How to find this series coefficients?
$begingroup$
I want to find the following series coefficients:
begin{equation}sum_2^infty B_{n}[sin(nx)-ncos(nx)]=sin(x)+frac{x^2}{pi}-xend{equation}
Interval is $[0,pi]$.
I tried:
begin{equation}B_{n}=frac{2}{pi}int_{0}^{pi} left(sin(nx)-ncos(nx)right)left(sin(x)+frac{x^2}{pi}-xright)dxend{equation}
So I found:
begin{equation}B_{n}=frac{2}{pi^2}left[frac{2+n^2(-2+pi)+(n^2(2+pi)-2)(-1)^n}{n^5-n^3}right]end{equation}
The problem is the denominator of $B_{n}$ which must be $n^7-n^3$ instead of
$n^5-n^3$.
The solution in my tutor's PDF is:
begin{equation}B_{n}=frac{2}{pi^2}left[frac{2+n^2(-2+pi)+(n^2(2+pi)-2)(-1)^n}{n^7-n^3}right]end{equation}
Where is the problem?
sequences-and-series
$endgroup$
add a comment |
$begingroup$
I want to find the following series coefficients:
begin{equation}sum_2^infty B_{n}[sin(nx)-ncos(nx)]=sin(x)+frac{x^2}{pi}-xend{equation}
Interval is $[0,pi]$.
I tried:
begin{equation}B_{n}=frac{2}{pi}int_{0}^{pi} left(sin(nx)-ncos(nx)right)left(sin(x)+frac{x^2}{pi}-xright)dxend{equation}
So I found:
begin{equation}B_{n}=frac{2}{pi^2}left[frac{2+n^2(-2+pi)+(n^2(2+pi)-2)(-1)^n}{n^5-n^3}right]end{equation}
The problem is the denominator of $B_{n}$ which must be $n^7-n^3$ instead of
$n^5-n^3$.
The solution in my tutor's PDF is:
begin{equation}B_{n}=frac{2}{pi^2}left[frac{2+n^2(-2+pi)+(n^2(2+pi)-2)(-1)^n}{n^7-n^3}right]end{equation}
Where is the problem?
sequences-and-series
$endgroup$
$begingroup$
$B_n$ is defined by $B_n=frac{1}{2pi}int_{-pi}^pi (sin(x)+frac{x^2}{pi}-x)sin nxrm dx = frac{1}{2npi}int_{-pi}^pi (sin(x)+frac{x^2}{pi}-x)cos nxrm dx$.
$endgroup$
– Nicolas FRANCOIS
Jan 24 at 19:45
$begingroup$
That is, if the interval on which the equality holds is $[-pi,pi]$. I didn't verified. But your way of computing $B_n$ is strange.
$endgroup$
– Nicolas FRANCOIS
Jan 24 at 19:46
$begingroup$
@NicolasFRANCOIS The interval is $[0,pi]$
$endgroup$
– MyBBExpert
Jan 24 at 19:57
add a comment |
$begingroup$
I want to find the following series coefficients:
begin{equation}sum_2^infty B_{n}[sin(nx)-ncos(nx)]=sin(x)+frac{x^2}{pi}-xend{equation}
Interval is $[0,pi]$.
I tried:
begin{equation}B_{n}=frac{2}{pi}int_{0}^{pi} left(sin(nx)-ncos(nx)right)left(sin(x)+frac{x^2}{pi}-xright)dxend{equation}
So I found:
begin{equation}B_{n}=frac{2}{pi^2}left[frac{2+n^2(-2+pi)+(n^2(2+pi)-2)(-1)^n}{n^5-n^3}right]end{equation}
The problem is the denominator of $B_{n}$ which must be $n^7-n^3$ instead of
$n^5-n^3$.
The solution in my tutor's PDF is:
begin{equation}B_{n}=frac{2}{pi^2}left[frac{2+n^2(-2+pi)+(n^2(2+pi)-2)(-1)^n}{n^7-n^3}right]end{equation}
Where is the problem?
sequences-and-series
$endgroup$
I want to find the following series coefficients:
begin{equation}sum_2^infty B_{n}[sin(nx)-ncos(nx)]=sin(x)+frac{x^2}{pi}-xend{equation}
Interval is $[0,pi]$.
I tried:
begin{equation}B_{n}=frac{2}{pi}int_{0}^{pi} left(sin(nx)-ncos(nx)right)left(sin(x)+frac{x^2}{pi}-xright)dxend{equation}
So I found:
begin{equation}B_{n}=frac{2}{pi^2}left[frac{2+n^2(-2+pi)+(n^2(2+pi)-2)(-1)^n}{n^5-n^3}right]end{equation}
The problem is the denominator of $B_{n}$ which must be $n^7-n^3$ instead of
$n^5-n^3$.
The solution in my tutor's PDF is:
begin{equation}B_{n}=frac{2}{pi^2}left[frac{2+n^2(-2+pi)+(n^2(2+pi)-2)(-1)^n}{n^7-n^3}right]end{equation}
Where is the problem?
sequences-and-series
sequences-and-series
edited Jan 24 at 19:58
MyBBExpert
asked Jan 24 at 19:39
MyBBExpertMyBBExpert
32
32
$begingroup$
$B_n$ is defined by $B_n=frac{1}{2pi}int_{-pi}^pi (sin(x)+frac{x^2}{pi}-x)sin nxrm dx = frac{1}{2npi}int_{-pi}^pi (sin(x)+frac{x^2}{pi}-x)cos nxrm dx$.
$endgroup$
– Nicolas FRANCOIS
Jan 24 at 19:45
$begingroup$
That is, if the interval on which the equality holds is $[-pi,pi]$. I didn't verified. But your way of computing $B_n$ is strange.
$endgroup$
– Nicolas FRANCOIS
Jan 24 at 19:46
$begingroup$
@NicolasFRANCOIS The interval is $[0,pi]$
$endgroup$
– MyBBExpert
Jan 24 at 19:57
add a comment |
$begingroup$
$B_n$ is defined by $B_n=frac{1}{2pi}int_{-pi}^pi (sin(x)+frac{x^2}{pi}-x)sin nxrm dx = frac{1}{2npi}int_{-pi}^pi (sin(x)+frac{x^2}{pi}-x)cos nxrm dx$.
$endgroup$
– Nicolas FRANCOIS
Jan 24 at 19:45
$begingroup$
That is, if the interval on which the equality holds is $[-pi,pi]$. I didn't verified. But your way of computing $B_n$ is strange.
$endgroup$
– Nicolas FRANCOIS
Jan 24 at 19:46
$begingroup$
@NicolasFRANCOIS The interval is $[0,pi]$
$endgroup$
– MyBBExpert
Jan 24 at 19:57
$begingroup$
$B_n$ is defined by $B_n=frac{1}{2pi}int_{-pi}^pi (sin(x)+frac{x^2}{pi}-x)sin nxrm dx = frac{1}{2npi}int_{-pi}^pi (sin(x)+frac{x^2}{pi}-x)cos nxrm dx$.
$endgroup$
– Nicolas FRANCOIS
Jan 24 at 19:45
$begingroup$
$B_n$ is defined by $B_n=frac{1}{2pi}int_{-pi}^pi (sin(x)+frac{x^2}{pi}-x)sin nxrm dx = frac{1}{2npi}int_{-pi}^pi (sin(x)+frac{x^2}{pi}-x)cos nxrm dx$.
$endgroup$
– Nicolas FRANCOIS
Jan 24 at 19:45
$begingroup$
That is, if the interval on which the equality holds is $[-pi,pi]$. I didn't verified. But your way of computing $B_n$ is strange.
$endgroup$
– Nicolas FRANCOIS
Jan 24 at 19:46
$begingroup$
That is, if the interval on which the equality holds is $[-pi,pi]$. I didn't verified. But your way of computing $B_n$ is strange.
$endgroup$
– Nicolas FRANCOIS
Jan 24 at 19:46
$begingroup$
@NicolasFRANCOIS The interval is $[0,pi]$
$endgroup$
– MyBBExpert
Jan 24 at 19:57
$begingroup$
@NicolasFRANCOIS The interval is $[0,pi]$
$endgroup$
– MyBBExpert
Jan 24 at 19:57
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Note that the basis functions $u_n = sin(nx) - n cos(nx)$ are orthogonal on $[0,pi]$, with $int_0^pi u_n^2(x); dx = pi (n^2+1)/2$. Thus the coefficients for a function $f(x)$ that has such a series should be
$$ b_n = frac{2}{pi(n^2+1)} int_0^pi u_n(x) f(x); dx $$
In this case, if $n ne 1$,
$$ eqalign{B_n &= frac{2}{n^2+1} int_0^pi (sin(nx)-ncos(nx))left(sin(x)+frac{x^2}{pi}-xright); dx cr
&= {frac {2,pi, left( -1 right) ^{n}{n}^{2}+2,pi,{n}^{2}+4,{n}^
{2} left( -1 right) ^{n}-4,{n}^{2}-4, left( -1 right) ^{n}+4}{{n
}^{3}pi^2, left( {n}^{4}-1 right) }}
} $$
while
$$B_1 = frac{pi^2-8}{2pi^2}$$
$endgroup$
$begingroup$
Thank you! What about $B_{0}$ is that $frac{1}{pi}int_{0}^{pi} (sin(x)+frac{x^2}{pi}-x)dx$ or $frac{2}{pi}int_{0}^{pi} (sin(x)+frac{x^2}{pi}-x)dx$?
$endgroup$
– MyBBExpert
Jan 24 at 21:35
$begingroup$
Is there a $B_0$? For $n=0$, $sin(nx) - n cos(nx) = 0$.
$endgroup$
– Robert Israel
Jan 25 at 1:52
$begingroup$
Hm: these $f_n$ are eigenfunctions for $f''= lambda f$ with boundary conditions $f(0) = -f'(0)$, $f(pi) = -f'(pi)$. Besides $f_n$ for positive integers $n$, the other eigenfunction is $exp(-x)$. So that's what will give you another term in the expansion..
$endgroup$
– Robert Israel
Jan 25 at 2:22
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086270%2fhow-to-find-this-series-coefficients%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that the basis functions $u_n = sin(nx) - n cos(nx)$ are orthogonal on $[0,pi]$, with $int_0^pi u_n^2(x); dx = pi (n^2+1)/2$. Thus the coefficients for a function $f(x)$ that has such a series should be
$$ b_n = frac{2}{pi(n^2+1)} int_0^pi u_n(x) f(x); dx $$
In this case, if $n ne 1$,
$$ eqalign{B_n &= frac{2}{n^2+1} int_0^pi (sin(nx)-ncos(nx))left(sin(x)+frac{x^2}{pi}-xright); dx cr
&= {frac {2,pi, left( -1 right) ^{n}{n}^{2}+2,pi,{n}^{2}+4,{n}^
{2} left( -1 right) ^{n}-4,{n}^{2}-4, left( -1 right) ^{n}+4}{{n
}^{3}pi^2, left( {n}^{4}-1 right) }}
} $$
while
$$B_1 = frac{pi^2-8}{2pi^2}$$
$endgroup$
$begingroup$
Thank you! What about $B_{0}$ is that $frac{1}{pi}int_{0}^{pi} (sin(x)+frac{x^2}{pi}-x)dx$ or $frac{2}{pi}int_{0}^{pi} (sin(x)+frac{x^2}{pi}-x)dx$?
$endgroup$
– MyBBExpert
Jan 24 at 21:35
$begingroup$
Is there a $B_0$? For $n=0$, $sin(nx) - n cos(nx) = 0$.
$endgroup$
– Robert Israel
Jan 25 at 1:52
$begingroup$
Hm: these $f_n$ are eigenfunctions for $f''= lambda f$ with boundary conditions $f(0) = -f'(0)$, $f(pi) = -f'(pi)$. Besides $f_n$ for positive integers $n$, the other eigenfunction is $exp(-x)$. So that's what will give you another term in the expansion..
$endgroup$
– Robert Israel
Jan 25 at 2:22
add a comment |
$begingroup$
Note that the basis functions $u_n = sin(nx) - n cos(nx)$ are orthogonal on $[0,pi]$, with $int_0^pi u_n^2(x); dx = pi (n^2+1)/2$. Thus the coefficients for a function $f(x)$ that has such a series should be
$$ b_n = frac{2}{pi(n^2+1)} int_0^pi u_n(x) f(x); dx $$
In this case, if $n ne 1$,
$$ eqalign{B_n &= frac{2}{n^2+1} int_0^pi (sin(nx)-ncos(nx))left(sin(x)+frac{x^2}{pi}-xright); dx cr
&= {frac {2,pi, left( -1 right) ^{n}{n}^{2}+2,pi,{n}^{2}+4,{n}^
{2} left( -1 right) ^{n}-4,{n}^{2}-4, left( -1 right) ^{n}+4}{{n
}^{3}pi^2, left( {n}^{4}-1 right) }}
} $$
while
$$B_1 = frac{pi^2-8}{2pi^2}$$
$endgroup$
$begingroup$
Thank you! What about $B_{0}$ is that $frac{1}{pi}int_{0}^{pi} (sin(x)+frac{x^2}{pi}-x)dx$ or $frac{2}{pi}int_{0}^{pi} (sin(x)+frac{x^2}{pi}-x)dx$?
$endgroup$
– MyBBExpert
Jan 24 at 21:35
$begingroup$
Is there a $B_0$? For $n=0$, $sin(nx) - n cos(nx) = 0$.
$endgroup$
– Robert Israel
Jan 25 at 1:52
$begingroup$
Hm: these $f_n$ are eigenfunctions for $f''= lambda f$ with boundary conditions $f(0) = -f'(0)$, $f(pi) = -f'(pi)$. Besides $f_n$ for positive integers $n$, the other eigenfunction is $exp(-x)$. So that's what will give you another term in the expansion..
$endgroup$
– Robert Israel
Jan 25 at 2:22
add a comment |
$begingroup$
Note that the basis functions $u_n = sin(nx) - n cos(nx)$ are orthogonal on $[0,pi]$, with $int_0^pi u_n^2(x); dx = pi (n^2+1)/2$. Thus the coefficients for a function $f(x)$ that has such a series should be
$$ b_n = frac{2}{pi(n^2+1)} int_0^pi u_n(x) f(x); dx $$
In this case, if $n ne 1$,
$$ eqalign{B_n &= frac{2}{n^2+1} int_0^pi (sin(nx)-ncos(nx))left(sin(x)+frac{x^2}{pi}-xright); dx cr
&= {frac {2,pi, left( -1 right) ^{n}{n}^{2}+2,pi,{n}^{2}+4,{n}^
{2} left( -1 right) ^{n}-4,{n}^{2}-4, left( -1 right) ^{n}+4}{{n
}^{3}pi^2, left( {n}^{4}-1 right) }}
} $$
while
$$B_1 = frac{pi^2-8}{2pi^2}$$
$endgroup$
Note that the basis functions $u_n = sin(nx) - n cos(nx)$ are orthogonal on $[0,pi]$, with $int_0^pi u_n^2(x); dx = pi (n^2+1)/2$. Thus the coefficients for a function $f(x)$ that has such a series should be
$$ b_n = frac{2}{pi(n^2+1)} int_0^pi u_n(x) f(x); dx $$
In this case, if $n ne 1$,
$$ eqalign{B_n &= frac{2}{n^2+1} int_0^pi (sin(nx)-ncos(nx))left(sin(x)+frac{x^2}{pi}-xright); dx cr
&= {frac {2,pi, left( -1 right) ^{n}{n}^{2}+2,pi,{n}^{2}+4,{n}^
{2} left( -1 right) ^{n}-4,{n}^{2}-4, left( -1 right) ^{n}+4}{{n
}^{3}pi^2, left( {n}^{4}-1 right) }}
} $$
while
$$B_1 = frac{pi^2-8}{2pi^2}$$
answered Jan 24 at 20:24
Robert IsraelRobert Israel
327k23216469
327k23216469
$begingroup$
Thank you! What about $B_{0}$ is that $frac{1}{pi}int_{0}^{pi} (sin(x)+frac{x^2}{pi}-x)dx$ or $frac{2}{pi}int_{0}^{pi} (sin(x)+frac{x^2}{pi}-x)dx$?
$endgroup$
– MyBBExpert
Jan 24 at 21:35
$begingroup$
Is there a $B_0$? For $n=0$, $sin(nx) - n cos(nx) = 0$.
$endgroup$
– Robert Israel
Jan 25 at 1:52
$begingroup$
Hm: these $f_n$ are eigenfunctions for $f''= lambda f$ with boundary conditions $f(0) = -f'(0)$, $f(pi) = -f'(pi)$. Besides $f_n$ for positive integers $n$, the other eigenfunction is $exp(-x)$. So that's what will give you another term in the expansion..
$endgroup$
– Robert Israel
Jan 25 at 2:22
add a comment |
$begingroup$
Thank you! What about $B_{0}$ is that $frac{1}{pi}int_{0}^{pi} (sin(x)+frac{x^2}{pi}-x)dx$ or $frac{2}{pi}int_{0}^{pi} (sin(x)+frac{x^2}{pi}-x)dx$?
$endgroup$
– MyBBExpert
Jan 24 at 21:35
$begingroup$
Is there a $B_0$? For $n=0$, $sin(nx) - n cos(nx) = 0$.
$endgroup$
– Robert Israel
Jan 25 at 1:52
$begingroup$
Hm: these $f_n$ are eigenfunctions for $f''= lambda f$ with boundary conditions $f(0) = -f'(0)$, $f(pi) = -f'(pi)$. Besides $f_n$ for positive integers $n$, the other eigenfunction is $exp(-x)$. So that's what will give you another term in the expansion..
$endgroup$
– Robert Israel
Jan 25 at 2:22
$begingroup$
Thank you! What about $B_{0}$ is that $frac{1}{pi}int_{0}^{pi} (sin(x)+frac{x^2}{pi}-x)dx$ or $frac{2}{pi}int_{0}^{pi} (sin(x)+frac{x^2}{pi}-x)dx$?
$endgroup$
– MyBBExpert
Jan 24 at 21:35
$begingroup$
Thank you! What about $B_{0}$ is that $frac{1}{pi}int_{0}^{pi} (sin(x)+frac{x^2}{pi}-x)dx$ or $frac{2}{pi}int_{0}^{pi} (sin(x)+frac{x^2}{pi}-x)dx$?
$endgroup$
– MyBBExpert
Jan 24 at 21:35
$begingroup$
Is there a $B_0$? For $n=0$, $sin(nx) - n cos(nx) = 0$.
$endgroup$
– Robert Israel
Jan 25 at 1:52
$begingroup$
Is there a $B_0$? For $n=0$, $sin(nx) - n cos(nx) = 0$.
$endgroup$
– Robert Israel
Jan 25 at 1:52
$begingroup$
Hm: these $f_n$ are eigenfunctions for $f''= lambda f$ with boundary conditions $f(0) = -f'(0)$, $f(pi) = -f'(pi)$. Besides $f_n$ for positive integers $n$, the other eigenfunction is $exp(-x)$. So that's what will give you another term in the expansion..
$endgroup$
– Robert Israel
Jan 25 at 2:22
$begingroup$
Hm: these $f_n$ are eigenfunctions for $f''= lambda f$ with boundary conditions $f(0) = -f'(0)$, $f(pi) = -f'(pi)$. Besides $f_n$ for positive integers $n$, the other eigenfunction is $exp(-x)$. So that's what will give you another term in the expansion..
$endgroup$
– Robert Israel
Jan 25 at 2:22
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086270%2fhow-to-find-this-series-coefficients%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$B_n$ is defined by $B_n=frac{1}{2pi}int_{-pi}^pi (sin(x)+frac{x^2}{pi}-x)sin nxrm dx = frac{1}{2npi}int_{-pi}^pi (sin(x)+frac{x^2}{pi}-x)cos nxrm dx$.
$endgroup$
– Nicolas FRANCOIS
Jan 24 at 19:45
$begingroup$
That is, if the interval on which the equality holds is $[-pi,pi]$. I didn't verified. But your way of computing $B_n$ is strange.
$endgroup$
– Nicolas FRANCOIS
Jan 24 at 19:46
$begingroup$
@NicolasFRANCOIS The interval is $[0,pi]$
$endgroup$
– MyBBExpert
Jan 24 at 19:57