$I$ an irreducible ideal in a PID is a prime ideal
$begingroup$
$I$ is irreducible ideal of $R$ when $R$ is a PID , I want to show it's a prime ideal.
The definition I am familiar with: $I$ a proper ideal of $R$ is an irreducible ideal if for any two ideals $J,K$ such that $Isubseteq J$, $Isubseteq K$ , then $Ineq Jcap K$
Well denoting $I=langle arangle$ , Assuming $I$ is not a primes, means there are $x,yin R$ , such that $xyinlangle arangle$ such that $xnotinlangle a rangle$ , $ynotinlangle a rangle$.
Taking $langle x rangle cap langle y rangle$ , we get an ideal such that $ain langle x rangle cap langle y rangle$ because $a=xyin langle x rangle$ , $a=xyin langle y rangle$. So $langle a rangle subsetlangle x ranglecap langle y rangle$.
For $rin langle x ranglecap langle y rangle$
I tried to show $rin langle a rangle$ but didn't succeed, I gotthe next results:
- $r = xd , r=ye Rightarrow r^2=xyed=acdot edRightarrow r^2 in langle a rangle$
$r=xd , r=ye Rightarrow ry=xyd=ad$ and$ rx=yxe=aeRightarrow rx,ryin langle a rangle$.
abstract-algebra ring-theory ideals principal-ideal-domains
$endgroup$
add a comment |
$begingroup$
$I$ is irreducible ideal of $R$ when $R$ is a PID , I want to show it's a prime ideal.
The definition I am familiar with: $I$ a proper ideal of $R$ is an irreducible ideal if for any two ideals $J,K$ such that $Isubseteq J$, $Isubseteq K$ , then $Ineq Jcap K$
Well denoting $I=langle arangle$ , Assuming $I$ is not a primes, means there are $x,yin R$ , such that $xyinlangle arangle$ such that $xnotinlangle a rangle$ , $ynotinlangle a rangle$.
Taking $langle x rangle cap langle y rangle$ , we get an ideal such that $ain langle x rangle cap langle y rangle$ because $a=xyin langle x rangle$ , $a=xyin langle y rangle$. So $langle a rangle subsetlangle x ranglecap langle y rangle$.
For $rin langle x ranglecap langle y rangle$
I tried to show $rin langle a rangle$ but didn't succeed, I gotthe next results:
- $r = xd , r=ye Rightarrow r^2=xyed=acdot edRightarrow r^2 in langle a rangle$
$r=xd , r=ye Rightarrow ry=xyd=ad$ and$ rx=yxe=aeRightarrow rx,ryin langle a rangle$.
abstract-algebra ring-theory ideals principal-ideal-domains
$endgroup$
$begingroup$
The question in the link talks about $ain$PID is irreducible $Leftrightarrow$ $a$ is prime. Yet I am asking about an irreducible Ideal, not about an irreducible element. Can someone please explain the equivalence (if exists)?
$endgroup$
– dan
Jan 25 at 4:37
add a comment |
$begingroup$
$I$ is irreducible ideal of $R$ when $R$ is a PID , I want to show it's a prime ideal.
The definition I am familiar with: $I$ a proper ideal of $R$ is an irreducible ideal if for any two ideals $J,K$ such that $Isubseteq J$, $Isubseteq K$ , then $Ineq Jcap K$
Well denoting $I=langle arangle$ , Assuming $I$ is not a primes, means there are $x,yin R$ , such that $xyinlangle arangle$ such that $xnotinlangle a rangle$ , $ynotinlangle a rangle$.
Taking $langle x rangle cap langle y rangle$ , we get an ideal such that $ain langle x rangle cap langle y rangle$ because $a=xyin langle x rangle$ , $a=xyin langle y rangle$. So $langle a rangle subsetlangle x ranglecap langle y rangle$.
For $rin langle x ranglecap langle y rangle$
I tried to show $rin langle a rangle$ but didn't succeed, I gotthe next results:
- $r = xd , r=ye Rightarrow r^2=xyed=acdot edRightarrow r^2 in langle a rangle$
$r=xd , r=ye Rightarrow ry=xyd=ad$ and$ rx=yxe=aeRightarrow rx,ryin langle a rangle$.
abstract-algebra ring-theory ideals principal-ideal-domains
$endgroup$
$I$ is irreducible ideal of $R$ when $R$ is a PID , I want to show it's a prime ideal.
The definition I am familiar with: $I$ a proper ideal of $R$ is an irreducible ideal if for any two ideals $J,K$ such that $Isubseteq J$, $Isubseteq K$ , then $Ineq Jcap K$
Well denoting $I=langle arangle$ , Assuming $I$ is not a primes, means there are $x,yin R$ , such that $xyinlangle arangle$ such that $xnotinlangle a rangle$ , $ynotinlangle a rangle$.
Taking $langle x rangle cap langle y rangle$ , we get an ideal such that $ain langle x rangle cap langle y rangle$ because $a=xyin langle x rangle$ , $a=xyin langle y rangle$. So $langle a rangle subsetlangle x ranglecap langle y rangle$.
For $rin langle x ranglecap langle y rangle$
I tried to show $rin langle a rangle$ but didn't succeed, I gotthe next results:
- $r = xd , r=ye Rightarrow r^2=xyed=acdot edRightarrow r^2 in langle a rangle$
$r=xd , r=ye Rightarrow ry=xyd=ad$ and$ rx=yxe=aeRightarrow rx,ryin langle a rangle$.
abstract-algebra ring-theory ideals principal-ideal-domains
abstract-algebra ring-theory ideals principal-ideal-domains
edited Jan 25 at 10:02
dan
asked Jan 24 at 18:08
dandan
607613
607613
$begingroup$
The question in the link talks about $ain$PID is irreducible $Leftrightarrow$ $a$ is prime. Yet I am asking about an irreducible Ideal, not about an irreducible element. Can someone please explain the equivalence (if exists)?
$endgroup$
– dan
Jan 25 at 4:37
add a comment |
$begingroup$
The question in the link talks about $ain$PID is irreducible $Leftrightarrow$ $a$ is prime. Yet I am asking about an irreducible Ideal, not about an irreducible element. Can someone please explain the equivalence (if exists)?
$endgroup$
– dan
Jan 25 at 4:37
$begingroup$
The question in the link talks about $ain$PID is irreducible $Leftrightarrow$ $a$ is prime. Yet I am asking about an irreducible Ideal, not about an irreducible element. Can someone please explain the equivalence (if exists)?
$endgroup$
– dan
Jan 25 at 4:37
$begingroup$
The question in the link talks about $ain$PID is irreducible $Leftrightarrow$ $a$ is prime. Yet I am asking about an irreducible Ideal, not about an irreducible element. Can someone please explain the equivalence (if exists)?
$endgroup$
– dan
Jan 25 at 4:37
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086193%2fi-an-irreducible-ideal-in-a-pid-is-a-prime-ideal%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086193%2fi-an-irreducible-ideal-in-a-pid-is-a-prime-ideal%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The question in the link talks about $ain$PID is irreducible $Leftrightarrow$ $a$ is prime. Yet I am asking about an irreducible Ideal, not about an irreducible element. Can someone please explain the equivalence (if exists)?
$endgroup$
– dan
Jan 25 at 4:37