general solution for double integral of square root of quadratic polynomials












1












$begingroup$


I wonder if there is a closed-form solution for double integral of square root of quadratic polynomials. Such as
$$
int _0 ^1 int _0 ^1 sqrt{a cdot x^2 + b cdot y^2 + c cdot x cdot y + d cdot x+ecdot y +1 } dx dy
$$

I have tried to solve
$$
int _0 ^1 sqrt{a cdot x^2 + b cdot y^2 + c cdot x cdot y + d cdot x+ecdot y +1 } dx
$$

and this has a closed form of solution, but is very complicated that makes it nearlly impossible to get the integral further on y.



So I wonder if a closed form solution really exists, does anyone have some ideas?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Would it help to rotate in the $(x,y)$-plane to get rid of the $xy$-term, namely $cxy$? Then couldn’t you complete the square (shift the origin) to get your integrand to be something like $(a'xi^2+b'eta^2)^{1/2}$ ?
    $endgroup$
    – Lubin
    Jan 23 at 16:22










  • $begingroup$
    @Lubin thank you very much for your comment! But this only transforms the complexity from the polynomial to the domain and therefore does not simplify the final work.
    $endgroup$
    – Feng
    Jan 25 at 17:09
















1












$begingroup$


I wonder if there is a closed-form solution for double integral of square root of quadratic polynomials. Such as
$$
int _0 ^1 int _0 ^1 sqrt{a cdot x^2 + b cdot y^2 + c cdot x cdot y + d cdot x+ecdot y +1 } dx dy
$$

I have tried to solve
$$
int _0 ^1 sqrt{a cdot x^2 + b cdot y^2 + c cdot x cdot y + d cdot x+ecdot y +1 } dx
$$

and this has a closed form of solution, but is very complicated that makes it nearlly impossible to get the integral further on y.



So I wonder if a closed form solution really exists, does anyone have some ideas?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Would it help to rotate in the $(x,y)$-plane to get rid of the $xy$-term, namely $cxy$? Then couldn’t you complete the square (shift the origin) to get your integrand to be something like $(a'xi^2+b'eta^2)^{1/2}$ ?
    $endgroup$
    – Lubin
    Jan 23 at 16:22










  • $begingroup$
    @Lubin thank you very much for your comment! But this only transforms the complexity from the polynomial to the domain and therefore does not simplify the final work.
    $endgroup$
    – Feng
    Jan 25 at 17:09














1












1








1





$begingroup$


I wonder if there is a closed-form solution for double integral of square root of quadratic polynomials. Such as
$$
int _0 ^1 int _0 ^1 sqrt{a cdot x^2 + b cdot y^2 + c cdot x cdot y + d cdot x+ecdot y +1 } dx dy
$$

I have tried to solve
$$
int _0 ^1 sqrt{a cdot x^2 + b cdot y^2 + c cdot x cdot y + d cdot x+ecdot y +1 } dx
$$

and this has a closed form of solution, but is very complicated that makes it nearlly impossible to get the integral further on y.



So I wonder if a closed form solution really exists, does anyone have some ideas?










share|cite|improve this question











$endgroup$




I wonder if there is a closed-form solution for double integral of square root of quadratic polynomials. Such as
$$
int _0 ^1 int _0 ^1 sqrt{a cdot x^2 + b cdot y^2 + c cdot x cdot y + d cdot x+ecdot y +1 } dx dy
$$

I have tried to solve
$$
int _0 ^1 sqrt{a cdot x^2 + b cdot y^2 + c cdot x cdot y + d cdot x+ecdot y +1 } dx
$$

and this has a closed form of solution, but is very complicated that makes it nearlly impossible to get the integral further on y.



So I wonder if a closed form solution really exists, does anyone have some ideas?







integration multivariable-calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 26 at 19:51







Feng

















asked Jan 23 at 16:16









FengFeng

62




62








  • 1




    $begingroup$
    Would it help to rotate in the $(x,y)$-plane to get rid of the $xy$-term, namely $cxy$? Then couldn’t you complete the square (shift the origin) to get your integrand to be something like $(a'xi^2+b'eta^2)^{1/2}$ ?
    $endgroup$
    – Lubin
    Jan 23 at 16:22










  • $begingroup$
    @Lubin thank you very much for your comment! But this only transforms the complexity from the polynomial to the domain and therefore does not simplify the final work.
    $endgroup$
    – Feng
    Jan 25 at 17:09














  • 1




    $begingroup$
    Would it help to rotate in the $(x,y)$-plane to get rid of the $xy$-term, namely $cxy$? Then couldn’t you complete the square (shift the origin) to get your integrand to be something like $(a'xi^2+b'eta^2)^{1/2}$ ?
    $endgroup$
    – Lubin
    Jan 23 at 16:22










  • $begingroup$
    @Lubin thank you very much for your comment! But this only transforms the complexity from the polynomial to the domain and therefore does not simplify the final work.
    $endgroup$
    – Feng
    Jan 25 at 17:09








1




1




$begingroup$
Would it help to rotate in the $(x,y)$-plane to get rid of the $xy$-term, namely $cxy$? Then couldn’t you complete the square (shift the origin) to get your integrand to be something like $(a'xi^2+b'eta^2)^{1/2}$ ?
$endgroup$
– Lubin
Jan 23 at 16:22




$begingroup$
Would it help to rotate in the $(x,y)$-plane to get rid of the $xy$-term, namely $cxy$? Then couldn’t you complete the square (shift the origin) to get your integrand to be something like $(a'xi^2+b'eta^2)^{1/2}$ ?
$endgroup$
– Lubin
Jan 23 at 16:22












$begingroup$
@Lubin thank you very much for your comment! But this only transforms the complexity from the polynomial to the domain and therefore does not simplify the final work.
$endgroup$
– Feng
Jan 25 at 17:09




$begingroup$
@Lubin thank you very much for your comment! But this only transforms the complexity from the polynomial to the domain and therefore does not simplify the final work.
$endgroup$
– Feng
Jan 25 at 17:09










1 Answer
1






active

oldest

votes


















1












$begingroup$

MAPLE got:



$int _0^1int_0^1sqrt{acdot x^2+bcdot y^2+ccdot xcdot y+dcdot x+ecdot y +1 } dx dy$



$$=frac{1}{8}left(-4,ablnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,ablnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)-4,aelnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,aelnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+{c}^{2}lnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-{c}^{2}lnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+2,cdlnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-2,cdlnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)-{d}^{2}lnleft({frac{d+2,sqrt{a}}{sqrt{a}}}right)+{d}^{2}lnleft({frac{2,a+d+2,sqrt{a+d+1}sqrt{a}}{sqrt{a}}}right)+{d}^{2}lnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-{d}^{2}lnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+4,alnleft({frac{d+2,sqrt{a}}{sqrt{a}}}right)-4,alnleft({frac{2,a+d+2,sqrt{a+d+1}sqrt{a}}{sqrt{a}}}right)-4,alnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,alnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+4,sqrt{a+b+c+d+e+1}{a}^{3/2}-4,sqrt{a+d+1}{a}^{3/2}+2,sqrt{a+b+c+d+e+1}sqrt{a}c-2,sqrt{b+e+1}sqrt{a}c+2,sqrt{a}d+2,sqrt{a+b+c+d+e+1}sqrt{a}d-2,sqrt{b+e+1}sqrt{a}d-2,sqrt{a+d+1}sqrt{a}dright){a}^{-3/2}$$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084694%2fgeneral-solution-for-double-integral-of-square-root-of-quadratic-polynomials%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    MAPLE got:



    $int _0^1int_0^1sqrt{acdot x^2+bcdot y^2+ccdot xcdot y+dcdot x+ecdot y +1 } dx dy$



    $$=frac{1}{8}left(-4,ablnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,ablnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)-4,aelnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,aelnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+{c}^{2}lnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-{c}^{2}lnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+2,cdlnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-2,cdlnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)-{d}^{2}lnleft({frac{d+2,sqrt{a}}{sqrt{a}}}right)+{d}^{2}lnleft({frac{2,a+d+2,sqrt{a+d+1}sqrt{a}}{sqrt{a}}}right)+{d}^{2}lnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-{d}^{2}lnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+4,alnleft({frac{d+2,sqrt{a}}{sqrt{a}}}right)-4,alnleft({frac{2,a+d+2,sqrt{a+d+1}sqrt{a}}{sqrt{a}}}right)-4,alnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,alnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+4,sqrt{a+b+c+d+e+1}{a}^{3/2}-4,sqrt{a+d+1}{a}^{3/2}+2,sqrt{a+b+c+d+e+1}sqrt{a}c-2,sqrt{b+e+1}sqrt{a}c+2,sqrt{a}d+2,sqrt{a+b+c+d+e+1}sqrt{a}d-2,sqrt{b+e+1}sqrt{a}d-2,sqrt{a+d+1}sqrt{a}dright){a}^{-3/2}$$






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      MAPLE got:



      $int _0^1int_0^1sqrt{acdot x^2+bcdot y^2+ccdot xcdot y+dcdot x+ecdot y +1 } dx dy$



      $$=frac{1}{8}left(-4,ablnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,ablnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)-4,aelnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,aelnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+{c}^{2}lnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-{c}^{2}lnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+2,cdlnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-2,cdlnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)-{d}^{2}lnleft({frac{d+2,sqrt{a}}{sqrt{a}}}right)+{d}^{2}lnleft({frac{2,a+d+2,sqrt{a+d+1}sqrt{a}}{sqrt{a}}}right)+{d}^{2}lnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-{d}^{2}lnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+4,alnleft({frac{d+2,sqrt{a}}{sqrt{a}}}right)-4,alnleft({frac{2,a+d+2,sqrt{a+d+1}sqrt{a}}{sqrt{a}}}right)-4,alnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,alnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+4,sqrt{a+b+c+d+e+1}{a}^{3/2}-4,sqrt{a+d+1}{a}^{3/2}+2,sqrt{a+b+c+d+e+1}sqrt{a}c-2,sqrt{b+e+1}sqrt{a}c+2,sqrt{a}d+2,sqrt{a+b+c+d+e+1}sqrt{a}d-2,sqrt{b+e+1}sqrt{a}d-2,sqrt{a+d+1}sqrt{a}dright){a}^{-3/2}$$






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        MAPLE got:



        $int _0^1int_0^1sqrt{acdot x^2+bcdot y^2+ccdot xcdot y+dcdot x+ecdot y +1 } dx dy$



        $$=frac{1}{8}left(-4,ablnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,ablnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)-4,aelnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,aelnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+{c}^{2}lnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-{c}^{2}lnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+2,cdlnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-2,cdlnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)-{d}^{2}lnleft({frac{d+2,sqrt{a}}{sqrt{a}}}right)+{d}^{2}lnleft({frac{2,a+d+2,sqrt{a+d+1}sqrt{a}}{sqrt{a}}}right)+{d}^{2}lnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-{d}^{2}lnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+4,alnleft({frac{d+2,sqrt{a}}{sqrt{a}}}right)-4,alnleft({frac{2,a+d+2,sqrt{a+d+1}sqrt{a}}{sqrt{a}}}right)-4,alnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,alnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+4,sqrt{a+b+c+d+e+1}{a}^{3/2}-4,sqrt{a+d+1}{a}^{3/2}+2,sqrt{a+b+c+d+e+1}sqrt{a}c-2,sqrt{b+e+1}sqrt{a}c+2,sqrt{a}d+2,sqrt{a+b+c+d+e+1}sqrt{a}d-2,sqrt{b+e+1}sqrt{a}d-2,sqrt{a+d+1}sqrt{a}dright){a}^{-3/2}$$






        share|cite|improve this answer











        $endgroup$



        MAPLE got:



        $int _0^1int_0^1sqrt{acdot x^2+bcdot y^2+ccdot xcdot y+dcdot x+ecdot y +1 } dx dy$



        $$=frac{1}{8}left(-4,ablnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,ablnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)-4,aelnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,aelnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+{c}^{2}lnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-{c}^{2}lnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+2,cdlnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-2,cdlnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)-{d}^{2}lnleft({frac{d+2,sqrt{a}}{sqrt{a}}}right)+{d}^{2}lnleft({frac{2,a+d+2,sqrt{a+d+1}sqrt{a}}{sqrt{a}}}right)+{d}^{2}lnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-{d}^{2}lnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+4,alnleft({frac{d+2,sqrt{a}}{sqrt{a}}}right)-4,alnleft({frac{2,a+d+2,sqrt{a+d+1}sqrt{a}}{sqrt{a}}}right)-4,alnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,alnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+4,sqrt{a+b+c+d+e+1}{a}^{3/2}-4,sqrt{a+d+1}{a}^{3/2}+2,sqrt{a+b+c+d+e+1}sqrt{a}c-2,sqrt{b+e+1}sqrt{a}c+2,sqrt{a}d+2,sqrt{a+b+c+d+e+1}sqrt{a}d-2,sqrt{b+e+1}sqrt{a}d-2,sqrt{a+d+1}sqrt{a}dright){a}^{-3/2}$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 27 at 13:43

























        answered Jan 25 at 18:25









        IV_IV_

        1,511525




        1,511525






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084694%2fgeneral-solution-for-double-integral-of-square-root-of-quadratic-polynomials%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

            Npm cannot find a required file even through it is in the searched directory