{sqrt[3]{x} (1 + x^2)} &overset{large x mapsto x^{3/2}}=frac{3}{2} int_0^infty frac{dx}{1 + x^3}\
                            &= frac{3}{2} int_0^1 frac{dx}{1 + x^3} + frac{3}{2} int_1^infty frac{dx}{1 + x^3}.
                            end{align}

                            Enforcing a substitution of $x mapsto 1/x$ in the second of the integrals leads to
                            begin{align}
                            int_0^infty frac{dx}{sqrt[3]{x} (1 + x^2)} &= frac{3}{2} int_0^1 frac{1 + x}{1 + x^3} , dx\
                            &= frac{3}{2} int_0^1 frac{dx}{x^2 - x + 1}\
                            &= frac{3}{2} int_0^1 frac{dx}{left (x - frac{1}{2} right )^2 + frac{3}{4}}\
                            &= sqrt{3} left [tan^{-1} left (frac{2x - 1}{sqrt{3}} right ) right ]_0^1\
                            &= frac{pi}{sqrt{3}}.
                            end{align}






                            share|cite|improve this answer











                            $endgroup$



                            Yet another approach.



                            begin{align}
                            int_0^infty frac{dx}{sqrt[3]{x} (1 + x^2)} &overset{large x mapsto x^{3/2}}=frac{3}{2} int_0^infty frac{dx}{1 + x^3}\
                            &= frac{3}{2} int_0^1 frac{dx}{1 + x^3} + frac{3}{2} int_1^infty frac{dx}{1 + x^3}.
                            end{align}

                            Enforcing a substitution of $x mapsto 1/x$ in the second of the integrals leads to
                            begin{align}
                            int_0^infty frac{dx}{sqrt[3]{x} (1 + x^2)} &= frac{3}{2} int_0^1 frac{1 + x}{1 + x^3} , dx\
                            &= frac{3}{2} int_0^1 frac{dx}{x^2 - x + 1}\
                            &= frac{3}{2} int_0^1 frac{dx}{left (x - frac{1}{2} right )^2 + frac{3}{4}}\
                            &= sqrt{3} left [tan^{-1} left (frac{2x - 1}{sqrt{3}} right ) right ]_0^1\
                            &= frac{pi}{sqrt{3}}.
                            end{align}







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Jan 25 at 13:07

























                            answered Jan 25 at 6:38









                            omegadotomegadot

                            6,4072829




                            6,4072829






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086162%2fcompute-int-0-infty-frac-1x1-31x2dx%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                MongoDB - Not Authorized To Execute Command

                                in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                                How to fix TextFormField cause rebuild widget in Flutter