$mathbb{P}left {sup_{tin [0,delta]} B_{t} geq delta^{2/3}right} geq 1-delta^alpha$ as $delta$ tends to zero.
$begingroup$
$mathbb{P}left {sup_{tin [0,delta]} B_{t} geq delta^{2/3}right} geq 1-delta^alpha$ as $delta$ tends to zero.
Does this type of tail estimate exist in the literature?
By Blumenthal $0-1$ law, the limit would apprach to $1$ as $delta$ tends to zero since
$$mathbb{P}left {sup_{tin [0,delta]} B_{t} geq delta^{2/3}right} geq mathbb{P}left {B_{delta} geq delta^{2/3}right} = mathbb{P}left {frac{B_{delta}}{sqrt{delta}} geq delta^{1/6}right} = 1-Phi(delta^{1/6}) geq 1/10$$
and I was wondering if there is a precise tail estimate.
probability-theory stochastic-processes brownian-motion
$endgroup$
add a comment |
$begingroup$
$mathbb{P}left {sup_{tin [0,delta]} B_{t} geq delta^{2/3}right} geq 1-delta^alpha$ as $delta$ tends to zero.
Does this type of tail estimate exist in the literature?
By Blumenthal $0-1$ law, the limit would apprach to $1$ as $delta$ tends to zero since
$$mathbb{P}left {sup_{tin [0,delta]} B_{t} geq delta^{2/3}right} geq mathbb{P}left {B_{delta} geq delta^{2/3}right} = mathbb{P}left {frac{B_{delta}}{sqrt{delta}} geq delta^{1/6}right} = 1-Phi(delta^{1/6}) geq 1/10$$
and I was wondering if there is a precise tail estimate.
probability-theory stochastic-processes brownian-motion
$endgroup$
add a comment |
$begingroup$
$mathbb{P}left {sup_{tin [0,delta]} B_{t} geq delta^{2/3}right} geq 1-delta^alpha$ as $delta$ tends to zero.
Does this type of tail estimate exist in the literature?
By Blumenthal $0-1$ law, the limit would apprach to $1$ as $delta$ tends to zero since
$$mathbb{P}left {sup_{tin [0,delta]} B_{t} geq delta^{2/3}right} geq mathbb{P}left {B_{delta} geq delta^{2/3}right} = mathbb{P}left {frac{B_{delta}}{sqrt{delta}} geq delta^{1/6}right} = 1-Phi(delta^{1/6}) geq 1/10$$
and I was wondering if there is a precise tail estimate.
probability-theory stochastic-processes brownian-motion
$endgroup$
$mathbb{P}left {sup_{tin [0,delta]} B_{t} geq delta^{2/3}right} geq 1-delta^alpha$ as $delta$ tends to zero.
Does this type of tail estimate exist in the literature?
By Blumenthal $0-1$ law, the limit would apprach to $1$ as $delta$ tends to zero since
$$mathbb{P}left {sup_{tin [0,delta]} B_{t} geq delta^{2/3}right} geq mathbb{P}left {B_{delta} geq delta^{2/3}right} = mathbb{P}left {frac{B_{delta}}{sqrt{delta}} geq delta^{1/6}right} = 1-Phi(delta^{1/6}) geq 1/10$$
and I was wondering if there is a precise tail estimate.
probability-theory stochastic-processes brownian-motion
probability-theory stochastic-processes brownian-motion
asked Jan 24 at 18:19
XiaoXiao
4,84611636
4,84611636
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
By the reflection principle, it holds that
$$sup_{t in [0,delta]} B_t sim |B_{delta}|,$$
and therefore
$$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) = mathbb{P}(|B_{delta}| geq delta^{2/3}).$$
As $|B_{delta}| sim sqrt{delta} |B_1|$ this gives
$$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) =mathbb{P}(|B_1|geq delta^{4/3}) = 1-mathbb{P}(|B_1|< delta^{4/3}).$$
Noting that
$$mathbb{P}(|B_1| < delta^{4/3}) = frac{1}{sqrt{2pi}} int_{-delta^{4/3}}^{delta^{4/3}} exp left(- frac{y^2}{2} right) , dy$$
we find that
$$mathbb{P}(|B_1| < delta^{4/3}) approx sqrt{frac{2}{pi}} exp left(- frac{delta^{8/3}}{2} right) delta^{4/3} $$
for small $delta>0$. This means that
$$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) approx 1- sqrt{frac{2}{pi}} underbrace{exp left(- frac{delta^{8/3}}{2} right)}_{approx 1} delta^{4/3}$$
for small $delta>0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086206%2fmathbbp-left-sup-t-in-0-delta-b-t-geq-delta2-3-right-geq-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By the reflection principle, it holds that
$$sup_{t in [0,delta]} B_t sim |B_{delta}|,$$
and therefore
$$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) = mathbb{P}(|B_{delta}| geq delta^{2/3}).$$
As $|B_{delta}| sim sqrt{delta} |B_1|$ this gives
$$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) =mathbb{P}(|B_1|geq delta^{4/3}) = 1-mathbb{P}(|B_1|< delta^{4/3}).$$
Noting that
$$mathbb{P}(|B_1| < delta^{4/3}) = frac{1}{sqrt{2pi}} int_{-delta^{4/3}}^{delta^{4/3}} exp left(- frac{y^2}{2} right) , dy$$
we find that
$$mathbb{P}(|B_1| < delta^{4/3}) approx sqrt{frac{2}{pi}} exp left(- frac{delta^{8/3}}{2} right) delta^{4/3} $$
for small $delta>0$. This means that
$$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) approx 1- sqrt{frac{2}{pi}} underbrace{exp left(- frac{delta^{8/3}}{2} right)}_{approx 1} delta^{4/3}$$
for small $delta>0$.
$endgroup$
add a comment |
$begingroup$
By the reflection principle, it holds that
$$sup_{t in [0,delta]} B_t sim |B_{delta}|,$$
and therefore
$$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) = mathbb{P}(|B_{delta}| geq delta^{2/3}).$$
As $|B_{delta}| sim sqrt{delta} |B_1|$ this gives
$$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) =mathbb{P}(|B_1|geq delta^{4/3}) = 1-mathbb{P}(|B_1|< delta^{4/3}).$$
Noting that
$$mathbb{P}(|B_1| < delta^{4/3}) = frac{1}{sqrt{2pi}} int_{-delta^{4/3}}^{delta^{4/3}} exp left(- frac{y^2}{2} right) , dy$$
we find that
$$mathbb{P}(|B_1| < delta^{4/3}) approx sqrt{frac{2}{pi}} exp left(- frac{delta^{8/3}}{2} right) delta^{4/3} $$
for small $delta>0$. This means that
$$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) approx 1- sqrt{frac{2}{pi}} underbrace{exp left(- frac{delta^{8/3}}{2} right)}_{approx 1} delta^{4/3}$$
for small $delta>0$.
$endgroup$
add a comment |
$begingroup$
By the reflection principle, it holds that
$$sup_{t in [0,delta]} B_t sim |B_{delta}|,$$
and therefore
$$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) = mathbb{P}(|B_{delta}| geq delta^{2/3}).$$
As $|B_{delta}| sim sqrt{delta} |B_1|$ this gives
$$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) =mathbb{P}(|B_1|geq delta^{4/3}) = 1-mathbb{P}(|B_1|< delta^{4/3}).$$
Noting that
$$mathbb{P}(|B_1| < delta^{4/3}) = frac{1}{sqrt{2pi}} int_{-delta^{4/3}}^{delta^{4/3}} exp left(- frac{y^2}{2} right) , dy$$
we find that
$$mathbb{P}(|B_1| < delta^{4/3}) approx sqrt{frac{2}{pi}} exp left(- frac{delta^{8/3}}{2} right) delta^{4/3} $$
for small $delta>0$. This means that
$$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) approx 1- sqrt{frac{2}{pi}} underbrace{exp left(- frac{delta^{8/3}}{2} right)}_{approx 1} delta^{4/3}$$
for small $delta>0$.
$endgroup$
By the reflection principle, it holds that
$$sup_{t in [0,delta]} B_t sim |B_{delta}|,$$
and therefore
$$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) = mathbb{P}(|B_{delta}| geq delta^{2/3}).$$
As $|B_{delta}| sim sqrt{delta} |B_1|$ this gives
$$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) =mathbb{P}(|B_1|geq delta^{4/3}) = 1-mathbb{P}(|B_1|< delta^{4/3}).$$
Noting that
$$mathbb{P}(|B_1| < delta^{4/3}) = frac{1}{sqrt{2pi}} int_{-delta^{4/3}}^{delta^{4/3}} exp left(- frac{y^2}{2} right) , dy$$
we find that
$$mathbb{P}(|B_1| < delta^{4/3}) approx sqrt{frac{2}{pi}} exp left(- frac{delta^{8/3}}{2} right) delta^{4/3} $$
for small $delta>0$. This means that
$$mathbb{P} left( sup_{t in [0,delta]} B_t geq delta^{2/3} right) approx 1- sqrt{frac{2}{pi}} underbrace{exp left(- frac{delta^{8/3}}{2} right)}_{approx 1} delta^{4/3}$$
for small $delta>0$.
edited Jan 25 at 11:34
answered Jan 24 at 18:44
sazsaz
81.8k861129
81.8k861129
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086206%2fmathbbp-left-sup-t-in-0-delta-b-t-geq-delta2-3-right-geq-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown