Solving a summation using summation rules
$begingroup$
I am given two problems.
$$sum_{i=0}^{n} (4i + frac{3}{4}n + frac{1}{2}) tag 1$$
$$ sum_{i=1}^{n} (4i + frac{3}{4}n + frac{1}{2}) tag 2$$
I am asked to solve it.
I know I can manipulate this into three separate summations:
Attempt:
$$ sum_{i=0}^{n} (4i) + sum_{i=0}^{n} (frac{3}{4}n) + sum_{i=0}^{n} (frac{1}{2}) tag 1 $$
Unfortunately, I am confused on how to proceed other than the fact that the third summation will turn into $ frac{1}{2}$. (because there is no i or n)
May anyone share with me the next step? I'm not sure in what form the solution should be in.
EDIT:
would the first term turn into: $ 4 times frac{n(n+1)}{2}$
EDIT 2:
I've currently got
$$ left(4 times frac{n(n+1)}{2}right) + (?) + frac{1}{2}n tag 2$$
summation
$endgroup$
add a comment |
$begingroup$
I am given two problems.
$$sum_{i=0}^{n} (4i + frac{3}{4}n + frac{1}{2}) tag 1$$
$$ sum_{i=1}^{n} (4i + frac{3}{4}n + frac{1}{2}) tag 2$$
I am asked to solve it.
I know I can manipulate this into three separate summations:
Attempt:
$$ sum_{i=0}^{n} (4i) + sum_{i=0}^{n} (frac{3}{4}n) + sum_{i=0}^{n} (frac{1}{2}) tag 1 $$
Unfortunately, I am confused on how to proceed other than the fact that the third summation will turn into $ frac{1}{2}$. (because there is no i or n)
May anyone share with me the next step? I'm not sure in what form the solution should be in.
EDIT:
would the first term turn into: $ 4 times frac{n(n+1)}{2}$
EDIT 2:
I've currently got
$$ left(4 times frac{n(n+1)}{2}right) + (?) + frac{1}{2}n tag 2$$
summation
$endgroup$
$begingroup$
@nickD the starting point of the lower limit is different
$endgroup$
– Arthur Green
Jan 24 at 18:57
1
$begingroup$
Yes to the last prompt. The second and third terms are independent of $i$.
$endgroup$
– GNUSupporter 8964民主女神 地下教會
Jan 24 at 18:57
1
$begingroup$
Note that the summation is over $i$ and the summands of the second and third summation do not depend on $i$. N.B. The third sum will NOT turn into $frac{1}{2}$: it is a sum of $n$ of them.
$endgroup$
– NickD
Jan 24 at 18:59
$begingroup$
... or $n+1$ of them, depending on the lower limit (which I missed - sorry).
$endgroup$
– NickD
Jan 24 at 18:59
2
$begingroup$
Hint: $sum_{i=1}^n 1 = n$.
$endgroup$
– NickD
Jan 24 at 19:01
add a comment |
$begingroup$
I am given two problems.
$$sum_{i=0}^{n} (4i + frac{3}{4}n + frac{1}{2}) tag 1$$
$$ sum_{i=1}^{n} (4i + frac{3}{4}n + frac{1}{2}) tag 2$$
I am asked to solve it.
I know I can manipulate this into three separate summations:
Attempt:
$$ sum_{i=0}^{n} (4i) + sum_{i=0}^{n} (frac{3}{4}n) + sum_{i=0}^{n} (frac{1}{2}) tag 1 $$
Unfortunately, I am confused on how to proceed other than the fact that the third summation will turn into $ frac{1}{2}$. (because there is no i or n)
May anyone share with me the next step? I'm not sure in what form the solution should be in.
EDIT:
would the first term turn into: $ 4 times frac{n(n+1)}{2}$
EDIT 2:
I've currently got
$$ left(4 times frac{n(n+1)}{2}right) + (?) + frac{1}{2}n tag 2$$
summation
$endgroup$
I am given two problems.
$$sum_{i=0}^{n} (4i + frac{3}{4}n + frac{1}{2}) tag 1$$
$$ sum_{i=1}^{n} (4i + frac{3}{4}n + frac{1}{2}) tag 2$$
I am asked to solve it.
I know I can manipulate this into three separate summations:
Attempt:
$$ sum_{i=0}^{n} (4i) + sum_{i=0}^{n} (frac{3}{4}n) + sum_{i=0}^{n} (frac{1}{2}) tag 1 $$
Unfortunately, I am confused on how to proceed other than the fact that the third summation will turn into $ frac{1}{2}$. (because there is no i or n)
May anyone share with me the next step? I'm not sure in what form the solution should be in.
EDIT:
would the first term turn into: $ 4 times frac{n(n+1)}{2}$
EDIT 2:
I've currently got
$$ left(4 times frac{n(n+1)}{2}right) + (?) + frac{1}{2}n tag 2$$
summation
summation
edited Jan 24 at 21:49
Viktor Glombik
1,1771528
1,1771528
asked Jan 24 at 18:53
Arthur GreenArthur Green
796
796
$begingroup$
@nickD the starting point of the lower limit is different
$endgroup$
– Arthur Green
Jan 24 at 18:57
1
$begingroup$
Yes to the last prompt. The second and third terms are independent of $i$.
$endgroup$
– GNUSupporter 8964民主女神 地下教會
Jan 24 at 18:57
1
$begingroup$
Note that the summation is over $i$ and the summands of the second and third summation do not depend on $i$. N.B. The third sum will NOT turn into $frac{1}{2}$: it is a sum of $n$ of them.
$endgroup$
– NickD
Jan 24 at 18:59
$begingroup$
... or $n+1$ of them, depending on the lower limit (which I missed - sorry).
$endgroup$
– NickD
Jan 24 at 18:59
2
$begingroup$
Hint: $sum_{i=1}^n 1 = n$.
$endgroup$
– NickD
Jan 24 at 19:01
add a comment |
$begingroup$
@nickD the starting point of the lower limit is different
$endgroup$
– Arthur Green
Jan 24 at 18:57
1
$begingroup$
Yes to the last prompt. The second and third terms are independent of $i$.
$endgroup$
– GNUSupporter 8964民主女神 地下教會
Jan 24 at 18:57
1
$begingroup$
Note that the summation is over $i$ and the summands of the second and third summation do not depend on $i$. N.B. The third sum will NOT turn into $frac{1}{2}$: it is a sum of $n$ of them.
$endgroup$
– NickD
Jan 24 at 18:59
$begingroup$
... or $n+1$ of them, depending on the lower limit (which I missed - sorry).
$endgroup$
– NickD
Jan 24 at 18:59
2
$begingroup$
Hint: $sum_{i=1}^n 1 = n$.
$endgroup$
– NickD
Jan 24 at 19:01
$begingroup$
@nickD the starting point of the lower limit is different
$endgroup$
– Arthur Green
Jan 24 at 18:57
$begingroup$
@nickD the starting point of the lower limit is different
$endgroup$
– Arthur Green
Jan 24 at 18:57
1
1
$begingroup$
Yes to the last prompt. The second and third terms are independent of $i$.
$endgroup$
– GNUSupporter 8964民主女神 地下教會
Jan 24 at 18:57
$begingroup$
Yes to the last prompt. The second and third terms are independent of $i$.
$endgroup$
– GNUSupporter 8964民主女神 地下教會
Jan 24 at 18:57
1
1
$begingroup$
Note that the summation is over $i$ and the summands of the second and third summation do not depend on $i$. N.B. The third sum will NOT turn into $frac{1}{2}$: it is a sum of $n$ of them.
$endgroup$
– NickD
Jan 24 at 18:59
$begingroup$
Note that the summation is over $i$ and the summands of the second and third summation do not depend on $i$. N.B. The third sum will NOT turn into $frac{1}{2}$: it is a sum of $n$ of them.
$endgroup$
– NickD
Jan 24 at 18:59
$begingroup$
... or $n+1$ of them, depending on the lower limit (which I missed - sorry).
$endgroup$
– NickD
Jan 24 at 18:59
$begingroup$
... or $n+1$ of them, depending on the lower limit (which I missed - sorry).
$endgroup$
– NickD
Jan 24 at 18:59
2
2
$begingroup$
Hint: $sum_{i=1}^n 1 = n$.
$endgroup$
– NickD
Jan 24 at 19:01
$begingroup$
Hint: $sum_{i=1}^n 1 = n$.
$endgroup$
– NickD
Jan 24 at 19:01
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If the OP has parenthesized things correctly in the question, the answer by Viktor Glombik is WRONG. It should go like this:
begin{align*}
sum_{i=0}^{n} left(4i + frac{3}{4}n + frac{1}{2}right)
& = sum_{i=0}^{n} left(4i right) + sum_{i=0}^{n}frac{3}{4}n + sum_{i=0}^{n}frac{1}{2} \
&= 4 sum_{i=0}^{n} i + frac{3}{4}nsum_{i=0}^{n} 1 + frac{1}{2}sum_{i=0}^{n} 1\
& = 4 frac{n(n+1)}{2} + frac{3}{4}n(n+1)+ frac{1}{2}(n+1) \
& = 2n (n + 1) + frac{3}{4}n(n+1)+ frac{1}{2}(n+1)\
& = frac{11}{4} n(n+1) + frac{1}{2} (n+1)
end{align*}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086236%2fsolving-a-summation-using-summation-rules%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If the OP has parenthesized things correctly in the question, the answer by Viktor Glombik is WRONG. It should go like this:
begin{align*}
sum_{i=0}^{n} left(4i + frac{3}{4}n + frac{1}{2}right)
& = sum_{i=0}^{n} left(4i right) + sum_{i=0}^{n}frac{3}{4}n + sum_{i=0}^{n}frac{1}{2} \
&= 4 sum_{i=0}^{n} i + frac{3}{4}nsum_{i=0}^{n} 1 + frac{1}{2}sum_{i=0}^{n} 1\
& = 4 frac{n(n+1)}{2} + frac{3}{4}n(n+1)+ frac{1}{2}(n+1) \
& = 2n (n + 1) + frac{3}{4}n(n+1)+ frac{1}{2}(n+1)\
& = frac{11}{4} n(n+1) + frac{1}{2} (n+1)
end{align*}
$endgroup$
add a comment |
$begingroup$
If the OP has parenthesized things correctly in the question, the answer by Viktor Glombik is WRONG. It should go like this:
begin{align*}
sum_{i=0}^{n} left(4i + frac{3}{4}n + frac{1}{2}right)
& = sum_{i=0}^{n} left(4i right) + sum_{i=0}^{n}frac{3}{4}n + sum_{i=0}^{n}frac{1}{2} \
&= 4 sum_{i=0}^{n} i + frac{3}{4}nsum_{i=0}^{n} 1 + frac{1}{2}sum_{i=0}^{n} 1\
& = 4 frac{n(n+1)}{2} + frac{3}{4}n(n+1)+ frac{1}{2}(n+1) \
& = 2n (n + 1) + frac{3}{4}n(n+1)+ frac{1}{2}(n+1)\
& = frac{11}{4} n(n+1) + frac{1}{2} (n+1)
end{align*}
$endgroup$
add a comment |
$begingroup$
If the OP has parenthesized things correctly in the question, the answer by Viktor Glombik is WRONG. It should go like this:
begin{align*}
sum_{i=0}^{n} left(4i + frac{3}{4}n + frac{1}{2}right)
& = sum_{i=0}^{n} left(4i right) + sum_{i=0}^{n}frac{3}{4}n + sum_{i=0}^{n}frac{1}{2} \
&= 4 sum_{i=0}^{n} i + frac{3}{4}nsum_{i=0}^{n} 1 + frac{1}{2}sum_{i=0}^{n} 1\
& = 4 frac{n(n+1)}{2} + frac{3}{4}n(n+1)+ frac{1}{2}(n+1) \
& = 2n (n + 1) + frac{3}{4}n(n+1)+ frac{1}{2}(n+1)\
& = frac{11}{4} n(n+1) + frac{1}{2} (n+1)
end{align*}
$endgroup$
If the OP has parenthesized things correctly in the question, the answer by Viktor Glombik is WRONG. It should go like this:
begin{align*}
sum_{i=0}^{n} left(4i + frac{3}{4}n + frac{1}{2}right)
& = sum_{i=0}^{n} left(4i right) + sum_{i=0}^{n}frac{3}{4}n + sum_{i=0}^{n}frac{1}{2} \
&= 4 sum_{i=0}^{n} i + frac{3}{4}nsum_{i=0}^{n} 1 + frac{1}{2}sum_{i=0}^{n} 1\
& = 4 frac{n(n+1)}{2} + frac{3}{4}n(n+1)+ frac{1}{2}(n+1) \
& = 2n (n + 1) + frac{3}{4}n(n+1)+ frac{1}{2}(n+1)\
& = frac{11}{4} n(n+1) + frac{1}{2} (n+1)
end{align*}
answered Jan 24 at 20:09
NickDNickD
1,1921512
1,1921512
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086236%2fsolving-a-summation-using-summation-rules%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
@nickD the starting point of the lower limit is different
$endgroup$
– Arthur Green
Jan 24 at 18:57
1
$begingroup$
Yes to the last prompt. The second and third terms are independent of $i$.
$endgroup$
– GNUSupporter 8964民主女神 地下教會
Jan 24 at 18:57
1
$begingroup$
Note that the summation is over $i$ and the summands of the second and third summation do not depend on $i$. N.B. The third sum will NOT turn into $frac{1}{2}$: it is a sum of $n$ of them.
$endgroup$
– NickD
Jan 24 at 18:59
$begingroup$
... or $n+1$ of them, depending on the lower limit (which I missed - sorry).
$endgroup$
– NickD
Jan 24 at 18:59
2
$begingroup$
Hint: $sum_{i=1}^n 1 = n$.
$endgroup$
– NickD
Jan 24 at 19:01