Solving a summation using summation rules












0












$begingroup$


I am given two problems.



$$sum_{i=0}^{n} (4i + frac{3}{4}n + frac{1}{2}) tag 1$$



$$ sum_{i=1}^{n} (4i + frac{3}{4}n + frac{1}{2}) tag 2$$



I am asked to solve it.



I know I can manipulate this into three separate summations:



Attempt:



$$ sum_{i=0}^{n} (4i) + sum_{i=0}^{n} (frac{3}{4}n) + sum_{i=0}^{n} (frac{1}{2}) tag 1 $$



Unfortunately, I am confused on how to proceed other than the fact that the third summation will turn into $ frac{1}{2}$. (because there is no i or n)



May anyone share with me the next step? I'm not sure in what form the solution should be in.



EDIT:



would the first term turn into: $ 4 times frac{n(n+1)}{2}$



EDIT 2:



I've currently got



$$ left(4 times frac{n(n+1)}{2}right) + (?) + frac{1}{2}n tag 2$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    @nickD the starting point of the lower limit is different
    $endgroup$
    – Arthur Green
    Jan 24 at 18:57






  • 1




    $begingroup$
    Yes to the last prompt. The second and third terms are independent of $i$.
    $endgroup$
    – GNUSupporter 8964民主女神 地下教會
    Jan 24 at 18:57






  • 1




    $begingroup$
    Note that the summation is over $i$ and the summands of the second and third summation do not depend on $i$. N.B. The third sum will NOT turn into $frac{1}{2}$: it is a sum of $n$ of them.
    $endgroup$
    – NickD
    Jan 24 at 18:59










  • $begingroup$
    ... or $n+1$ of them, depending on the lower limit (which I missed - sorry).
    $endgroup$
    – NickD
    Jan 24 at 18:59






  • 2




    $begingroup$
    Hint: $sum_{i=1}^n 1 = n$.
    $endgroup$
    – NickD
    Jan 24 at 19:01
















0












$begingroup$


I am given two problems.



$$sum_{i=0}^{n} (4i + frac{3}{4}n + frac{1}{2}) tag 1$$



$$ sum_{i=1}^{n} (4i + frac{3}{4}n + frac{1}{2}) tag 2$$



I am asked to solve it.



I know I can manipulate this into three separate summations:



Attempt:



$$ sum_{i=0}^{n} (4i) + sum_{i=0}^{n} (frac{3}{4}n) + sum_{i=0}^{n} (frac{1}{2}) tag 1 $$



Unfortunately, I am confused on how to proceed other than the fact that the third summation will turn into $ frac{1}{2}$. (because there is no i or n)



May anyone share with me the next step? I'm not sure in what form the solution should be in.



EDIT:



would the first term turn into: $ 4 times frac{n(n+1)}{2}$



EDIT 2:



I've currently got



$$ left(4 times frac{n(n+1)}{2}right) + (?) + frac{1}{2}n tag 2$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    @nickD the starting point of the lower limit is different
    $endgroup$
    – Arthur Green
    Jan 24 at 18:57






  • 1




    $begingroup$
    Yes to the last prompt. The second and third terms are independent of $i$.
    $endgroup$
    – GNUSupporter 8964民主女神 地下教會
    Jan 24 at 18:57






  • 1




    $begingroup$
    Note that the summation is over $i$ and the summands of the second and third summation do not depend on $i$. N.B. The third sum will NOT turn into $frac{1}{2}$: it is a sum of $n$ of them.
    $endgroup$
    – NickD
    Jan 24 at 18:59










  • $begingroup$
    ... or $n+1$ of them, depending on the lower limit (which I missed - sorry).
    $endgroup$
    – NickD
    Jan 24 at 18:59






  • 2




    $begingroup$
    Hint: $sum_{i=1}^n 1 = n$.
    $endgroup$
    – NickD
    Jan 24 at 19:01














0












0








0





$begingroup$


I am given two problems.



$$sum_{i=0}^{n} (4i + frac{3}{4}n + frac{1}{2}) tag 1$$



$$ sum_{i=1}^{n} (4i + frac{3}{4}n + frac{1}{2}) tag 2$$



I am asked to solve it.



I know I can manipulate this into three separate summations:



Attempt:



$$ sum_{i=0}^{n} (4i) + sum_{i=0}^{n} (frac{3}{4}n) + sum_{i=0}^{n} (frac{1}{2}) tag 1 $$



Unfortunately, I am confused on how to proceed other than the fact that the third summation will turn into $ frac{1}{2}$. (because there is no i or n)



May anyone share with me the next step? I'm not sure in what form the solution should be in.



EDIT:



would the first term turn into: $ 4 times frac{n(n+1)}{2}$



EDIT 2:



I've currently got



$$ left(4 times frac{n(n+1)}{2}right) + (?) + frac{1}{2}n tag 2$$










share|cite|improve this question











$endgroup$




I am given two problems.



$$sum_{i=0}^{n} (4i + frac{3}{4}n + frac{1}{2}) tag 1$$



$$ sum_{i=1}^{n} (4i + frac{3}{4}n + frac{1}{2}) tag 2$$



I am asked to solve it.



I know I can manipulate this into three separate summations:



Attempt:



$$ sum_{i=0}^{n} (4i) + sum_{i=0}^{n} (frac{3}{4}n) + sum_{i=0}^{n} (frac{1}{2}) tag 1 $$



Unfortunately, I am confused on how to proceed other than the fact that the third summation will turn into $ frac{1}{2}$. (because there is no i or n)



May anyone share with me the next step? I'm not sure in what form the solution should be in.



EDIT:



would the first term turn into: $ 4 times frac{n(n+1)}{2}$



EDIT 2:



I've currently got



$$ left(4 times frac{n(n+1)}{2}right) + (?) + frac{1}{2}n tag 2$$







summation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 24 at 21:49









Viktor Glombik

1,1771528




1,1771528










asked Jan 24 at 18:53









Arthur GreenArthur Green

796




796












  • $begingroup$
    @nickD the starting point of the lower limit is different
    $endgroup$
    – Arthur Green
    Jan 24 at 18:57






  • 1




    $begingroup$
    Yes to the last prompt. The second and third terms are independent of $i$.
    $endgroup$
    – GNUSupporter 8964民主女神 地下教會
    Jan 24 at 18:57






  • 1




    $begingroup$
    Note that the summation is over $i$ and the summands of the second and third summation do not depend on $i$. N.B. The third sum will NOT turn into $frac{1}{2}$: it is a sum of $n$ of them.
    $endgroup$
    – NickD
    Jan 24 at 18:59










  • $begingroup$
    ... or $n+1$ of them, depending on the lower limit (which I missed - sorry).
    $endgroup$
    – NickD
    Jan 24 at 18:59






  • 2




    $begingroup$
    Hint: $sum_{i=1}^n 1 = n$.
    $endgroup$
    – NickD
    Jan 24 at 19:01


















  • $begingroup$
    @nickD the starting point of the lower limit is different
    $endgroup$
    – Arthur Green
    Jan 24 at 18:57






  • 1




    $begingroup$
    Yes to the last prompt. The second and third terms are independent of $i$.
    $endgroup$
    – GNUSupporter 8964民主女神 地下教會
    Jan 24 at 18:57






  • 1




    $begingroup$
    Note that the summation is over $i$ and the summands of the second and third summation do not depend on $i$. N.B. The third sum will NOT turn into $frac{1}{2}$: it is a sum of $n$ of them.
    $endgroup$
    – NickD
    Jan 24 at 18:59










  • $begingroup$
    ... or $n+1$ of them, depending on the lower limit (which I missed - sorry).
    $endgroup$
    – NickD
    Jan 24 at 18:59






  • 2




    $begingroup$
    Hint: $sum_{i=1}^n 1 = n$.
    $endgroup$
    – NickD
    Jan 24 at 19:01
















$begingroup$
@nickD the starting point of the lower limit is different
$endgroup$
– Arthur Green
Jan 24 at 18:57




$begingroup$
@nickD the starting point of the lower limit is different
$endgroup$
– Arthur Green
Jan 24 at 18:57




1




1




$begingroup$
Yes to the last prompt. The second and third terms are independent of $i$.
$endgroup$
– GNUSupporter 8964民主女神 地下教會
Jan 24 at 18:57




$begingroup$
Yes to the last prompt. The second and third terms are independent of $i$.
$endgroup$
– GNUSupporter 8964民主女神 地下教會
Jan 24 at 18:57




1




1




$begingroup$
Note that the summation is over $i$ and the summands of the second and third summation do not depend on $i$. N.B. The third sum will NOT turn into $frac{1}{2}$: it is a sum of $n$ of them.
$endgroup$
– NickD
Jan 24 at 18:59




$begingroup$
Note that the summation is over $i$ and the summands of the second and third summation do not depend on $i$. N.B. The third sum will NOT turn into $frac{1}{2}$: it is a sum of $n$ of them.
$endgroup$
– NickD
Jan 24 at 18:59












$begingroup$
... or $n+1$ of them, depending on the lower limit (which I missed - sorry).
$endgroup$
– NickD
Jan 24 at 18:59




$begingroup$
... or $n+1$ of them, depending on the lower limit (which I missed - sorry).
$endgroup$
– NickD
Jan 24 at 18:59




2




2




$begingroup$
Hint: $sum_{i=1}^n 1 = n$.
$endgroup$
– NickD
Jan 24 at 19:01




$begingroup$
Hint: $sum_{i=1}^n 1 = n$.
$endgroup$
– NickD
Jan 24 at 19:01










1 Answer
1






active

oldest

votes


















2












$begingroup$

If the OP has parenthesized things correctly in the question, the answer by Viktor Glombik is WRONG. It should go like this:



begin{align*}
sum_{i=0}^{n} left(4i + frac{3}{4}n + frac{1}{2}right)
& = sum_{i=0}^{n} left(4i right) + sum_{i=0}^{n}frac{3}{4}n + sum_{i=0}^{n}frac{1}{2} \
&= 4 sum_{i=0}^{n} i + frac{3}{4}nsum_{i=0}^{n} 1 + frac{1}{2}sum_{i=0}^{n} 1\
& = 4 frac{n(n+1)}{2} + frac{3}{4}n(n+1)+ frac{1}{2}(n+1) \
& = 2n (n + 1) + frac{3}{4}n(n+1)+ frac{1}{2}(n+1)\
& = frac{11}{4} n(n+1) + frac{1}{2} (n+1)
end{align*}






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086236%2fsolving-a-summation-using-summation-rules%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    If the OP has parenthesized things correctly in the question, the answer by Viktor Glombik is WRONG. It should go like this:



    begin{align*}
    sum_{i=0}^{n} left(4i + frac{3}{4}n + frac{1}{2}right)
    & = sum_{i=0}^{n} left(4i right) + sum_{i=0}^{n}frac{3}{4}n + sum_{i=0}^{n}frac{1}{2} \
    &= 4 sum_{i=0}^{n} i + frac{3}{4}nsum_{i=0}^{n} 1 + frac{1}{2}sum_{i=0}^{n} 1\
    & = 4 frac{n(n+1)}{2} + frac{3}{4}n(n+1)+ frac{1}{2}(n+1) \
    & = 2n (n + 1) + frac{3}{4}n(n+1)+ frac{1}{2}(n+1)\
    & = frac{11}{4} n(n+1) + frac{1}{2} (n+1)
    end{align*}






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      If the OP has parenthesized things correctly in the question, the answer by Viktor Glombik is WRONG. It should go like this:



      begin{align*}
      sum_{i=0}^{n} left(4i + frac{3}{4}n + frac{1}{2}right)
      & = sum_{i=0}^{n} left(4i right) + sum_{i=0}^{n}frac{3}{4}n + sum_{i=0}^{n}frac{1}{2} \
      &= 4 sum_{i=0}^{n} i + frac{3}{4}nsum_{i=0}^{n} 1 + frac{1}{2}sum_{i=0}^{n} 1\
      & = 4 frac{n(n+1)}{2} + frac{3}{4}n(n+1)+ frac{1}{2}(n+1) \
      & = 2n (n + 1) + frac{3}{4}n(n+1)+ frac{1}{2}(n+1)\
      & = frac{11}{4} n(n+1) + frac{1}{2} (n+1)
      end{align*}






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        If the OP has parenthesized things correctly in the question, the answer by Viktor Glombik is WRONG. It should go like this:



        begin{align*}
        sum_{i=0}^{n} left(4i + frac{3}{4}n + frac{1}{2}right)
        & = sum_{i=0}^{n} left(4i right) + sum_{i=0}^{n}frac{3}{4}n + sum_{i=0}^{n}frac{1}{2} \
        &= 4 sum_{i=0}^{n} i + frac{3}{4}nsum_{i=0}^{n} 1 + frac{1}{2}sum_{i=0}^{n} 1\
        & = 4 frac{n(n+1)}{2} + frac{3}{4}n(n+1)+ frac{1}{2}(n+1) \
        & = 2n (n + 1) + frac{3}{4}n(n+1)+ frac{1}{2}(n+1)\
        & = frac{11}{4} n(n+1) + frac{1}{2} (n+1)
        end{align*}






        share|cite|improve this answer









        $endgroup$



        If the OP has parenthesized things correctly in the question, the answer by Viktor Glombik is WRONG. It should go like this:



        begin{align*}
        sum_{i=0}^{n} left(4i + frac{3}{4}n + frac{1}{2}right)
        & = sum_{i=0}^{n} left(4i right) + sum_{i=0}^{n}frac{3}{4}n + sum_{i=0}^{n}frac{1}{2} \
        &= 4 sum_{i=0}^{n} i + frac{3}{4}nsum_{i=0}^{n} 1 + frac{1}{2}sum_{i=0}^{n} 1\
        & = 4 frac{n(n+1)}{2} + frac{3}{4}n(n+1)+ frac{1}{2}(n+1) \
        & = 2n (n + 1) + frac{3}{4}n(n+1)+ frac{1}{2}(n+1)\
        & = frac{11}{4} n(n+1) + frac{1}{2} (n+1)
        end{align*}







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 24 at 20:09









        NickDNickD

        1,1921512




        1,1921512






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086236%2fsolving-a-summation-using-summation-rules%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            SQL update select statement

            'app-layout' is not a known element: how to share Component with different Modules