Derivative of a function with summation
$begingroup$
Can someone please help me to verify whether the derivative of the following function:
$$z(zeta)=frac{R}{2}left[aleft(frac{1}{zeta}+sum_{k=1}^{N}m_kzeta^kright)+bleft(zeta+sum_{k=1}^{N}frac{m_k}{zeta^k}right)right]$$
with respect to $zeta$
is this one below?
$$frac{dz}{dzeta}=frac{R}{2}left[aleft(-frac{1}{zeta^2}+sum_{k=1}^{N}km_kzeta^{k-1}right)+bleft(1-sum_{k=1}^{N}km_kzeta^{-k-1}right)right]$$
in which $m_k$, $R$, $a$ and $b$ are all constants.
Can someone please help me to verify? I am just not so sure about my own result.
derivatives
$endgroup$
add a comment |
$begingroup$
Can someone please help me to verify whether the derivative of the following function:
$$z(zeta)=frac{R}{2}left[aleft(frac{1}{zeta}+sum_{k=1}^{N}m_kzeta^kright)+bleft(zeta+sum_{k=1}^{N}frac{m_k}{zeta^k}right)right]$$
with respect to $zeta$
is this one below?
$$frac{dz}{dzeta}=frac{R}{2}left[aleft(-frac{1}{zeta^2}+sum_{k=1}^{N}km_kzeta^{k-1}right)+bleft(1-sum_{k=1}^{N}km_kzeta^{-k-1}right)right]$$
in which $m_k$, $R$, $a$ and $b$ are all constants.
Can someone please help me to verify? I am just not so sure about my own result.
derivatives
$endgroup$
1
$begingroup$
Yes, this is right.
$endgroup$
– Yves Daoust
Jan 24 at 18:41
$begingroup$
Thanks @YvesDaoust
$endgroup$
– BeeTiau
Jan 26 at 23:00
add a comment |
$begingroup$
Can someone please help me to verify whether the derivative of the following function:
$$z(zeta)=frac{R}{2}left[aleft(frac{1}{zeta}+sum_{k=1}^{N}m_kzeta^kright)+bleft(zeta+sum_{k=1}^{N}frac{m_k}{zeta^k}right)right]$$
with respect to $zeta$
is this one below?
$$frac{dz}{dzeta}=frac{R}{2}left[aleft(-frac{1}{zeta^2}+sum_{k=1}^{N}km_kzeta^{k-1}right)+bleft(1-sum_{k=1}^{N}km_kzeta^{-k-1}right)right]$$
in which $m_k$, $R$, $a$ and $b$ are all constants.
Can someone please help me to verify? I am just not so sure about my own result.
derivatives
$endgroup$
Can someone please help me to verify whether the derivative of the following function:
$$z(zeta)=frac{R}{2}left[aleft(frac{1}{zeta}+sum_{k=1}^{N}m_kzeta^kright)+bleft(zeta+sum_{k=1}^{N}frac{m_k}{zeta^k}right)right]$$
with respect to $zeta$
is this one below?
$$frac{dz}{dzeta}=frac{R}{2}left[aleft(-frac{1}{zeta^2}+sum_{k=1}^{N}km_kzeta^{k-1}right)+bleft(1-sum_{k=1}^{N}km_kzeta^{-k-1}right)right]$$
in which $m_k$, $R$, $a$ and $b$ are all constants.
Can someone please help me to verify? I am just not so sure about my own result.
derivatives
derivatives
edited Jan 24 at 18:40
Yves Daoust
130k676229
130k676229
asked Jan 24 at 18:17
BeeTiauBeeTiau
758
758
1
$begingroup$
Yes, this is right.
$endgroup$
– Yves Daoust
Jan 24 at 18:41
$begingroup$
Thanks @YvesDaoust
$endgroup$
– BeeTiau
Jan 26 at 23:00
add a comment |
1
$begingroup$
Yes, this is right.
$endgroup$
– Yves Daoust
Jan 24 at 18:41
$begingroup$
Thanks @YvesDaoust
$endgroup$
– BeeTiau
Jan 26 at 23:00
1
1
$begingroup$
Yes, this is right.
$endgroup$
– Yves Daoust
Jan 24 at 18:41
$begingroup$
Yes, this is right.
$endgroup$
– Yves Daoust
Jan 24 at 18:41
$begingroup$
Thanks @YvesDaoust
$endgroup$
– BeeTiau
Jan 26 at 23:00
$begingroup$
Thanks @YvesDaoust
$endgroup$
– BeeTiau
Jan 26 at 23:00
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The above derivation is correct.
$$frac{dz}{dzeta}=frac{R}{2}left[aleft(-frac{1}{zeta^2}+sum_{k=1}^{N}km_kzeta^{k-1}right)+bleft(1-sum_{k=1}^{N}km_kzeta^{-k-1}right)right]$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086202%2fderivative-of-a-function-with-summation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The above derivation is correct.
$$frac{dz}{dzeta}=frac{R}{2}left[aleft(-frac{1}{zeta^2}+sum_{k=1}^{N}km_kzeta^{k-1}right)+bleft(1-sum_{k=1}^{N}km_kzeta^{-k-1}right)right]$$
$endgroup$
add a comment |
$begingroup$
The above derivation is correct.
$$frac{dz}{dzeta}=frac{R}{2}left[aleft(-frac{1}{zeta^2}+sum_{k=1}^{N}km_kzeta^{k-1}right)+bleft(1-sum_{k=1}^{N}km_kzeta^{-k-1}right)right]$$
$endgroup$
add a comment |
$begingroup$
The above derivation is correct.
$$frac{dz}{dzeta}=frac{R}{2}left[aleft(-frac{1}{zeta^2}+sum_{k=1}^{N}km_kzeta^{k-1}right)+bleft(1-sum_{k=1}^{N}km_kzeta^{-k-1}right)right]$$
$endgroup$
The above derivation is correct.
$$frac{dz}{dzeta}=frac{R}{2}left[aleft(-frac{1}{zeta^2}+sum_{k=1}^{N}km_kzeta^{k-1}right)+bleft(1-sum_{k=1}^{N}km_kzeta^{-k-1}right)right]$$
answered Jan 26 at 23:01
BeeTiauBeeTiau
758
758
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086202%2fderivative-of-a-function-with-summation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Yes, this is right.
$endgroup$
– Yves Daoust
Jan 24 at 18:41
$begingroup$
Thanks @YvesDaoust
$endgroup$
– BeeTiau
Jan 26 at 23:00