$mathbb{P}left {sup_{tin [0,delta]} B_{t} geq delta^{2/3}right} geq 1-delta^alpha$ as $delta$ tends to zero.












1












$begingroup$



$mathbb{P}left {sup_{tin [0,delta]} B_{t} geq delta^{2/3}right} geq 1-delta^alpha$ as $delta$ tends to zero.




Does this type of tail estimate exist in the literature?



By Blumenthal $0-1$ law, the limit would apprach to $1$ as $delta$ tends to zero since



$$mathbb{P}left {sup_{tin [0,delta]} B_{t} geq delta^{2/3}right} geq mathbb{P}left {B_{delta} geq delta^{2/3}right} = mathbb{P}left {frac{B_{delta}}{sqrt{delta}} geq delta^{1/6}right} = 1-Phi(delta^{1/6}) geq 1/10$$
and I was wondering if there is a precise tail estimate.










share|cite|improve this question









$endgroup$

















    1












    $begingroup$



    $mathbb{P}left {sup_{tin [0,delta]} B_{t} geq delta^{2/3}right} geq 1-delta^alpha$ as $delta$ tends to zero.




    Does this type of tail estimate exist in the literature?



    By Blumenthal $0-1$ law, the limit would apprach to $1$ as $delta$ tends to zero since



    $$mathbb{P}left {sup_{tin [0,delta]} B_{t} geq delta^{2/3}right} geq mathbb{P}left {B_{delta} geq delta^{2/3}right} = mathbb{P}left {frac{B_{delta}}{sqrt{delta}} geq delta^{1/6}right} = 1-Phi(delta^{1/6}) geq 1/10$$
    and I was wondering if there is a precise tail estimate.










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$



      $mathbb{P}left {sup_{tin [0,delta]} B_{t} geq delta^{2/3}right} geq 1-delta^alpha$ as $delta$ tends to zero.




      Does this type of tail estimate exist in the literature?



      By Blumenthal $0-1$ law, the limit would apprach to $1$ as $delta$ tends to zero since



      $$mathbb{P}left {sup_{tin [0,delta]} B_{t} geq delta^{2/3}right} geq mathbb{P}left {B_{delta} geq delta^{2/3}right} = mathbb{P}left {frac{B_{delta}}{sqrt{delta}} geq delta^{1/6}right} = 1-Phi(delta^{1/6}) geq 1/10$$
      and I was wondering if there is a precise tail estimate.










      share|cite|improve this question









      $endgroup$





      $mathbb{P}left {sup_{tin [0,delta]} B_{t} geq delta^{2/3}right} geq 1-delta^alpha$ as $delta$ tends to zero.




      Does this type of tail estimate exist in the literature?



      By Blumenthal $0-1$ law, the limit would apprach to $1$ as $delta$ tends to zero since



      $$mathbb{P}left {sup_{tin [0,delta]} B_{t} geq delta^{2/3}right} geq mathbb{P}left {B_{delta} geq delta^{2/3}right} = mathbb{P}left {frac{B_{delta}}{sqrt{delta}} geq delta^{1/6}right} = 1-Phi(delta^{1/6}) geq 1/10$$
      and I was wondering if there is a precise tail estimate.







      probability-theory stochastic-processes brownian-motion






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 24 at 18:19









      XiaoXiao

      4,84611636




      4,84611636






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          By the reflection principle, it holds that



          $$sup_{t in [0,delta]} B_t sim |B_{delta}|,$$



          and therefore



          $$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) = mathbb{P}(|B_{delta}| geq delta^{2/3}).$$



          As $|B_{delta}| sim sqrt{delta} |B_1|$ this gives



          $$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) =mathbb{P}(|B_1|geq delta^{4/3}) = 1-mathbb{P}(|B_1|< delta^{4/3}).$$



          Noting that



          $$mathbb{P}(|B_1| < delta^{4/3}) = frac{1}{sqrt{2pi}} int_{-delta^{4/3}}^{delta^{4/3}} exp left(- frac{y^2}{2} right) , dy$$



          we find that



          $$mathbb{P}(|B_1| < delta^{4/3}) approx sqrt{frac{2}{pi}} exp left(- frac{delta^{8/3}}{2} right) delta^{4/3} $$



          for small $delta>0$. This means that



          $$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) approx 1- sqrt{frac{2}{pi}} underbrace{exp left(- frac{delta^{8/3}}{2} right)}_{approx 1} delta^{4/3}$$



          for small $delta>0$.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086206%2fmathbbp-left-sup-t-in-0-delta-b-t-geq-delta2-3-right-geq-1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            By the reflection principle, it holds that



            $$sup_{t in [0,delta]} B_t sim |B_{delta}|,$$



            and therefore



            $$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) = mathbb{P}(|B_{delta}| geq delta^{2/3}).$$



            As $|B_{delta}| sim sqrt{delta} |B_1|$ this gives



            $$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) =mathbb{P}(|B_1|geq delta^{4/3}) = 1-mathbb{P}(|B_1|< delta^{4/3}).$$



            Noting that



            $$mathbb{P}(|B_1| < delta^{4/3}) = frac{1}{sqrt{2pi}} int_{-delta^{4/3}}^{delta^{4/3}} exp left(- frac{y^2}{2} right) , dy$$



            we find that



            $$mathbb{P}(|B_1| < delta^{4/3}) approx sqrt{frac{2}{pi}} exp left(- frac{delta^{8/3}}{2} right) delta^{4/3} $$



            for small $delta>0$. This means that



            $$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) approx 1- sqrt{frac{2}{pi}} underbrace{exp left(- frac{delta^{8/3}}{2} right)}_{approx 1} delta^{4/3}$$



            for small $delta>0$.






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              By the reflection principle, it holds that



              $$sup_{t in [0,delta]} B_t sim |B_{delta}|,$$



              and therefore



              $$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) = mathbb{P}(|B_{delta}| geq delta^{2/3}).$$



              As $|B_{delta}| sim sqrt{delta} |B_1|$ this gives



              $$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) =mathbb{P}(|B_1|geq delta^{4/3}) = 1-mathbb{P}(|B_1|< delta^{4/3}).$$



              Noting that



              $$mathbb{P}(|B_1| < delta^{4/3}) = frac{1}{sqrt{2pi}} int_{-delta^{4/3}}^{delta^{4/3}} exp left(- frac{y^2}{2} right) , dy$$



              we find that



              $$mathbb{P}(|B_1| < delta^{4/3}) approx sqrt{frac{2}{pi}} exp left(- frac{delta^{8/3}}{2} right) delta^{4/3} $$



              for small $delta>0$. This means that



              $$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) approx 1- sqrt{frac{2}{pi}} underbrace{exp left(- frac{delta^{8/3}}{2} right)}_{approx 1} delta^{4/3}$$



              for small $delta>0$.






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                By the reflection principle, it holds that



                $$sup_{t in [0,delta]} B_t sim |B_{delta}|,$$



                and therefore



                $$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) = mathbb{P}(|B_{delta}| geq delta^{2/3}).$$



                As $|B_{delta}| sim sqrt{delta} |B_1|$ this gives



                $$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) =mathbb{P}(|B_1|geq delta^{4/3}) = 1-mathbb{P}(|B_1|< delta^{4/3}).$$



                Noting that



                $$mathbb{P}(|B_1| < delta^{4/3}) = frac{1}{sqrt{2pi}} int_{-delta^{4/3}}^{delta^{4/3}} exp left(- frac{y^2}{2} right) , dy$$



                we find that



                $$mathbb{P}(|B_1| < delta^{4/3}) approx sqrt{frac{2}{pi}} exp left(- frac{delta^{8/3}}{2} right) delta^{4/3} $$



                for small $delta>0$. This means that



                $$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) approx 1- sqrt{frac{2}{pi}} underbrace{exp left(- frac{delta^{8/3}}{2} right)}_{approx 1} delta^{4/3}$$



                for small $delta>0$.






                share|cite|improve this answer











                $endgroup$



                By the reflection principle, it holds that



                $$sup_{t in [0,delta]} B_t sim |B_{delta}|,$$



                and therefore



                $$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) = mathbb{P}(|B_{delta}| geq delta^{2/3}).$$



                As $|B_{delta}| sim sqrt{delta} |B_1|$ this gives



                $$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) =mathbb{P}(|B_1|geq delta^{4/3}) = 1-mathbb{P}(|B_1|< delta^{4/3}).$$



                Noting that



                $$mathbb{P}(|B_1| < delta^{4/3}) = frac{1}{sqrt{2pi}} int_{-delta^{4/3}}^{delta^{4/3}} exp left(- frac{y^2}{2} right) , dy$$



                we find that



                $$mathbb{P}(|B_1| < delta^{4/3}) approx sqrt{frac{2}{pi}} exp left(- frac{delta^{8/3}}{2} right) delta^{4/3} $$



                for small $delta>0$. This means that



                $$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) approx 1- sqrt{frac{2}{pi}} underbrace{exp left(- frac{delta^{8/3}}{2} right)}_{approx 1} delta^{4/3}$$



                for small $delta>0$.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 25 at 11:34

























                answered Jan 24 at 18:44









                sazsaz

                81.8k861129




                81.8k861129






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086206%2fmathbbp-left-sup-t-in-0-delta-b-t-geq-delta2-3-right-geq-1%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    'app-layout' is not a known element: how to share Component with different Modules

                    android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                    WPF add header to Image with URL pettitions [duplicate]