Compute $int_0^{frac {pi}2} ln(cos^2x+y^2sin^2x) dx$ [duplicate]












0












$begingroup$



This question already has an answer here:




  • Integrals depending on a parameter: $int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x})dx $

    2 answers




Compute: $$I(y)=int_0^{frac {pi}2} ln(cos^2x+y^2sin^2x) dx$$



So$$I'(y)=int_0^{frac {pi}2}frac {2ysin^2x}{cos^2x+y^2sin^2x}dx$$
Now what?










share|cite|improve this question











$endgroup$



marked as duplicate by xpaul, Zacky, Community Jan 24 at 19:22


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.























    0












    $begingroup$



    This question already has an answer here:




    • Integrals depending on a parameter: $int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x})dx $

      2 answers




    Compute: $$I(y)=int_0^{frac {pi}2} ln(cos^2x+y^2sin^2x) dx$$



    So$$I'(y)=int_0^{frac {pi}2}frac {2ysin^2x}{cos^2x+y^2sin^2x}dx$$
    Now what?










    share|cite|improve this question











    $endgroup$



    marked as duplicate by xpaul, Zacky, Community Jan 24 at 19:22


    This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.





















      0












      0








      0





      $begingroup$



      This question already has an answer here:




      • Integrals depending on a parameter: $int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x})dx $

        2 answers




      Compute: $$I(y)=int_0^{frac {pi}2} ln(cos^2x+y^2sin^2x) dx$$



      So$$I'(y)=int_0^{frac {pi}2}frac {2ysin^2x}{cos^2x+y^2sin^2x}dx$$
      Now what?










      share|cite|improve this question











      $endgroup$





      This question already has an answer here:




      • Integrals depending on a parameter: $int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x})dx $

        2 answers




      Compute: $$I(y)=int_0^{frac {pi}2} ln(cos^2x+y^2sin^2x) dx$$



      So$$I'(y)=int_0^{frac {pi}2}frac {2ysin^2x}{cos^2x+y^2sin^2x}dx$$
      Now what?





      This question already has an answer here:




      • Integrals depending on a parameter: $int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x})dx $

        2 answers








      integration definite-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 24 at 18:52









      Zacky

      7,89011061




      7,89011061










      asked Jan 24 at 18:38









      C. CristiC. Cristi

      1,634218




      1,634218




      marked as duplicate by xpaul, Zacky, Community Jan 24 at 19:22


      This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









      marked as duplicate by xpaul, Zacky, Community Jan 24 at 19:22


      This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
























          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          $$I(y)=int_0^{frac {pi}2} ln(cos^2x+y^2sin^2x) dxRightarrow I'(y) =2yint_0^frac{pi}{2}frac{sin^2 x}{cos^2 x+y^2sin^2 x}dx$$
          $$=2yint_0^frac{pi}{2} frac{1}{cot^2 x +y^2}dxoverset{cot x=t}=2yint_0^infty frac{1}{t^2+y^2}frac{dt}{t^2+1}$$
          $$=frac{2y}{1-y^2}int_0^infty frac{dt}{t^2+y^2}-frac{2y}{1-y^2}int_0^infty frac{dt}{t^2+1}$$
          $$=frac{2y}{1-y^2}frac{1}{y} frac{pi}{2} -frac{2y}{1-y^2}frac{pi}{2}=pifrac{1-y}{1-y^2}=frac{pi}{1+y}$$
          This gives:$$I(y)=int frac{pi}{1+y} dy =pi ln(1+y)+C$$
          In order to find the constant we can simply set $y=1$ in the original integral, that is because $sin^2 x+cos^2 x$ has a nice value.
          $$Rightarrow I(1)=int_0^frac{pi}{2} ln(1)dx =piln(1+1)+C Rightarrow 0=piln 2 +C Rightarrow C=-pi ln 2$$
          $$Rightarrow I(y)=piln(1+y) -pi ln 2$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            $I = pi ln(1+y)-frac {pi}4 ln 2?$
            $endgroup$
            – C. Cristi
            Jan 24 at 19:21












          • $begingroup$
            Because we have to integrate with respect to y back to get the original right? And then you have the constant of integration
            $endgroup$
            – C. Cristi
            Jan 26 at 8:28










          • $begingroup$
            @C.Cristi I have updated the answer.
            $endgroup$
            – Zacky
            Jan 26 at 9:58


















          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          $$I(y)=int_0^{frac {pi}2} ln(cos^2x+y^2sin^2x) dxRightarrow I'(y) =2yint_0^frac{pi}{2}frac{sin^2 x}{cos^2 x+y^2sin^2 x}dx$$
          $$=2yint_0^frac{pi}{2} frac{1}{cot^2 x +y^2}dxoverset{cot x=t}=2yint_0^infty frac{1}{t^2+y^2}frac{dt}{t^2+1}$$
          $$=frac{2y}{1-y^2}int_0^infty frac{dt}{t^2+y^2}-frac{2y}{1-y^2}int_0^infty frac{dt}{t^2+1}$$
          $$=frac{2y}{1-y^2}frac{1}{y} frac{pi}{2} -frac{2y}{1-y^2}frac{pi}{2}=pifrac{1-y}{1-y^2}=frac{pi}{1+y}$$
          This gives:$$I(y)=int frac{pi}{1+y} dy =pi ln(1+y)+C$$
          In order to find the constant we can simply set $y=1$ in the original integral, that is because $sin^2 x+cos^2 x$ has a nice value.
          $$Rightarrow I(1)=int_0^frac{pi}{2} ln(1)dx =piln(1+1)+C Rightarrow 0=piln 2 +C Rightarrow C=-pi ln 2$$
          $$Rightarrow I(y)=piln(1+y) -pi ln 2$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            $I = pi ln(1+y)-frac {pi}4 ln 2?$
            $endgroup$
            – C. Cristi
            Jan 24 at 19:21












          • $begingroup$
            Because we have to integrate with respect to y back to get the original right? And then you have the constant of integration
            $endgroup$
            – C. Cristi
            Jan 26 at 8:28










          • $begingroup$
            @C.Cristi I have updated the answer.
            $endgroup$
            – Zacky
            Jan 26 at 9:58
















          3












          $begingroup$

          $$I(y)=int_0^{frac {pi}2} ln(cos^2x+y^2sin^2x) dxRightarrow I'(y) =2yint_0^frac{pi}{2}frac{sin^2 x}{cos^2 x+y^2sin^2 x}dx$$
          $$=2yint_0^frac{pi}{2} frac{1}{cot^2 x +y^2}dxoverset{cot x=t}=2yint_0^infty frac{1}{t^2+y^2}frac{dt}{t^2+1}$$
          $$=frac{2y}{1-y^2}int_0^infty frac{dt}{t^2+y^2}-frac{2y}{1-y^2}int_0^infty frac{dt}{t^2+1}$$
          $$=frac{2y}{1-y^2}frac{1}{y} frac{pi}{2} -frac{2y}{1-y^2}frac{pi}{2}=pifrac{1-y}{1-y^2}=frac{pi}{1+y}$$
          This gives:$$I(y)=int frac{pi}{1+y} dy =pi ln(1+y)+C$$
          In order to find the constant we can simply set $y=1$ in the original integral, that is because $sin^2 x+cos^2 x$ has a nice value.
          $$Rightarrow I(1)=int_0^frac{pi}{2} ln(1)dx =piln(1+1)+C Rightarrow 0=piln 2 +C Rightarrow C=-pi ln 2$$
          $$Rightarrow I(y)=piln(1+y) -pi ln 2$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            $I = pi ln(1+y)-frac {pi}4 ln 2?$
            $endgroup$
            – C. Cristi
            Jan 24 at 19:21












          • $begingroup$
            Because we have to integrate with respect to y back to get the original right? And then you have the constant of integration
            $endgroup$
            – C. Cristi
            Jan 26 at 8:28










          • $begingroup$
            @C.Cristi I have updated the answer.
            $endgroup$
            – Zacky
            Jan 26 at 9:58














          3












          3








          3





          $begingroup$

          $$I(y)=int_0^{frac {pi}2} ln(cos^2x+y^2sin^2x) dxRightarrow I'(y) =2yint_0^frac{pi}{2}frac{sin^2 x}{cos^2 x+y^2sin^2 x}dx$$
          $$=2yint_0^frac{pi}{2} frac{1}{cot^2 x +y^2}dxoverset{cot x=t}=2yint_0^infty frac{1}{t^2+y^2}frac{dt}{t^2+1}$$
          $$=frac{2y}{1-y^2}int_0^infty frac{dt}{t^2+y^2}-frac{2y}{1-y^2}int_0^infty frac{dt}{t^2+1}$$
          $$=frac{2y}{1-y^2}frac{1}{y} frac{pi}{2} -frac{2y}{1-y^2}frac{pi}{2}=pifrac{1-y}{1-y^2}=frac{pi}{1+y}$$
          This gives:$$I(y)=int frac{pi}{1+y} dy =pi ln(1+y)+C$$
          In order to find the constant we can simply set $y=1$ in the original integral, that is because $sin^2 x+cos^2 x$ has a nice value.
          $$Rightarrow I(1)=int_0^frac{pi}{2} ln(1)dx =piln(1+1)+C Rightarrow 0=piln 2 +C Rightarrow C=-pi ln 2$$
          $$Rightarrow I(y)=piln(1+y) -pi ln 2$$






          share|cite|improve this answer











          $endgroup$



          $$I(y)=int_0^{frac {pi}2} ln(cos^2x+y^2sin^2x) dxRightarrow I'(y) =2yint_0^frac{pi}{2}frac{sin^2 x}{cos^2 x+y^2sin^2 x}dx$$
          $$=2yint_0^frac{pi}{2} frac{1}{cot^2 x +y^2}dxoverset{cot x=t}=2yint_0^infty frac{1}{t^2+y^2}frac{dt}{t^2+1}$$
          $$=frac{2y}{1-y^2}int_0^infty frac{dt}{t^2+y^2}-frac{2y}{1-y^2}int_0^infty frac{dt}{t^2+1}$$
          $$=frac{2y}{1-y^2}frac{1}{y} frac{pi}{2} -frac{2y}{1-y^2}frac{pi}{2}=pifrac{1-y}{1-y^2}=frac{pi}{1+y}$$
          This gives:$$I(y)=int frac{pi}{1+y} dy =pi ln(1+y)+C$$
          In order to find the constant we can simply set $y=1$ in the original integral, that is because $sin^2 x+cos^2 x$ has a nice value.
          $$Rightarrow I(1)=int_0^frac{pi}{2} ln(1)dx =piln(1+1)+C Rightarrow 0=piln 2 +C Rightarrow C=-pi ln 2$$
          $$Rightarrow I(y)=piln(1+y) -pi ln 2$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 26 at 9:57

























          answered Jan 24 at 18:49









          ZackyZacky

          7,89011061




          7,89011061












          • $begingroup$
            $I = pi ln(1+y)-frac {pi}4 ln 2?$
            $endgroup$
            – C. Cristi
            Jan 24 at 19:21












          • $begingroup$
            Because we have to integrate with respect to y back to get the original right? And then you have the constant of integration
            $endgroup$
            – C. Cristi
            Jan 26 at 8:28










          • $begingroup$
            @C.Cristi I have updated the answer.
            $endgroup$
            – Zacky
            Jan 26 at 9:58


















          • $begingroup$
            $I = pi ln(1+y)-frac {pi}4 ln 2?$
            $endgroup$
            – C. Cristi
            Jan 24 at 19:21












          • $begingroup$
            Because we have to integrate with respect to y back to get the original right? And then you have the constant of integration
            $endgroup$
            – C. Cristi
            Jan 26 at 8:28










          • $begingroup$
            @C.Cristi I have updated the answer.
            $endgroup$
            – Zacky
            Jan 26 at 9:58
















          $begingroup$
          $I = pi ln(1+y)-frac {pi}4 ln 2?$
          $endgroup$
          – C. Cristi
          Jan 24 at 19:21






          $begingroup$
          $I = pi ln(1+y)-frac {pi}4 ln 2?$
          $endgroup$
          – C. Cristi
          Jan 24 at 19:21














          $begingroup$
          Because we have to integrate with respect to y back to get the original right? And then you have the constant of integration
          $endgroup$
          – C. Cristi
          Jan 26 at 8:28




          $begingroup$
          Because we have to integrate with respect to y back to get the original right? And then you have the constant of integration
          $endgroup$
          – C. Cristi
          Jan 26 at 8:28












          $begingroup$
          @C.Cristi I have updated the answer.
          $endgroup$
          – Zacky
          Jan 26 at 9:58




          $begingroup$
          @C.Cristi I have updated the answer.
          $endgroup$
          – Zacky
          Jan 26 at 9:58



          Popular posts from this blog

          'app-layout' is not a known element: how to share Component with different Modules

          android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

          WPF add header to Image with URL pettitions [duplicate]