How can it be done that functions in .so file are automatically exported?
In Windows, to call a function in a DLL, the function must have an explicit export declaration. For example, __declspec(dllexport)
or .def
file.
Other than Windows, we can call a function in a .so
(shared object file) even if the function has no export declaration. It is much easier for me to make .so than .dll in terms of this.
Meanwhile, I am curious about how non-Windows enables functions defined in .so be called by other programs without having explicit export declaration. I roughly guess that all of the functions in .so file are automatically exported, but I am not sure of it.
shared-libraries
add a comment |
In Windows, to call a function in a DLL, the function must have an explicit export declaration. For example, __declspec(dllexport)
or .def
file.
Other than Windows, we can call a function in a .so
(shared object file) even if the function has no export declaration. It is much easier for me to make .so than .dll in terms of this.
Meanwhile, I am curious about how non-Windows enables functions defined in .so be called by other programs without having explicit export declaration. I roughly guess that all of the functions in .so file are automatically exported, but I am not sure of it.
shared-libraries
add a comment |
In Windows, to call a function in a DLL, the function must have an explicit export declaration. For example, __declspec(dllexport)
or .def
file.
Other than Windows, we can call a function in a .so
(shared object file) even if the function has no export declaration. It is much easier for me to make .so than .dll in terms of this.
Meanwhile, I am curious about how non-Windows enables functions defined in .so be called by other programs without having explicit export declaration. I roughly guess that all of the functions in .so file are automatically exported, but I am not sure of it.
shared-libraries
In Windows, to call a function in a DLL, the function must have an explicit export declaration. For example, __declspec(dllexport)
or .def
file.
Other than Windows, we can call a function in a .so
(shared object file) even if the function has no export declaration. It is much easier for me to make .so than .dll in terms of this.
Meanwhile, I am curious about how non-Windows enables functions defined in .so be called by other programs without having explicit export declaration. I roughly guess that all of the functions in .so file are automatically exported, but I am not sure of it.
shared-libraries
shared-libraries
asked Jan 2 at 2:52
Hyunjik BaeHyunjik Bae
9981824
9981824
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
An .so
file is conventionally a DSO (Dynamic Shared Object, a.k.a shared library) in unix-like OSes. You want to
know how symbols defined in such a file are made visible to the runtime loader
for dynamic linkage of the DSO into the process of some program when
it's executed. That's what you mean by "exported". "Exported" is a somewhat
Windows/DLL-ish term, and is also apt to be confused with "external" or "global",
so we'll say dynamically visible instead.
I'll explain how dynamic visibility of symbols can be controlled in the context of
DSOs built with the GNU toolchain - i.e. compiled with a GCC compiler (gcc
,
g++
,gfortran
, etc.) and linked with the binutils linker ld
(or compatible
alternative compiler and linker). I'll illustrate with C code. The mechanics are
the same for other languages.
The symbols defined in an object file are the file-scope variables in the C source code. i.e. variables
that are not defined within any block. Block-scope variables:
{ int i; ... }
are defined only when the enclosing block is being executed and have no permanent
place in an object file.
The symbols defined in an object file generated by GCC are either local or global.
A local symbol can be referenced within the object file where it's defined but
the object file does not reveal it for linkage at all. Not for static linkage.
Not for dynamic linkage. In C, a file-scope variable definition is global
by default and local if it is qualified with the static
storage class. So
in this source file:
foobar.c (1)
static int foo(void)
{
return 42;
}
int bar(void)
{
return foo();
}
foo
is a local symbol and bar
is a global one. If we compile this file
with -save-temps
:
$ gcc -save-temps -c -fPIC foobar.c
then GCC will save the assembly listing in foobar.s
, and there we can
see how the generated assembly code registers the fact that bar
is global and foo
is not:
foobar.s (1)
.file "foobar.c"
.text
.type foo, @function
foo:
.LFB0:
.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
movl $42, %eax
popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc
.LFE0:
.size foo, .-foo
.globl bar
.type bar, @function
bar:
.LFB1:
.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
call foo
popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc
.LFE1:
.size bar, .-bar
.ident "GCC: (Ubuntu 8.2.0-7ubuntu1) 8.2.0"
.section .note.GNU-stack,"",@progbits
The assembler directive .globl bar
means that bar
is a global symbol.
There is no .globl foo
; so foo
is local.
And if we inspect the symbols in the object file itself, with
$ readelf -s foobar.o
Symbol table '.symtab' contains 10 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
2: 0000000000000000 0 SECTION LOCAL DEFAULT 1
3: 0000000000000000 0 SECTION LOCAL DEFAULT 2
4: 0000000000000000 0 SECTION LOCAL DEFAULT 3
5: 0000000000000000 11 FUNC LOCAL DEFAULT 1 foo
6: 0000000000000000 0 SECTION LOCAL DEFAULT 5
7: 0000000000000000 0 SECTION LOCAL DEFAULT 6
8: 0000000000000000 0 SECTION LOCAL DEFAULT 4
9: 000000000000000b 11 FUNC GLOBAL DEFAULT 1 bar
the message is the same:
5: 0000000000000000 11 FUNC LOCAL DEFAULT 1 foo
...
9: 000000000000000b 11 FUNC GLOBAL DEFAULT 1 bar
The global symbols defined in the object file, and only the global symbols,
are available to the static linker for resolving references in other object files. Indeed
the local symbols only appear in the symbol table of the file at all for possible
use by a debugger or some other object-file probing tool. If we redo the compilation
with even minimal optimisation:
$ gcc -save-temps -O1 -c -fPIC foobar.c
$ readelf -s foobar.o
Symbol table '.symtab' contains 9 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
2: 0000000000000000 0 SECTION LOCAL DEFAULT 1
3: 0000000000000000 0 SECTION LOCAL DEFAULT 2
4: 0000000000000000 0 SECTION LOCAL DEFAULT 3
5: 0000000000000000 0 SECTION LOCAL DEFAULT 5
6: 0000000000000000 0 SECTION LOCAL DEFAULT 6
7: 0000000000000000 0 SECTION LOCAL DEFAULT 4
8: 0000000000000000 6 FUNC GLOBAL DEFAULT 1 bar
then foo
disappears from the symbol table.
Since global symbols are available to the static linker, we can link a program
with foobar.o
that calls bar
from another object file:
main.c
#include <stdio.h>
extern int foo(void);
int main(void)
{
printf("%dn",bar());
return 0;
}
Like so:
$ gcc -c main.c
$ gcc -o prog main.o foobar.o
$ ./prog
42
But as you've noticed, we do not need to change foobar.o
in any way to make
bar
dynamically visible to the loader. We can just link it as it is into
a shared library:
$ gcc -shared -o libbar.so foobar.o
then dynamically link the same program with that shared library:
$ gcc -o prog main.o libbar.so
and it's fine:
$ ./prog
./prog: error while loading shared libraries: libbar.so: cannot open shared object file: No such file or directory
...Oops. It's fine as long as we let the loader know where libbar.so
is, since my
working directory here isn't one of the search directories that it caches by default:
$ export LD_LIBRARY_PATH=.
$ ./prog
42
The object file foobar.o
has a table of symbols as we've seen,
in the .symtab
section, including (at least) the global symbols that are available to the static linker.
The DSO libbar.so
has a symbol table in its .symtab
section too. But it also has a dynamic symbol table,
in it's .dynsym
section:
$ readelf -s libbar.so
Symbol table '.dynsym' contains 6 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __cxa_finalize
2: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_registerTMCloneTable
3: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_deregisterTMCloneTab
4: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__
5: 00000000000010f5 6 FUNC GLOBAL DEFAULT 9 bar
Symbol table '.symtab' contains 45 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
...
...
21: 0000000000000000 0 FILE LOCAL DEFAULT ABS crtstuff.c
22: 0000000000001040 0 FUNC LOCAL DEFAULT 9 deregister_tm_clones
23: 0000000000001070 0 FUNC LOCAL DEFAULT 9 register_tm_clones
24: 00000000000010b0 0 FUNC LOCAL DEFAULT 9 __do_global_dtors_aux
25: 0000000000004020 1 OBJECT LOCAL DEFAULT 19 completed.7930
26: 0000000000003e88 0 OBJECT LOCAL DEFAULT 14 __do_global_dtors_aux_fin
27: 00000000000010f0 0 FUNC LOCAL DEFAULT 9 frame_dummy
28: 0000000000003e80 0 OBJECT LOCAL DEFAULT 13 __frame_dummy_init_array_
29: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
30: 0000000000000000 0 FILE LOCAL DEFAULT ABS crtstuff.c
31: 0000000000002094 0 OBJECT LOCAL DEFAULT 12 __FRAME_END__
32: 0000000000000000 0 FILE LOCAL DEFAULT ABS
33: 0000000000003e90 0 OBJECT LOCAL DEFAULT 15 _DYNAMIC
34: 0000000000004020 0 OBJECT LOCAL DEFAULT 18 __TMC_END__
35: 0000000000004018 0 OBJECT LOCAL DEFAULT 18 __dso_handle
36: 0000000000001000 0 FUNC LOCAL DEFAULT 6 _init
37: 0000000000002000 0 NOTYPE LOCAL DEFAULT 11 __GNU_EH_FRAME_HDR
38: 00000000000010fc 0 FUNC LOCAL DEFAULT 10 _fini
39: 0000000000004000 0 OBJECT LOCAL DEFAULT 17 _GLOBAL_OFFSET_TABLE_
40: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __cxa_finalize
41: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_registerTMCloneTable
42: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_deregisterTMCloneTab
43: 00000000000010f5 6 FUNC GLOBAL DEFAULT 9 bar
The symbols in the dynamic symbol table are the ones that are dynamically visible -
available to the runtime loader. You
can see that bar
appears both in the .symtab
and in the .dynsym
of libbar.so
.
In both cases, the symbol has GLOBAL
in the bind
( = binding)
column and DEFAULT
in the vis
( = visibility) column.
If you want readelf
to show you just the dynamic symbol table, then:
readelf --dyn-syms libbar.so
will do it, but not for foobar.o
, because an object file has no dynamic symbol table:
$ readelf --dyn-syms foobar.o; echo Done
Done
So the linkage:
$ gcc -shared -o libbar.so foobar.o
creates the dynamic symbol table of libbar.so
, and populates it with symbols
the from global symbol table of foobar.o
(and various GCC boilerplate
files that GCC adds to the linkage by defauilt).
This makes it look like your guess:
I roughly guess that all of the functions in .so file are automatically exported
is right. In fact it's close, but not correct.
See what happens if I recompile foobar.c
like this:
$ gcc -save-temps -fvisibility=hidden -c -fPIC foobar.c
Let's take another look at the assembly listing:
foobar.s (2)
...
...
.globl bar
.hidden bar
.type bar, @function
bar:
.LFB1:
.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
call foo
popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc
...
...
Notice the assembler directive:
.hidden bar
that wasn't there before. .globl bar
is still there; bar
is still a global
symbol. I can still statically link foobar.o
in this program:
$ gcc -o prog main.o foobar.o
$ ./prog
42
And I can still link this shared library:
$ gcc -shared -o libbar.so foobar.o
But I can no longer dynamically link this program:
$ gcc -o prog main.o libbar.so
/usr/bin/ld: main.o: in function `main':
main.c:(.text+0x5): undefined reference to `bar'
collect2: error: ld returned 1 exit status
In foobar.o
, bar
is still in the symbol table:
$ readelf -s foobar.o | grep bar
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
9: 000000000000000b 11 FUNC GLOBAL HIDDEN 1 bar
but it is now marked HIDDEN
in the vis
( = visibility
) column of the output.
And bar
is still in the symbol table of libbar.so
:
$ readelf -s libbar.so | grep bar
29: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
41: 0000000000001100 11 FUNC LOCAL DEFAULT 9 bar
But this time, it is a LOCAL
symbol. It will not be available to the static
linker from libbar.so
- as we saw just now when our linkage failed. And it is no longer in the
dynamic symbol table at all:
$ readelf --dyn-syms libbar.so | grep bar; echo done
done
So the effect of -fvisibility=hidden
, when compiling foobar.c
, is to make
the compiler annotate .globl
symbols as .hidden
in foobar.o
. Then, when
foobar.o
is linked into libbar.so
, the linker converts every global hidden
symbol to a local symbol in libbar.so
, so that it cannot be used to resolve references
whenever libbar.so
is linked with something else. And it does not add the hidden
symbols to the dynamic symbol table of libbar.so
, so the runtime loader cannot
see them to resolve references dynamically.
The story so far: When the linker creates a shared library, it adds to the dynamic
symbol table all of the global symbols that are defined in the input object files and are not marked hidden
by the compiler. These become the dynamically visible symbols of the shared library. Global symbols are not
hidden by default, but we can hide them with the compiler option -fvisibility=hidden
. The visibility
that this option refers to is dynamic visibility.
Now the ability to remove global symbols from dynamic visibility with -fvisibility=hidden
doesn't look very useful yet, because it seems that any object file we compile with
that option can contribute no dynamically visible symbols to a shared library.
But actually, we can control individually which global symbols defined in an object file
will be dynamically visible and which will not. Let's change foobar.c
as follows:
foobar.c (2)
static int foo(void)
{
return 42;
}
int __attribute__((visibility("default"))) bar(void)
{
return foo();
}
The __attribute__
syntax you see here is a GCC language extension
that is used to specify properties of symbols that are not expressible in the standard language - such as dynamic visibility. Microsoft's
declspec(dllexport)
is an Microsoft language extension with the same effect as GCC's __attribute__((visibility("default")))
,
But for GCC, global symbols defined in an object file will possess __attribute__((visibility("default")))
by default, and you
have to compile with -fvisibility=hidden
to override that.
Recompile like last time:
$ gcc -fvisibility=hidden -c -fPIC foobar.c
And now the symbol table of foobar.o
:
$ readelf -s foobar.o | grep bar
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
9: 000000000000000b 11 FUNC GLOBAL DEFAULT 1 bar
shows bar
with DEFAULT
visibility once again, despite -fvisibility=hidden
. And if we relink libbar.so
:
$ gcc -shared -o libbar.so foobar.o
we see that bar
is back in the dynamic symbol table:
$ readelf --dyn-syms libbar.so | grep bar
5: 0000000000001100 11 FUNC GLOBAL DEFAULT 9 bar
So, -fvisibility=hidden
tells the compiler to mark a global symbol as hidden
unless, in the source code, we explicitly specify a countervailing dynamic visibility
for that symbol.
That's one way to select precisely the symbols from an object file that we wish
to make dynamically visible: pass -fvisibility=hidden
to the compiler, and
individually specify __attribute__((visibility("default")))
, in the source code, for just
the symbols we want to be dynamically visible.
Another way is not to pass -fvisibility=hidden
to the compiler, and indvidually
specify __attribute__((visibility("hidden")))
, in the source code, for just the
symbols that we don't want to be dynamically visible. So if we change foobar.c
again
like so:
foobar.c (3)
static int foo(void)
{
return 42;
}
int __attribute__((visibility("hidden"))) bar(void)
{
return foo();
}
then recompile with default visibility:
$ gcc -c -fPIC foobar.c
bar
reverts to hidden in the object file:
$ readelf -s foobar.o | grep bar
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
9: 000000000000000b 11 FUNC GLOBAL HIDDEN 1 bar
And after relinking libbar.so
, bar
is again absent from its dynamic symbol
table:
$ gcc -shared -o libbar.so foobar.o
$ readelf --dyn-syms libbar.so | grep bar; echo Done
Done
The professional approach is to minimize the dynamic API of
a DSO to exactly what is specified. With the apparatus we've discussed,
that means compiling with -fvisibility=hidden
and using __attribute__((visibility("default")))
to
expose the specified API. A dynamic API can also be controlled - and versioned - with the GNU linker
using a type of linker script called a version-script: that is a
yet more professional approach.
Further reading:
GCC Wiki: Visibility
GCC Manual: Common Function Attributes ->
visibility ("visibility_type")
What an excellent and comprehensive answer!
– Hyunjik Bae
Feb 7 at 8:08
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54000710%2fhow-can-it-be-done-that-functions-in-so-file-are-automatically-exported%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
An .so
file is conventionally a DSO (Dynamic Shared Object, a.k.a shared library) in unix-like OSes. You want to
know how symbols defined in such a file are made visible to the runtime loader
for dynamic linkage of the DSO into the process of some program when
it's executed. That's what you mean by "exported". "Exported" is a somewhat
Windows/DLL-ish term, and is also apt to be confused with "external" or "global",
so we'll say dynamically visible instead.
I'll explain how dynamic visibility of symbols can be controlled in the context of
DSOs built with the GNU toolchain - i.e. compiled with a GCC compiler (gcc
,
g++
,gfortran
, etc.) and linked with the binutils linker ld
(or compatible
alternative compiler and linker). I'll illustrate with C code. The mechanics are
the same for other languages.
The symbols defined in an object file are the file-scope variables in the C source code. i.e. variables
that are not defined within any block. Block-scope variables:
{ int i; ... }
are defined only when the enclosing block is being executed and have no permanent
place in an object file.
The symbols defined in an object file generated by GCC are either local or global.
A local symbol can be referenced within the object file where it's defined but
the object file does not reveal it for linkage at all. Not for static linkage.
Not for dynamic linkage. In C, a file-scope variable definition is global
by default and local if it is qualified with the static
storage class. So
in this source file:
foobar.c (1)
static int foo(void)
{
return 42;
}
int bar(void)
{
return foo();
}
foo
is a local symbol and bar
is a global one. If we compile this file
with -save-temps
:
$ gcc -save-temps -c -fPIC foobar.c
then GCC will save the assembly listing in foobar.s
, and there we can
see how the generated assembly code registers the fact that bar
is global and foo
is not:
foobar.s (1)
.file "foobar.c"
.text
.type foo, @function
foo:
.LFB0:
.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
movl $42, %eax
popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc
.LFE0:
.size foo, .-foo
.globl bar
.type bar, @function
bar:
.LFB1:
.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
call foo
popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc
.LFE1:
.size bar, .-bar
.ident "GCC: (Ubuntu 8.2.0-7ubuntu1) 8.2.0"
.section .note.GNU-stack,"",@progbits
The assembler directive .globl bar
means that bar
is a global symbol.
There is no .globl foo
; so foo
is local.
And if we inspect the symbols in the object file itself, with
$ readelf -s foobar.o
Symbol table '.symtab' contains 10 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
2: 0000000000000000 0 SECTION LOCAL DEFAULT 1
3: 0000000000000000 0 SECTION LOCAL DEFAULT 2
4: 0000000000000000 0 SECTION LOCAL DEFAULT 3
5: 0000000000000000 11 FUNC LOCAL DEFAULT 1 foo
6: 0000000000000000 0 SECTION LOCAL DEFAULT 5
7: 0000000000000000 0 SECTION LOCAL DEFAULT 6
8: 0000000000000000 0 SECTION LOCAL DEFAULT 4
9: 000000000000000b 11 FUNC GLOBAL DEFAULT 1 bar
the message is the same:
5: 0000000000000000 11 FUNC LOCAL DEFAULT 1 foo
...
9: 000000000000000b 11 FUNC GLOBAL DEFAULT 1 bar
The global symbols defined in the object file, and only the global symbols,
are available to the static linker for resolving references in other object files. Indeed
the local symbols only appear in the symbol table of the file at all for possible
use by a debugger or some other object-file probing tool. If we redo the compilation
with even minimal optimisation:
$ gcc -save-temps -O1 -c -fPIC foobar.c
$ readelf -s foobar.o
Symbol table '.symtab' contains 9 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
2: 0000000000000000 0 SECTION LOCAL DEFAULT 1
3: 0000000000000000 0 SECTION LOCAL DEFAULT 2
4: 0000000000000000 0 SECTION LOCAL DEFAULT 3
5: 0000000000000000 0 SECTION LOCAL DEFAULT 5
6: 0000000000000000 0 SECTION LOCAL DEFAULT 6
7: 0000000000000000 0 SECTION LOCAL DEFAULT 4
8: 0000000000000000 6 FUNC GLOBAL DEFAULT 1 bar
then foo
disappears from the symbol table.
Since global symbols are available to the static linker, we can link a program
with foobar.o
that calls bar
from another object file:
main.c
#include <stdio.h>
extern int foo(void);
int main(void)
{
printf("%dn",bar());
return 0;
}
Like so:
$ gcc -c main.c
$ gcc -o prog main.o foobar.o
$ ./prog
42
But as you've noticed, we do not need to change foobar.o
in any way to make
bar
dynamically visible to the loader. We can just link it as it is into
a shared library:
$ gcc -shared -o libbar.so foobar.o
then dynamically link the same program with that shared library:
$ gcc -o prog main.o libbar.so
and it's fine:
$ ./prog
./prog: error while loading shared libraries: libbar.so: cannot open shared object file: No such file or directory
...Oops. It's fine as long as we let the loader know where libbar.so
is, since my
working directory here isn't one of the search directories that it caches by default:
$ export LD_LIBRARY_PATH=.
$ ./prog
42
The object file foobar.o
has a table of symbols as we've seen,
in the .symtab
section, including (at least) the global symbols that are available to the static linker.
The DSO libbar.so
has a symbol table in its .symtab
section too. But it also has a dynamic symbol table,
in it's .dynsym
section:
$ readelf -s libbar.so
Symbol table '.dynsym' contains 6 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __cxa_finalize
2: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_registerTMCloneTable
3: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_deregisterTMCloneTab
4: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__
5: 00000000000010f5 6 FUNC GLOBAL DEFAULT 9 bar
Symbol table '.symtab' contains 45 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
...
...
21: 0000000000000000 0 FILE LOCAL DEFAULT ABS crtstuff.c
22: 0000000000001040 0 FUNC LOCAL DEFAULT 9 deregister_tm_clones
23: 0000000000001070 0 FUNC LOCAL DEFAULT 9 register_tm_clones
24: 00000000000010b0 0 FUNC LOCAL DEFAULT 9 __do_global_dtors_aux
25: 0000000000004020 1 OBJECT LOCAL DEFAULT 19 completed.7930
26: 0000000000003e88 0 OBJECT LOCAL DEFAULT 14 __do_global_dtors_aux_fin
27: 00000000000010f0 0 FUNC LOCAL DEFAULT 9 frame_dummy
28: 0000000000003e80 0 OBJECT LOCAL DEFAULT 13 __frame_dummy_init_array_
29: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
30: 0000000000000000 0 FILE LOCAL DEFAULT ABS crtstuff.c
31: 0000000000002094 0 OBJECT LOCAL DEFAULT 12 __FRAME_END__
32: 0000000000000000 0 FILE LOCAL DEFAULT ABS
33: 0000000000003e90 0 OBJECT LOCAL DEFAULT 15 _DYNAMIC
34: 0000000000004020 0 OBJECT LOCAL DEFAULT 18 __TMC_END__
35: 0000000000004018 0 OBJECT LOCAL DEFAULT 18 __dso_handle
36: 0000000000001000 0 FUNC LOCAL DEFAULT 6 _init
37: 0000000000002000 0 NOTYPE LOCAL DEFAULT 11 __GNU_EH_FRAME_HDR
38: 00000000000010fc 0 FUNC LOCAL DEFAULT 10 _fini
39: 0000000000004000 0 OBJECT LOCAL DEFAULT 17 _GLOBAL_OFFSET_TABLE_
40: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __cxa_finalize
41: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_registerTMCloneTable
42: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_deregisterTMCloneTab
43: 00000000000010f5 6 FUNC GLOBAL DEFAULT 9 bar
The symbols in the dynamic symbol table are the ones that are dynamically visible -
available to the runtime loader. You
can see that bar
appears both in the .symtab
and in the .dynsym
of libbar.so
.
In both cases, the symbol has GLOBAL
in the bind
( = binding)
column and DEFAULT
in the vis
( = visibility) column.
If you want readelf
to show you just the dynamic symbol table, then:
readelf --dyn-syms libbar.so
will do it, but not for foobar.o
, because an object file has no dynamic symbol table:
$ readelf --dyn-syms foobar.o; echo Done
Done
So the linkage:
$ gcc -shared -o libbar.so foobar.o
creates the dynamic symbol table of libbar.so
, and populates it with symbols
the from global symbol table of foobar.o
(and various GCC boilerplate
files that GCC adds to the linkage by defauilt).
This makes it look like your guess:
I roughly guess that all of the functions in .so file are automatically exported
is right. In fact it's close, but not correct.
See what happens if I recompile foobar.c
like this:
$ gcc -save-temps -fvisibility=hidden -c -fPIC foobar.c
Let's take another look at the assembly listing:
foobar.s (2)
...
...
.globl bar
.hidden bar
.type bar, @function
bar:
.LFB1:
.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
call foo
popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc
...
...
Notice the assembler directive:
.hidden bar
that wasn't there before. .globl bar
is still there; bar
is still a global
symbol. I can still statically link foobar.o
in this program:
$ gcc -o prog main.o foobar.o
$ ./prog
42
And I can still link this shared library:
$ gcc -shared -o libbar.so foobar.o
But I can no longer dynamically link this program:
$ gcc -o prog main.o libbar.so
/usr/bin/ld: main.o: in function `main':
main.c:(.text+0x5): undefined reference to `bar'
collect2: error: ld returned 1 exit status
In foobar.o
, bar
is still in the symbol table:
$ readelf -s foobar.o | grep bar
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
9: 000000000000000b 11 FUNC GLOBAL HIDDEN 1 bar
but it is now marked HIDDEN
in the vis
( = visibility
) column of the output.
And bar
is still in the symbol table of libbar.so
:
$ readelf -s libbar.so | grep bar
29: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
41: 0000000000001100 11 FUNC LOCAL DEFAULT 9 bar
But this time, it is a LOCAL
symbol. It will not be available to the static
linker from libbar.so
- as we saw just now when our linkage failed. And it is no longer in the
dynamic symbol table at all:
$ readelf --dyn-syms libbar.so | grep bar; echo done
done
So the effect of -fvisibility=hidden
, when compiling foobar.c
, is to make
the compiler annotate .globl
symbols as .hidden
in foobar.o
. Then, when
foobar.o
is linked into libbar.so
, the linker converts every global hidden
symbol to a local symbol in libbar.so
, so that it cannot be used to resolve references
whenever libbar.so
is linked with something else. And it does not add the hidden
symbols to the dynamic symbol table of libbar.so
, so the runtime loader cannot
see them to resolve references dynamically.
The story so far: When the linker creates a shared library, it adds to the dynamic
symbol table all of the global symbols that are defined in the input object files and are not marked hidden
by the compiler. These become the dynamically visible symbols of the shared library. Global symbols are not
hidden by default, but we can hide them with the compiler option -fvisibility=hidden
. The visibility
that this option refers to is dynamic visibility.
Now the ability to remove global symbols from dynamic visibility with -fvisibility=hidden
doesn't look very useful yet, because it seems that any object file we compile with
that option can contribute no dynamically visible symbols to a shared library.
But actually, we can control individually which global symbols defined in an object file
will be dynamically visible and which will not. Let's change foobar.c
as follows:
foobar.c (2)
static int foo(void)
{
return 42;
}
int __attribute__((visibility("default"))) bar(void)
{
return foo();
}
The __attribute__
syntax you see here is a GCC language extension
that is used to specify properties of symbols that are not expressible in the standard language - such as dynamic visibility. Microsoft's
declspec(dllexport)
is an Microsoft language extension with the same effect as GCC's __attribute__((visibility("default")))
,
But for GCC, global symbols defined in an object file will possess __attribute__((visibility("default")))
by default, and you
have to compile with -fvisibility=hidden
to override that.
Recompile like last time:
$ gcc -fvisibility=hidden -c -fPIC foobar.c
And now the symbol table of foobar.o
:
$ readelf -s foobar.o | grep bar
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
9: 000000000000000b 11 FUNC GLOBAL DEFAULT 1 bar
shows bar
with DEFAULT
visibility once again, despite -fvisibility=hidden
. And if we relink libbar.so
:
$ gcc -shared -o libbar.so foobar.o
we see that bar
is back in the dynamic symbol table:
$ readelf --dyn-syms libbar.so | grep bar
5: 0000000000001100 11 FUNC GLOBAL DEFAULT 9 bar
So, -fvisibility=hidden
tells the compiler to mark a global symbol as hidden
unless, in the source code, we explicitly specify a countervailing dynamic visibility
for that symbol.
That's one way to select precisely the symbols from an object file that we wish
to make dynamically visible: pass -fvisibility=hidden
to the compiler, and
individually specify __attribute__((visibility("default")))
, in the source code, for just
the symbols we want to be dynamically visible.
Another way is not to pass -fvisibility=hidden
to the compiler, and indvidually
specify __attribute__((visibility("hidden")))
, in the source code, for just the
symbols that we don't want to be dynamically visible. So if we change foobar.c
again
like so:
foobar.c (3)
static int foo(void)
{
return 42;
}
int __attribute__((visibility("hidden"))) bar(void)
{
return foo();
}
then recompile with default visibility:
$ gcc -c -fPIC foobar.c
bar
reverts to hidden in the object file:
$ readelf -s foobar.o | grep bar
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
9: 000000000000000b 11 FUNC GLOBAL HIDDEN 1 bar
And after relinking libbar.so
, bar
is again absent from its dynamic symbol
table:
$ gcc -shared -o libbar.so foobar.o
$ readelf --dyn-syms libbar.so | grep bar; echo Done
Done
The professional approach is to minimize the dynamic API of
a DSO to exactly what is specified. With the apparatus we've discussed,
that means compiling with -fvisibility=hidden
and using __attribute__((visibility("default")))
to
expose the specified API. A dynamic API can also be controlled - and versioned - with the GNU linker
using a type of linker script called a version-script: that is a
yet more professional approach.
Further reading:
GCC Wiki: Visibility
GCC Manual: Common Function Attributes ->
visibility ("visibility_type")
What an excellent and comprehensive answer!
– Hyunjik Bae
Feb 7 at 8:08
add a comment |
An .so
file is conventionally a DSO (Dynamic Shared Object, a.k.a shared library) in unix-like OSes. You want to
know how symbols defined in such a file are made visible to the runtime loader
for dynamic linkage of the DSO into the process of some program when
it's executed. That's what you mean by "exported". "Exported" is a somewhat
Windows/DLL-ish term, and is also apt to be confused with "external" or "global",
so we'll say dynamically visible instead.
I'll explain how dynamic visibility of symbols can be controlled in the context of
DSOs built with the GNU toolchain - i.e. compiled with a GCC compiler (gcc
,
g++
,gfortran
, etc.) and linked with the binutils linker ld
(or compatible
alternative compiler and linker). I'll illustrate with C code. The mechanics are
the same for other languages.
The symbols defined in an object file are the file-scope variables in the C source code. i.e. variables
that are not defined within any block. Block-scope variables:
{ int i; ... }
are defined only when the enclosing block is being executed and have no permanent
place in an object file.
The symbols defined in an object file generated by GCC are either local or global.
A local symbol can be referenced within the object file where it's defined but
the object file does not reveal it for linkage at all. Not for static linkage.
Not for dynamic linkage. In C, a file-scope variable definition is global
by default and local if it is qualified with the static
storage class. So
in this source file:
foobar.c (1)
static int foo(void)
{
return 42;
}
int bar(void)
{
return foo();
}
foo
is a local symbol and bar
is a global one. If we compile this file
with -save-temps
:
$ gcc -save-temps -c -fPIC foobar.c
then GCC will save the assembly listing in foobar.s
, and there we can
see how the generated assembly code registers the fact that bar
is global and foo
is not:
foobar.s (1)
.file "foobar.c"
.text
.type foo, @function
foo:
.LFB0:
.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
movl $42, %eax
popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc
.LFE0:
.size foo, .-foo
.globl bar
.type bar, @function
bar:
.LFB1:
.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
call foo
popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc
.LFE1:
.size bar, .-bar
.ident "GCC: (Ubuntu 8.2.0-7ubuntu1) 8.2.0"
.section .note.GNU-stack,"",@progbits
The assembler directive .globl bar
means that bar
is a global symbol.
There is no .globl foo
; so foo
is local.
And if we inspect the symbols in the object file itself, with
$ readelf -s foobar.o
Symbol table '.symtab' contains 10 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
2: 0000000000000000 0 SECTION LOCAL DEFAULT 1
3: 0000000000000000 0 SECTION LOCAL DEFAULT 2
4: 0000000000000000 0 SECTION LOCAL DEFAULT 3
5: 0000000000000000 11 FUNC LOCAL DEFAULT 1 foo
6: 0000000000000000 0 SECTION LOCAL DEFAULT 5
7: 0000000000000000 0 SECTION LOCAL DEFAULT 6
8: 0000000000000000 0 SECTION LOCAL DEFAULT 4
9: 000000000000000b 11 FUNC GLOBAL DEFAULT 1 bar
the message is the same:
5: 0000000000000000 11 FUNC LOCAL DEFAULT 1 foo
...
9: 000000000000000b 11 FUNC GLOBAL DEFAULT 1 bar
The global symbols defined in the object file, and only the global symbols,
are available to the static linker for resolving references in other object files. Indeed
the local symbols only appear in the symbol table of the file at all for possible
use by a debugger or some other object-file probing tool. If we redo the compilation
with even minimal optimisation:
$ gcc -save-temps -O1 -c -fPIC foobar.c
$ readelf -s foobar.o
Symbol table '.symtab' contains 9 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
2: 0000000000000000 0 SECTION LOCAL DEFAULT 1
3: 0000000000000000 0 SECTION LOCAL DEFAULT 2
4: 0000000000000000 0 SECTION LOCAL DEFAULT 3
5: 0000000000000000 0 SECTION LOCAL DEFAULT 5
6: 0000000000000000 0 SECTION LOCAL DEFAULT 6
7: 0000000000000000 0 SECTION LOCAL DEFAULT 4
8: 0000000000000000 6 FUNC GLOBAL DEFAULT 1 bar
then foo
disappears from the symbol table.
Since global symbols are available to the static linker, we can link a program
with foobar.o
that calls bar
from another object file:
main.c
#include <stdio.h>
extern int foo(void);
int main(void)
{
printf("%dn",bar());
return 0;
}
Like so:
$ gcc -c main.c
$ gcc -o prog main.o foobar.o
$ ./prog
42
But as you've noticed, we do not need to change foobar.o
in any way to make
bar
dynamically visible to the loader. We can just link it as it is into
a shared library:
$ gcc -shared -o libbar.so foobar.o
then dynamically link the same program with that shared library:
$ gcc -o prog main.o libbar.so
and it's fine:
$ ./prog
./prog: error while loading shared libraries: libbar.so: cannot open shared object file: No such file or directory
...Oops. It's fine as long as we let the loader know where libbar.so
is, since my
working directory here isn't one of the search directories that it caches by default:
$ export LD_LIBRARY_PATH=.
$ ./prog
42
The object file foobar.o
has a table of symbols as we've seen,
in the .symtab
section, including (at least) the global symbols that are available to the static linker.
The DSO libbar.so
has a symbol table in its .symtab
section too. But it also has a dynamic symbol table,
in it's .dynsym
section:
$ readelf -s libbar.so
Symbol table '.dynsym' contains 6 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __cxa_finalize
2: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_registerTMCloneTable
3: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_deregisterTMCloneTab
4: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__
5: 00000000000010f5 6 FUNC GLOBAL DEFAULT 9 bar
Symbol table '.symtab' contains 45 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
...
...
21: 0000000000000000 0 FILE LOCAL DEFAULT ABS crtstuff.c
22: 0000000000001040 0 FUNC LOCAL DEFAULT 9 deregister_tm_clones
23: 0000000000001070 0 FUNC LOCAL DEFAULT 9 register_tm_clones
24: 00000000000010b0 0 FUNC LOCAL DEFAULT 9 __do_global_dtors_aux
25: 0000000000004020 1 OBJECT LOCAL DEFAULT 19 completed.7930
26: 0000000000003e88 0 OBJECT LOCAL DEFAULT 14 __do_global_dtors_aux_fin
27: 00000000000010f0 0 FUNC LOCAL DEFAULT 9 frame_dummy
28: 0000000000003e80 0 OBJECT LOCAL DEFAULT 13 __frame_dummy_init_array_
29: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
30: 0000000000000000 0 FILE LOCAL DEFAULT ABS crtstuff.c
31: 0000000000002094 0 OBJECT LOCAL DEFAULT 12 __FRAME_END__
32: 0000000000000000 0 FILE LOCAL DEFAULT ABS
33: 0000000000003e90 0 OBJECT LOCAL DEFAULT 15 _DYNAMIC
34: 0000000000004020 0 OBJECT LOCAL DEFAULT 18 __TMC_END__
35: 0000000000004018 0 OBJECT LOCAL DEFAULT 18 __dso_handle
36: 0000000000001000 0 FUNC LOCAL DEFAULT 6 _init
37: 0000000000002000 0 NOTYPE LOCAL DEFAULT 11 __GNU_EH_FRAME_HDR
38: 00000000000010fc 0 FUNC LOCAL DEFAULT 10 _fini
39: 0000000000004000 0 OBJECT LOCAL DEFAULT 17 _GLOBAL_OFFSET_TABLE_
40: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __cxa_finalize
41: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_registerTMCloneTable
42: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_deregisterTMCloneTab
43: 00000000000010f5 6 FUNC GLOBAL DEFAULT 9 bar
The symbols in the dynamic symbol table are the ones that are dynamically visible -
available to the runtime loader. You
can see that bar
appears both in the .symtab
and in the .dynsym
of libbar.so
.
In both cases, the symbol has GLOBAL
in the bind
( = binding)
column and DEFAULT
in the vis
( = visibility) column.
If you want readelf
to show you just the dynamic symbol table, then:
readelf --dyn-syms libbar.so
will do it, but not for foobar.o
, because an object file has no dynamic symbol table:
$ readelf --dyn-syms foobar.o; echo Done
Done
So the linkage:
$ gcc -shared -o libbar.so foobar.o
creates the dynamic symbol table of libbar.so
, and populates it with symbols
the from global symbol table of foobar.o
(and various GCC boilerplate
files that GCC adds to the linkage by defauilt).
This makes it look like your guess:
I roughly guess that all of the functions in .so file are automatically exported
is right. In fact it's close, but not correct.
See what happens if I recompile foobar.c
like this:
$ gcc -save-temps -fvisibility=hidden -c -fPIC foobar.c
Let's take another look at the assembly listing:
foobar.s (2)
...
...
.globl bar
.hidden bar
.type bar, @function
bar:
.LFB1:
.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
call foo
popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc
...
...
Notice the assembler directive:
.hidden bar
that wasn't there before. .globl bar
is still there; bar
is still a global
symbol. I can still statically link foobar.o
in this program:
$ gcc -o prog main.o foobar.o
$ ./prog
42
And I can still link this shared library:
$ gcc -shared -o libbar.so foobar.o
But I can no longer dynamically link this program:
$ gcc -o prog main.o libbar.so
/usr/bin/ld: main.o: in function `main':
main.c:(.text+0x5): undefined reference to `bar'
collect2: error: ld returned 1 exit status
In foobar.o
, bar
is still in the symbol table:
$ readelf -s foobar.o | grep bar
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
9: 000000000000000b 11 FUNC GLOBAL HIDDEN 1 bar
but it is now marked HIDDEN
in the vis
( = visibility
) column of the output.
And bar
is still in the symbol table of libbar.so
:
$ readelf -s libbar.so | grep bar
29: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
41: 0000000000001100 11 FUNC LOCAL DEFAULT 9 bar
But this time, it is a LOCAL
symbol. It will not be available to the static
linker from libbar.so
- as we saw just now when our linkage failed. And it is no longer in the
dynamic symbol table at all:
$ readelf --dyn-syms libbar.so | grep bar; echo done
done
So the effect of -fvisibility=hidden
, when compiling foobar.c
, is to make
the compiler annotate .globl
symbols as .hidden
in foobar.o
. Then, when
foobar.o
is linked into libbar.so
, the linker converts every global hidden
symbol to a local symbol in libbar.so
, so that it cannot be used to resolve references
whenever libbar.so
is linked with something else. And it does not add the hidden
symbols to the dynamic symbol table of libbar.so
, so the runtime loader cannot
see them to resolve references dynamically.
The story so far: When the linker creates a shared library, it adds to the dynamic
symbol table all of the global symbols that are defined in the input object files and are not marked hidden
by the compiler. These become the dynamically visible symbols of the shared library. Global symbols are not
hidden by default, but we can hide them with the compiler option -fvisibility=hidden
. The visibility
that this option refers to is dynamic visibility.
Now the ability to remove global symbols from dynamic visibility with -fvisibility=hidden
doesn't look very useful yet, because it seems that any object file we compile with
that option can contribute no dynamically visible symbols to a shared library.
But actually, we can control individually which global symbols defined in an object file
will be dynamically visible and which will not. Let's change foobar.c
as follows:
foobar.c (2)
static int foo(void)
{
return 42;
}
int __attribute__((visibility("default"))) bar(void)
{
return foo();
}
The __attribute__
syntax you see here is a GCC language extension
that is used to specify properties of symbols that are not expressible in the standard language - such as dynamic visibility. Microsoft's
declspec(dllexport)
is an Microsoft language extension with the same effect as GCC's __attribute__((visibility("default")))
,
But for GCC, global symbols defined in an object file will possess __attribute__((visibility("default")))
by default, and you
have to compile with -fvisibility=hidden
to override that.
Recompile like last time:
$ gcc -fvisibility=hidden -c -fPIC foobar.c
And now the symbol table of foobar.o
:
$ readelf -s foobar.o | grep bar
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
9: 000000000000000b 11 FUNC GLOBAL DEFAULT 1 bar
shows bar
with DEFAULT
visibility once again, despite -fvisibility=hidden
. And if we relink libbar.so
:
$ gcc -shared -o libbar.so foobar.o
we see that bar
is back in the dynamic symbol table:
$ readelf --dyn-syms libbar.so | grep bar
5: 0000000000001100 11 FUNC GLOBAL DEFAULT 9 bar
So, -fvisibility=hidden
tells the compiler to mark a global symbol as hidden
unless, in the source code, we explicitly specify a countervailing dynamic visibility
for that symbol.
That's one way to select precisely the symbols from an object file that we wish
to make dynamically visible: pass -fvisibility=hidden
to the compiler, and
individually specify __attribute__((visibility("default")))
, in the source code, for just
the symbols we want to be dynamically visible.
Another way is not to pass -fvisibility=hidden
to the compiler, and indvidually
specify __attribute__((visibility("hidden")))
, in the source code, for just the
symbols that we don't want to be dynamically visible. So if we change foobar.c
again
like so:
foobar.c (3)
static int foo(void)
{
return 42;
}
int __attribute__((visibility("hidden"))) bar(void)
{
return foo();
}
then recompile with default visibility:
$ gcc -c -fPIC foobar.c
bar
reverts to hidden in the object file:
$ readelf -s foobar.o | grep bar
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
9: 000000000000000b 11 FUNC GLOBAL HIDDEN 1 bar
And after relinking libbar.so
, bar
is again absent from its dynamic symbol
table:
$ gcc -shared -o libbar.so foobar.o
$ readelf --dyn-syms libbar.so | grep bar; echo Done
Done
The professional approach is to minimize the dynamic API of
a DSO to exactly what is specified. With the apparatus we've discussed,
that means compiling with -fvisibility=hidden
and using __attribute__((visibility("default")))
to
expose the specified API. A dynamic API can also be controlled - and versioned - with the GNU linker
using a type of linker script called a version-script: that is a
yet more professional approach.
Further reading:
GCC Wiki: Visibility
GCC Manual: Common Function Attributes ->
visibility ("visibility_type")
What an excellent and comprehensive answer!
– Hyunjik Bae
Feb 7 at 8:08
add a comment |
An .so
file is conventionally a DSO (Dynamic Shared Object, a.k.a shared library) in unix-like OSes. You want to
know how symbols defined in such a file are made visible to the runtime loader
for dynamic linkage of the DSO into the process of some program when
it's executed. That's what you mean by "exported". "Exported" is a somewhat
Windows/DLL-ish term, and is also apt to be confused with "external" or "global",
so we'll say dynamically visible instead.
I'll explain how dynamic visibility of symbols can be controlled in the context of
DSOs built with the GNU toolchain - i.e. compiled with a GCC compiler (gcc
,
g++
,gfortran
, etc.) and linked with the binutils linker ld
(or compatible
alternative compiler and linker). I'll illustrate with C code. The mechanics are
the same for other languages.
The symbols defined in an object file are the file-scope variables in the C source code. i.e. variables
that are not defined within any block. Block-scope variables:
{ int i; ... }
are defined only when the enclosing block is being executed and have no permanent
place in an object file.
The symbols defined in an object file generated by GCC are either local or global.
A local symbol can be referenced within the object file where it's defined but
the object file does not reveal it for linkage at all. Not for static linkage.
Not for dynamic linkage. In C, a file-scope variable definition is global
by default and local if it is qualified with the static
storage class. So
in this source file:
foobar.c (1)
static int foo(void)
{
return 42;
}
int bar(void)
{
return foo();
}
foo
is a local symbol and bar
is a global one. If we compile this file
with -save-temps
:
$ gcc -save-temps -c -fPIC foobar.c
then GCC will save the assembly listing in foobar.s
, and there we can
see how the generated assembly code registers the fact that bar
is global and foo
is not:
foobar.s (1)
.file "foobar.c"
.text
.type foo, @function
foo:
.LFB0:
.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
movl $42, %eax
popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc
.LFE0:
.size foo, .-foo
.globl bar
.type bar, @function
bar:
.LFB1:
.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
call foo
popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc
.LFE1:
.size bar, .-bar
.ident "GCC: (Ubuntu 8.2.0-7ubuntu1) 8.2.0"
.section .note.GNU-stack,"",@progbits
The assembler directive .globl bar
means that bar
is a global symbol.
There is no .globl foo
; so foo
is local.
And if we inspect the symbols in the object file itself, with
$ readelf -s foobar.o
Symbol table '.symtab' contains 10 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
2: 0000000000000000 0 SECTION LOCAL DEFAULT 1
3: 0000000000000000 0 SECTION LOCAL DEFAULT 2
4: 0000000000000000 0 SECTION LOCAL DEFAULT 3
5: 0000000000000000 11 FUNC LOCAL DEFAULT 1 foo
6: 0000000000000000 0 SECTION LOCAL DEFAULT 5
7: 0000000000000000 0 SECTION LOCAL DEFAULT 6
8: 0000000000000000 0 SECTION LOCAL DEFAULT 4
9: 000000000000000b 11 FUNC GLOBAL DEFAULT 1 bar
the message is the same:
5: 0000000000000000 11 FUNC LOCAL DEFAULT 1 foo
...
9: 000000000000000b 11 FUNC GLOBAL DEFAULT 1 bar
The global symbols defined in the object file, and only the global symbols,
are available to the static linker for resolving references in other object files. Indeed
the local symbols only appear in the symbol table of the file at all for possible
use by a debugger or some other object-file probing tool. If we redo the compilation
with even minimal optimisation:
$ gcc -save-temps -O1 -c -fPIC foobar.c
$ readelf -s foobar.o
Symbol table '.symtab' contains 9 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
2: 0000000000000000 0 SECTION LOCAL DEFAULT 1
3: 0000000000000000 0 SECTION LOCAL DEFAULT 2
4: 0000000000000000 0 SECTION LOCAL DEFAULT 3
5: 0000000000000000 0 SECTION LOCAL DEFAULT 5
6: 0000000000000000 0 SECTION LOCAL DEFAULT 6
7: 0000000000000000 0 SECTION LOCAL DEFAULT 4
8: 0000000000000000 6 FUNC GLOBAL DEFAULT 1 bar
then foo
disappears from the symbol table.
Since global symbols are available to the static linker, we can link a program
with foobar.o
that calls bar
from another object file:
main.c
#include <stdio.h>
extern int foo(void);
int main(void)
{
printf("%dn",bar());
return 0;
}
Like so:
$ gcc -c main.c
$ gcc -o prog main.o foobar.o
$ ./prog
42
But as you've noticed, we do not need to change foobar.o
in any way to make
bar
dynamically visible to the loader. We can just link it as it is into
a shared library:
$ gcc -shared -o libbar.so foobar.o
then dynamically link the same program with that shared library:
$ gcc -o prog main.o libbar.so
and it's fine:
$ ./prog
./prog: error while loading shared libraries: libbar.so: cannot open shared object file: No such file or directory
...Oops. It's fine as long as we let the loader know where libbar.so
is, since my
working directory here isn't one of the search directories that it caches by default:
$ export LD_LIBRARY_PATH=.
$ ./prog
42
The object file foobar.o
has a table of symbols as we've seen,
in the .symtab
section, including (at least) the global symbols that are available to the static linker.
The DSO libbar.so
has a symbol table in its .symtab
section too. But it also has a dynamic symbol table,
in it's .dynsym
section:
$ readelf -s libbar.so
Symbol table '.dynsym' contains 6 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __cxa_finalize
2: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_registerTMCloneTable
3: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_deregisterTMCloneTab
4: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__
5: 00000000000010f5 6 FUNC GLOBAL DEFAULT 9 bar
Symbol table '.symtab' contains 45 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
...
...
21: 0000000000000000 0 FILE LOCAL DEFAULT ABS crtstuff.c
22: 0000000000001040 0 FUNC LOCAL DEFAULT 9 deregister_tm_clones
23: 0000000000001070 0 FUNC LOCAL DEFAULT 9 register_tm_clones
24: 00000000000010b0 0 FUNC LOCAL DEFAULT 9 __do_global_dtors_aux
25: 0000000000004020 1 OBJECT LOCAL DEFAULT 19 completed.7930
26: 0000000000003e88 0 OBJECT LOCAL DEFAULT 14 __do_global_dtors_aux_fin
27: 00000000000010f0 0 FUNC LOCAL DEFAULT 9 frame_dummy
28: 0000000000003e80 0 OBJECT LOCAL DEFAULT 13 __frame_dummy_init_array_
29: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
30: 0000000000000000 0 FILE LOCAL DEFAULT ABS crtstuff.c
31: 0000000000002094 0 OBJECT LOCAL DEFAULT 12 __FRAME_END__
32: 0000000000000000 0 FILE LOCAL DEFAULT ABS
33: 0000000000003e90 0 OBJECT LOCAL DEFAULT 15 _DYNAMIC
34: 0000000000004020 0 OBJECT LOCAL DEFAULT 18 __TMC_END__
35: 0000000000004018 0 OBJECT LOCAL DEFAULT 18 __dso_handle
36: 0000000000001000 0 FUNC LOCAL DEFAULT 6 _init
37: 0000000000002000 0 NOTYPE LOCAL DEFAULT 11 __GNU_EH_FRAME_HDR
38: 00000000000010fc 0 FUNC LOCAL DEFAULT 10 _fini
39: 0000000000004000 0 OBJECT LOCAL DEFAULT 17 _GLOBAL_OFFSET_TABLE_
40: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __cxa_finalize
41: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_registerTMCloneTable
42: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_deregisterTMCloneTab
43: 00000000000010f5 6 FUNC GLOBAL DEFAULT 9 bar
The symbols in the dynamic symbol table are the ones that are dynamically visible -
available to the runtime loader. You
can see that bar
appears both in the .symtab
and in the .dynsym
of libbar.so
.
In both cases, the symbol has GLOBAL
in the bind
( = binding)
column and DEFAULT
in the vis
( = visibility) column.
If you want readelf
to show you just the dynamic symbol table, then:
readelf --dyn-syms libbar.so
will do it, but not for foobar.o
, because an object file has no dynamic symbol table:
$ readelf --dyn-syms foobar.o; echo Done
Done
So the linkage:
$ gcc -shared -o libbar.so foobar.o
creates the dynamic symbol table of libbar.so
, and populates it with symbols
the from global symbol table of foobar.o
(and various GCC boilerplate
files that GCC adds to the linkage by defauilt).
This makes it look like your guess:
I roughly guess that all of the functions in .so file are automatically exported
is right. In fact it's close, but not correct.
See what happens if I recompile foobar.c
like this:
$ gcc -save-temps -fvisibility=hidden -c -fPIC foobar.c
Let's take another look at the assembly listing:
foobar.s (2)
...
...
.globl bar
.hidden bar
.type bar, @function
bar:
.LFB1:
.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
call foo
popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc
...
...
Notice the assembler directive:
.hidden bar
that wasn't there before. .globl bar
is still there; bar
is still a global
symbol. I can still statically link foobar.o
in this program:
$ gcc -o prog main.o foobar.o
$ ./prog
42
And I can still link this shared library:
$ gcc -shared -o libbar.so foobar.o
But I can no longer dynamically link this program:
$ gcc -o prog main.o libbar.so
/usr/bin/ld: main.o: in function `main':
main.c:(.text+0x5): undefined reference to `bar'
collect2: error: ld returned 1 exit status
In foobar.o
, bar
is still in the symbol table:
$ readelf -s foobar.o | grep bar
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
9: 000000000000000b 11 FUNC GLOBAL HIDDEN 1 bar
but it is now marked HIDDEN
in the vis
( = visibility
) column of the output.
And bar
is still in the symbol table of libbar.so
:
$ readelf -s libbar.so | grep bar
29: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
41: 0000000000001100 11 FUNC LOCAL DEFAULT 9 bar
But this time, it is a LOCAL
symbol. It will not be available to the static
linker from libbar.so
- as we saw just now when our linkage failed. And it is no longer in the
dynamic symbol table at all:
$ readelf --dyn-syms libbar.so | grep bar; echo done
done
So the effect of -fvisibility=hidden
, when compiling foobar.c
, is to make
the compiler annotate .globl
symbols as .hidden
in foobar.o
. Then, when
foobar.o
is linked into libbar.so
, the linker converts every global hidden
symbol to a local symbol in libbar.so
, so that it cannot be used to resolve references
whenever libbar.so
is linked with something else. And it does not add the hidden
symbols to the dynamic symbol table of libbar.so
, so the runtime loader cannot
see them to resolve references dynamically.
The story so far: When the linker creates a shared library, it adds to the dynamic
symbol table all of the global symbols that are defined in the input object files and are not marked hidden
by the compiler. These become the dynamically visible symbols of the shared library. Global symbols are not
hidden by default, but we can hide them with the compiler option -fvisibility=hidden
. The visibility
that this option refers to is dynamic visibility.
Now the ability to remove global symbols from dynamic visibility with -fvisibility=hidden
doesn't look very useful yet, because it seems that any object file we compile with
that option can contribute no dynamically visible symbols to a shared library.
But actually, we can control individually which global symbols defined in an object file
will be dynamically visible and which will not. Let's change foobar.c
as follows:
foobar.c (2)
static int foo(void)
{
return 42;
}
int __attribute__((visibility("default"))) bar(void)
{
return foo();
}
The __attribute__
syntax you see here is a GCC language extension
that is used to specify properties of symbols that are not expressible in the standard language - such as dynamic visibility. Microsoft's
declspec(dllexport)
is an Microsoft language extension with the same effect as GCC's __attribute__((visibility("default")))
,
But for GCC, global symbols defined in an object file will possess __attribute__((visibility("default")))
by default, and you
have to compile with -fvisibility=hidden
to override that.
Recompile like last time:
$ gcc -fvisibility=hidden -c -fPIC foobar.c
And now the symbol table of foobar.o
:
$ readelf -s foobar.o | grep bar
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
9: 000000000000000b 11 FUNC GLOBAL DEFAULT 1 bar
shows bar
with DEFAULT
visibility once again, despite -fvisibility=hidden
. And if we relink libbar.so
:
$ gcc -shared -o libbar.so foobar.o
we see that bar
is back in the dynamic symbol table:
$ readelf --dyn-syms libbar.so | grep bar
5: 0000000000001100 11 FUNC GLOBAL DEFAULT 9 bar
So, -fvisibility=hidden
tells the compiler to mark a global symbol as hidden
unless, in the source code, we explicitly specify a countervailing dynamic visibility
for that symbol.
That's one way to select precisely the symbols from an object file that we wish
to make dynamically visible: pass -fvisibility=hidden
to the compiler, and
individually specify __attribute__((visibility("default")))
, in the source code, for just
the symbols we want to be dynamically visible.
Another way is not to pass -fvisibility=hidden
to the compiler, and indvidually
specify __attribute__((visibility("hidden")))
, in the source code, for just the
symbols that we don't want to be dynamically visible. So if we change foobar.c
again
like so:
foobar.c (3)
static int foo(void)
{
return 42;
}
int __attribute__((visibility("hidden"))) bar(void)
{
return foo();
}
then recompile with default visibility:
$ gcc -c -fPIC foobar.c
bar
reverts to hidden in the object file:
$ readelf -s foobar.o | grep bar
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
9: 000000000000000b 11 FUNC GLOBAL HIDDEN 1 bar
And after relinking libbar.so
, bar
is again absent from its dynamic symbol
table:
$ gcc -shared -o libbar.so foobar.o
$ readelf --dyn-syms libbar.so | grep bar; echo Done
Done
The professional approach is to minimize the dynamic API of
a DSO to exactly what is specified. With the apparatus we've discussed,
that means compiling with -fvisibility=hidden
and using __attribute__((visibility("default")))
to
expose the specified API. A dynamic API can also be controlled - and versioned - with the GNU linker
using a type of linker script called a version-script: that is a
yet more professional approach.
Further reading:
GCC Wiki: Visibility
GCC Manual: Common Function Attributes ->
visibility ("visibility_type")
An .so
file is conventionally a DSO (Dynamic Shared Object, a.k.a shared library) in unix-like OSes. You want to
know how symbols defined in such a file are made visible to the runtime loader
for dynamic linkage of the DSO into the process of some program when
it's executed. That's what you mean by "exported". "Exported" is a somewhat
Windows/DLL-ish term, and is also apt to be confused with "external" or "global",
so we'll say dynamically visible instead.
I'll explain how dynamic visibility of symbols can be controlled in the context of
DSOs built with the GNU toolchain - i.e. compiled with a GCC compiler (gcc
,
g++
,gfortran
, etc.) and linked with the binutils linker ld
(or compatible
alternative compiler and linker). I'll illustrate with C code. The mechanics are
the same for other languages.
The symbols defined in an object file are the file-scope variables in the C source code. i.e. variables
that are not defined within any block. Block-scope variables:
{ int i; ... }
are defined only when the enclosing block is being executed and have no permanent
place in an object file.
The symbols defined in an object file generated by GCC are either local or global.
A local symbol can be referenced within the object file where it's defined but
the object file does not reveal it for linkage at all. Not for static linkage.
Not for dynamic linkage. In C, a file-scope variable definition is global
by default and local if it is qualified with the static
storage class. So
in this source file:
foobar.c (1)
static int foo(void)
{
return 42;
}
int bar(void)
{
return foo();
}
foo
is a local symbol and bar
is a global one. If we compile this file
with -save-temps
:
$ gcc -save-temps -c -fPIC foobar.c
then GCC will save the assembly listing in foobar.s
, and there we can
see how the generated assembly code registers the fact that bar
is global and foo
is not:
foobar.s (1)
.file "foobar.c"
.text
.type foo, @function
foo:
.LFB0:
.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
movl $42, %eax
popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc
.LFE0:
.size foo, .-foo
.globl bar
.type bar, @function
bar:
.LFB1:
.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
call foo
popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc
.LFE1:
.size bar, .-bar
.ident "GCC: (Ubuntu 8.2.0-7ubuntu1) 8.2.0"
.section .note.GNU-stack,"",@progbits
The assembler directive .globl bar
means that bar
is a global symbol.
There is no .globl foo
; so foo
is local.
And if we inspect the symbols in the object file itself, with
$ readelf -s foobar.o
Symbol table '.symtab' contains 10 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
2: 0000000000000000 0 SECTION LOCAL DEFAULT 1
3: 0000000000000000 0 SECTION LOCAL DEFAULT 2
4: 0000000000000000 0 SECTION LOCAL DEFAULT 3
5: 0000000000000000 11 FUNC LOCAL DEFAULT 1 foo
6: 0000000000000000 0 SECTION LOCAL DEFAULT 5
7: 0000000000000000 0 SECTION LOCAL DEFAULT 6
8: 0000000000000000 0 SECTION LOCAL DEFAULT 4
9: 000000000000000b 11 FUNC GLOBAL DEFAULT 1 bar
the message is the same:
5: 0000000000000000 11 FUNC LOCAL DEFAULT 1 foo
...
9: 000000000000000b 11 FUNC GLOBAL DEFAULT 1 bar
The global symbols defined in the object file, and only the global symbols,
are available to the static linker for resolving references in other object files. Indeed
the local symbols only appear in the symbol table of the file at all for possible
use by a debugger or some other object-file probing tool. If we redo the compilation
with even minimal optimisation:
$ gcc -save-temps -O1 -c -fPIC foobar.c
$ readelf -s foobar.o
Symbol table '.symtab' contains 9 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
2: 0000000000000000 0 SECTION LOCAL DEFAULT 1
3: 0000000000000000 0 SECTION LOCAL DEFAULT 2
4: 0000000000000000 0 SECTION LOCAL DEFAULT 3
5: 0000000000000000 0 SECTION LOCAL DEFAULT 5
6: 0000000000000000 0 SECTION LOCAL DEFAULT 6
7: 0000000000000000 0 SECTION LOCAL DEFAULT 4
8: 0000000000000000 6 FUNC GLOBAL DEFAULT 1 bar
then foo
disappears from the symbol table.
Since global symbols are available to the static linker, we can link a program
with foobar.o
that calls bar
from another object file:
main.c
#include <stdio.h>
extern int foo(void);
int main(void)
{
printf("%dn",bar());
return 0;
}
Like so:
$ gcc -c main.c
$ gcc -o prog main.o foobar.o
$ ./prog
42
But as you've noticed, we do not need to change foobar.o
in any way to make
bar
dynamically visible to the loader. We can just link it as it is into
a shared library:
$ gcc -shared -o libbar.so foobar.o
then dynamically link the same program with that shared library:
$ gcc -o prog main.o libbar.so
and it's fine:
$ ./prog
./prog: error while loading shared libraries: libbar.so: cannot open shared object file: No such file or directory
...Oops. It's fine as long as we let the loader know where libbar.so
is, since my
working directory here isn't one of the search directories that it caches by default:
$ export LD_LIBRARY_PATH=.
$ ./prog
42
The object file foobar.o
has a table of symbols as we've seen,
in the .symtab
section, including (at least) the global symbols that are available to the static linker.
The DSO libbar.so
has a symbol table in its .symtab
section too. But it also has a dynamic symbol table,
in it's .dynsym
section:
$ readelf -s libbar.so
Symbol table '.dynsym' contains 6 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __cxa_finalize
2: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_registerTMCloneTable
3: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_deregisterTMCloneTab
4: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__
5: 00000000000010f5 6 FUNC GLOBAL DEFAULT 9 bar
Symbol table '.symtab' contains 45 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
...
...
21: 0000000000000000 0 FILE LOCAL DEFAULT ABS crtstuff.c
22: 0000000000001040 0 FUNC LOCAL DEFAULT 9 deregister_tm_clones
23: 0000000000001070 0 FUNC LOCAL DEFAULT 9 register_tm_clones
24: 00000000000010b0 0 FUNC LOCAL DEFAULT 9 __do_global_dtors_aux
25: 0000000000004020 1 OBJECT LOCAL DEFAULT 19 completed.7930
26: 0000000000003e88 0 OBJECT LOCAL DEFAULT 14 __do_global_dtors_aux_fin
27: 00000000000010f0 0 FUNC LOCAL DEFAULT 9 frame_dummy
28: 0000000000003e80 0 OBJECT LOCAL DEFAULT 13 __frame_dummy_init_array_
29: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
30: 0000000000000000 0 FILE LOCAL DEFAULT ABS crtstuff.c
31: 0000000000002094 0 OBJECT LOCAL DEFAULT 12 __FRAME_END__
32: 0000000000000000 0 FILE LOCAL DEFAULT ABS
33: 0000000000003e90 0 OBJECT LOCAL DEFAULT 15 _DYNAMIC
34: 0000000000004020 0 OBJECT LOCAL DEFAULT 18 __TMC_END__
35: 0000000000004018 0 OBJECT LOCAL DEFAULT 18 __dso_handle
36: 0000000000001000 0 FUNC LOCAL DEFAULT 6 _init
37: 0000000000002000 0 NOTYPE LOCAL DEFAULT 11 __GNU_EH_FRAME_HDR
38: 00000000000010fc 0 FUNC LOCAL DEFAULT 10 _fini
39: 0000000000004000 0 OBJECT LOCAL DEFAULT 17 _GLOBAL_OFFSET_TABLE_
40: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __cxa_finalize
41: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_registerTMCloneTable
42: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_deregisterTMCloneTab
43: 00000000000010f5 6 FUNC GLOBAL DEFAULT 9 bar
The symbols in the dynamic symbol table are the ones that are dynamically visible -
available to the runtime loader. You
can see that bar
appears both in the .symtab
and in the .dynsym
of libbar.so
.
In both cases, the symbol has GLOBAL
in the bind
( = binding)
column and DEFAULT
in the vis
( = visibility) column.
If you want readelf
to show you just the dynamic symbol table, then:
readelf --dyn-syms libbar.so
will do it, but not for foobar.o
, because an object file has no dynamic symbol table:
$ readelf --dyn-syms foobar.o; echo Done
Done
So the linkage:
$ gcc -shared -o libbar.so foobar.o
creates the dynamic symbol table of libbar.so
, and populates it with symbols
the from global symbol table of foobar.o
(and various GCC boilerplate
files that GCC adds to the linkage by defauilt).
This makes it look like your guess:
I roughly guess that all of the functions in .so file are automatically exported
is right. In fact it's close, but not correct.
See what happens if I recompile foobar.c
like this:
$ gcc -save-temps -fvisibility=hidden -c -fPIC foobar.c
Let's take another look at the assembly listing:
foobar.s (2)
...
...
.globl bar
.hidden bar
.type bar, @function
bar:
.LFB1:
.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
call foo
popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc
...
...
Notice the assembler directive:
.hidden bar
that wasn't there before. .globl bar
is still there; bar
is still a global
symbol. I can still statically link foobar.o
in this program:
$ gcc -o prog main.o foobar.o
$ ./prog
42
And I can still link this shared library:
$ gcc -shared -o libbar.so foobar.o
But I can no longer dynamically link this program:
$ gcc -o prog main.o libbar.so
/usr/bin/ld: main.o: in function `main':
main.c:(.text+0x5): undefined reference to `bar'
collect2: error: ld returned 1 exit status
In foobar.o
, bar
is still in the symbol table:
$ readelf -s foobar.o | grep bar
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
9: 000000000000000b 11 FUNC GLOBAL HIDDEN 1 bar
but it is now marked HIDDEN
in the vis
( = visibility
) column of the output.
And bar
is still in the symbol table of libbar.so
:
$ readelf -s libbar.so | grep bar
29: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
41: 0000000000001100 11 FUNC LOCAL DEFAULT 9 bar
But this time, it is a LOCAL
symbol. It will not be available to the static
linker from libbar.so
- as we saw just now when our linkage failed. And it is no longer in the
dynamic symbol table at all:
$ readelf --dyn-syms libbar.so | grep bar; echo done
done
So the effect of -fvisibility=hidden
, when compiling foobar.c
, is to make
the compiler annotate .globl
symbols as .hidden
in foobar.o
. Then, when
foobar.o
is linked into libbar.so
, the linker converts every global hidden
symbol to a local symbol in libbar.so
, so that it cannot be used to resolve references
whenever libbar.so
is linked with something else. And it does not add the hidden
symbols to the dynamic symbol table of libbar.so
, so the runtime loader cannot
see them to resolve references dynamically.
The story so far: When the linker creates a shared library, it adds to the dynamic
symbol table all of the global symbols that are defined in the input object files and are not marked hidden
by the compiler. These become the dynamically visible symbols of the shared library. Global symbols are not
hidden by default, but we can hide them with the compiler option -fvisibility=hidden
. The visibility
that this option refers to is dynamic visibility.
Now the ability to remove global symbols from dynamic visibility with -fvisibility=hidden
doesn't look very useful yet, because it seems that any object file we compile with
that option can contribute no dynamically visible symbols to a shared library.
But actually, we can control individually which global symbols defined in an object file
will be dynamically visible and which will not. Let's change foobar.c
as follows:
foobar.c (2)
static int foo(void)
{
return 42;
}
int __attribute__((visibility("default"))) bar(void)
{
return foo();
}
The __attribute__
syntax you see here is a GCC language extension
that is used to specify properties of symbols that are not expressible in the standard language - such as dynamic visibility. Microsoft's
declspec(dllexport)
is an Microsoft language extension with the same effect as GCC's __attribute__((visibility("default")))
,
But for GCC, global symbols defined in an object file will possess __attribute__((visibility("default")))
by default, and you
have to compile with -fvisibility=hidden
to override that.
Recompile like last time:
$ gcc -fvisibility=hidden -c -fPIC foobar.c
And now the symbol table of foobar.o
:
$ readelf -s foobar.o | grep bar
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
9: 000000000000000b 11 FUNC GLOBAL DEFAULT 1 bar
shows bar
with DEFAULT
visibility once again, despite -fvisibility=hidden
. And if we relink libbar.so
:
$ gcc -shared -o libbar.so foobar.o
we see that bar
is back in the dynamic symbol table:
$ readelf --dyn-syms libbar.so | grep bar
5: 0000000000001100 11 FUNC GLOBAL DEFAULT 9 bar
So, -fvisibility=hidden
tells the compiler to mark a global symbol as hidden
unless, in the source code, we explicitly specify a countervailing dynamic visibility
for that symbol.
That's one way to select precisely the symbols from an object file that we wish
to make dynamically visible: pass -fvisibility=hidden
to the compiler, and
individually specify __attribute__((visibility("default")))
, in the source code, for just
the symbols we want to be dynamically visible.
Another way is not to pass -fvisibility=hidden
to the compiler, and indvidually
specify __attribute__((visibility("hidden")))
, in the source code, for just the
symbols that we don't want to be dynamically visible. So if we change foobar.c
again
like so:
foobar.c (3)
static int foo(void)
{
return 42;
}
int __attribute__((visibility("hidden"))) bar(void)
{
return foo();
}
then recompile with default visibility:
$ gcc -c -fPIC foobar.c
bar
reverts to hidden in the object file:
$ readelf -s foobar.o | grep bar
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foobar.c
9: 000000000000000b 11 FUNC GLOBAL HIDDEN 1 bar
And after relinking libbar.so
, bar
is again absent from its dynamic symbol
table:
$ gcc -shared -o libbar.so foobar.o
$ readelf --dyn-syms libbar.so | grep bar; echo Done
Done
The professional approach is to minimize the dynamic API of
a DSO to exactly what is specified. With the apparatus we've discussed,
that means compiling with -fvisibility=hidden
and using __attribute__((visibility("default")))
to
expose the specified API. A dynamic API can also be controlled - and versioned - with the GNU linker
using a type of linker script called a version-script: that is a
yet more professional approach.
Further reading:
GCC Wiki: Visibility
GCC Manual: Common Function Attributes ->
visibility ("visibility_type")
edited Jan 3 at 22:12
answered Jan 3 at 19:39
Mike KinghanMike Kinghan
32.2k869118
32.2k869118
What an excellent and comprehensive answer!
– Hyunjik Bae
Feb 7 at 8:08
add a comment |
What an excellent and comprehensive answer!
– Hyunjik Bae
Feb 7 at 8:08
What an excellent and comprehensive answer!
– Hyunjik Bae
Feb 7 at 8:08
What an excellent and comprehensive answer!
– Hyunjik Bae
Feb 7 at 8:08
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54000710%2fhow-can-it-be-done-that-functions-in-so-file-are-automatically-exported%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown