general solution for double integral of square root of quadratic polynomials
$begingroup$
I wonder if there is a closed-form solution for double integral of square root of quadratic polynomials. Such as
$$
int _0 ^1 int _0 ^1 sqrt{a cdot x^2 + b cdot y^2 + c cdot x cdot y + d cdot x+ecdot y +1 } dx dy
$$
I have tried to solve
$$
int _0 ^1 sqrt{a cdot x^2 + b cdot y^2 + c cdot x cdot y + d cdot x+ecdot y +1 } dx
$$
and this has a closed form of solution, but is very complicated that makes it nearlly impossible to get the integral further on y.
So I wonder if a closed form solution really exists, does anyone have some ideas?
integration multivariable-calculus
$endgroup$
add a comment |
$begingroup$
I wonder if there is a closed-form solution for double integral of square root of quadratic polynomials. Such as
$$
int _0 ^1 int _0 ^1 sqrt{a cdot x^2 + b cdot y^2 + c cdot x cdot y + d cdot x+ecdot y +1 } dx dy
$$
I have tried to solve
$$
int _0 ^1 sqrt{a cdot x^2 + b cdot y^2 + c cdot x cdot y + d cdot x+ecdot y +1 } dx
$$
and this has a closed form of solution, but is very complicated that makes it nearlly impossible to get the integral further on y.
So I wonder if a closed form solution really exists, does anyone have some ideas?
integration multivariable-calculus
$endgroup$
1
$begingroup$
Would it help to rotate in the $(x,y)$-plane to get rid of the $xy$-term, namely $cxy$? Then couldn’t you complete the square (shift the origin) to get your integrand to be something like $(a'xi^2+b'eta^2)^{1/2}$ ?
$endgroup$
– Lubin
Jan 23 at 16:22
$begingroup$
@Lubin thank you very much for your comment! But this only transforms the complexity from the polynomial to the domain and therefore does not simplify the final work.
$endgroup$
– Feng
Jan 25 at 17:09
add a comment |
$begingroup$
I wonder if there is a closed-form solution for double integral of square root of quadratic polynomials. Such as
$$
int _0 ^1 int _0 ^1 sqrt{a cdot x^2 + b cdot y^2 + c cdot x cdot y + d cdot x+ecdot y +1 } dx dy
$$
I have tried to solve
$$
int _0 ^1 sqrt{a cdot x^2 + b cdot y^2 + c cdot x cdot y + d cdot x+ecdot y +1 } dx
$$
and this has a closed form of solution, but is very complicated that makes it nearlly impossible to get the integral further on y.
So I wonder if a closed form solution really exists, does anyone have some ideas?
integration multivariable-calculus
$endgroup$
I wonder if there is a closed-form solution for double integral of square root of quadratic polynomials. Such as
$$
int _0 ^1 int _0 ^1 sqrt{a cdot x^2 + b cdot y^2 + c cdot x cdot y + d cdot x+ecdot y +1 } dx dy
$$
I have tried to solve
$$
int _0 ^1 sqrt{a cdot x^2 + b cdot y^2 + c cdot x cdot y + d cdot x+ecdot y +1 } dx
$$
and this has a closed form of solution, but is very complicated that makes it nearlly impossible to get the integral further on y.
So I wonder if a closed form solution really exists, does anyone have some ideas?
integration multivariable-calculus
integration multivariable-calculus
edited Jan 26 at 19:51
Feng
asked Jan 23 at 16:16
FengFeng
62
62
1
$begingroup$
Would it help to rotate in the $(x,y)$-plane to get rid of the $xy$-term, namely $cxy$? Then couldn’t you complete the square (shift the origin) to get your integrand to be something like $(a'xi^2+b'eta^2)^{1/2}$ ?
$endgroup$
– Lubin
Jan 23 at 16:22
$begingroup$
@Lubin thank you very much for your comment! But this only transforms the complexity from the polynomial to the domain and therefore does not simplify the final work.
$endgroup$
– Feng
Jan 25 at 17:09
add a comment |
1
$begingroup$
Would it help to rotate in the $(x,y)$-plane to get rid of the $xy$-term, namely $cxy$? Then couldn’t you complete the square (shift the origin) to get your integrand to be something like $(a'xi^2+b'eta^2)^{1/2}$ ?
$endgroup$
– Lubin
Jan 23 at 16:22
$begingroup$
@Lubin thank you very much for your comment! But this only transforms the complexity from the polynomial to the domain and therefore does not simplify the final work.
$endgroup$
– Feng
Jan 25 at 17:09
1
1
$begingroup$
Would it help to rotate in the $(x,y)$-plane to get rid of the $xy$-term, namely $cxy$? Then couldn’t you complete the square (shift the origin) to get your integrand to be something like $(a'xi^2+b'eta^2)^{1/2}$ ?
$endgroup$
– Lubin
Jan 23 at 16:22
$begingroup$
Would it help to rotate in the $(x,y)$-plane to get rid of the $xy$-term, namely $cxy$? Then couldn’t you complete the square (shift the origin) to get your integrand to be something like $(a'xi^2+b'eta^2)^{1/2}$ ?
$endgroup$
– Lubin
Jan 23 at 16:22
$begingroup$
@Lubin thank you very much for your comment! But this only transforms the complexity from the polynomial to the domain and therefore does not simplify the final work.
$endgroup$
– Feng
Jan 25 at 17:09
$begingroup$
@Lubin thank you very much for your comment! But this only transforms the complexity from the polynomial to the domain and therefore does not simplify the final work.
$endgroup$
– Feng
Jan 25 at 17:09
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
MAPLE got:
$int _0^1int_0^1sqrt{acdot x^2+bcdot y^2+ccdot xcdot y+dcdot x+ecdot y +1 } dx dy$
$$=frac{1}{8}left(-4,ablnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,ablnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)-4,aelnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,aelnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+{c}^{2}lnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-{c}^{2}lnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+2,cdlnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-2,cdlnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)-{d}^{2}lnleft({frac{d+2,sqrt{a}}{sqrt{a}}}right)+{d}^{2}lnleft({frac{2,a+d+2,sqrt{a+d+1}sqrt{a}}{sqrt{a}}}right)+{d}^{2}lnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-{d}^{2}lnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+4,alnleft({frac{d+2,sqrt{a}}{sqrt{a}}}right)-4,alnleft({frac{2,a+d+2,sqrt{a+d+1}sqrt{a}}{sqrt{a}}}right)-4,alnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,alnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+4,sqrt{a+b+c+d+e+1}{a}^{3/2}-4,sqrt{a+d+1}{a}^{3/2}+2,sqrt{a+b+c+d+e+1}sqrt{a}c-2,sqrt{b+e+1}sqrt{a}c+2,sqrt{a}d+2,sqrt{a+b+c+d+e+1}sqrt{a}d-2,sqrt{b+e+1}sqrt{a}d-2,sqrt{a+d+1}sqrt{a}dright){a}^{-3/2}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084694%2fgeneral-solution-for-double-integral-of-square-root-of-quadratic-polynomials%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
MAPLE got:
$int _0^1int_0^1sqrt{acdot x^2+bcdot y^2+ccdot xcdot y+dcdot x+ecdot y +1 } dx dy$
$$=frac{1}{8}left(-4,ablnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,ablnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)-4,aelnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,aelnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+{c}^{2}lnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-{c}^{2}lnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+2,cdlnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-2,cdlnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)-{d}^{2}lnleft({frac{d+2,sqrt{a}}{sqrt{a}}}right)+{d}^{2}lnleft({frac{2,a+d+2,sqrt{a+d+1}sqrt{a}}{sqrt{a}}}right)+{d}^{2}lnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-{d}^{2}lnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+4,alnleft({frac{d+2,sqrt{a}}{sqrt{a}}}right)-4,alnleft({frac{2,a+d+2,sqrt{a+d+1}sqrt{a}}{sqrt{a}}}right)-4,alnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,alnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+4,sqrt{a+b+c+d+e+1}{a}^{3/2}-4,sqrt{a+d+1}{a}^{3/2}+2,sqrt{a+b+c+d+e+1}sqrt{a}c-2,sqrt{b+e+1}sqrt{a}c+2,sqrt{a}d+2,sqrt{a+b+c+d+e+1}sqrt{a}d-2,sqrt{b+e+1}sqrt{a}d-2,sqrt{a+d+1}sqrt{a}dright){a}^{-3/2}$$
$endgroup$
add a comment |
$begingroup$
MAPLE got:
$int _0^1int_0^1sqrt{acdot x^2+bcdot y^2+ccdot xcdot y+dcdot x+ecdot y +1 } dx dy$
$$=frac{1}{8}left(-4,ablnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,ablnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)-4,aelnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,aelnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+{c}^{2}lnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-{c}^{2}lnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+2,cdlnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-2,cdlnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)-{d}^{2}lnleft({frac{d+2,sqrt{a}}{sqrt{a}}}right)+{d}^{2}lnleft({frac{2,a+d+2,sqrt{a+d+1}sqrt{a}}{sqrt{a}}}right)+{d}^{2}lnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-{d}^{2}lnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+4,alnleft({frac{d+2,sqrt{a}}{sqrt{a}}}right)-4,alnleft({frac{2,a+d+2,sqrt{a+d+1}sqrt{a}}{sqrt{a}}}right)-4,alnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,alnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+4,sqrt{a+b+c+d+e+1}{a}^{3/2}-4,sqrt{a+d+1}{a}^{3/2}+2,sqrt{a+b+c+d+e+1}sqrt{a}c-2,sqrt{b+e+1}sqrt{a}c+2,sqrt{a}d+2,sqrt{a+b+c+d+e+1}sqrt{a}d-2,sqrt{b+e+1}sqrt{a}d-2,sqrt{a+d+1}sqrt{a}dright){a}^{-3/2}$$
$endgroup$
add a comment |
$begingroup$
MAPLE got:
$int _0^1int_0^1sqrt{acdot x^2+bcdot y^2+ccdot xcdot y+dcdot x+ecdot y +1 } dx dy$
$$=frac{1}{8}left(-4,ablnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,ablnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)-4,aelnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,aelnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+{c}^{2}lnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-{c}^{2}lnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+2,cdlnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-2,cdlnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)-{d}^{2}lnleft({frac{d+2,sqrt{a}}{sqrt{a}}}right)+{d}^{2}lnleft({frac{2,a+d+2,sqrt{a+d+1}sqrt{a}}{sqrt{a}}}right)+{d}^{2}lnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-{d}^{2}lnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+4,alnleft({frac{d+2,sqrt{a}}{sqrt{a}}}right)-4,alnleft({frac{2,a+d+2,sqrt{a+d+1}sqrt{a}}{sqrt{a}}}right)-4,alnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,alnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+4,sqrt{a+b+c+d+e+1}{a}^{3/2}-4,sqrt{a+d+1}{a}^{3/2}+2,sqrt{a+b+c+d+e+1}sqrt{a}c-2,sqrt{b+e+1}sqrt{a}c+2,sqrt{a}d+2,sqrt{a+b+c+d+e+1}sqrt{a}d-2,sqrt{b+e+1}sqrt{a}d-2,sqrt{a+d+1}sqrt{a}dright){a}^{-3/2}$$
$endgroup$
MAPLE got:
$int _0^1int_0^1sqrt{acdot x^2+bcdot y^2+ccdot xcdot y+dcdot x+ecdot y +1 } dx dy$
$$=frac{1}{8}left(-4,ablnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,ablnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)-4,aelnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,aelnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+{c}^{2}lnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-{c}^{2}lnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+2,cdlnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-2,cdlnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)-{d}^{2}lnleft({frac{d+2,sqrt{a}}{sqrt{a}}}right)+{d}^{2}lnleft({frac{2,a+d+2,sqrt{a+d+1}sqrt{a}}{sqrt{a}}}right)+{d}^{2}lnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)-{d}^{2}lnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+4,alnleft({frac{d+2,sqrt{a}}{sqrt{a}}}right)-4,alnleft({frac{2,a+d+2,sqrt{a+d+1}sqrt{a}}{sqrt{a}}}right)-4,alnleft({frac{c+d+2,sqrt{b+e+1}sqrt{a}}{sqrt{a}}}right)+4,alnleft({frac{2,a+c+d+2,sqrt{a+b+c+d+e+1}sqrt{a}}{sqrt{a}}}right)+4,sqrt{a+b+c+d+e+1}{a}^{3/2}-4,sqrt{a+d+1}{a}^{3/2}+2,sqrt{a+b+c+d+e+1}sqrt{a}c-2,sqrt{b+e+1}sqrt{a}c+2,sqrt{a}d+2,sqrt{a+b+c+d+e+1}sqrt{a}d-2,sqrt{b+e+1}sqrt{a}d-2,sqrt{a+d+1}sqrt{a}dright){a}^{-3/2}$$
edited Jan 27 at 13:43
answered Jan 25 at 18:25
IV_IV_
1,511525
1,511525
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084694%2fgeneral-solution-for-double-integral-of-square-root-of-quadratic-polynomials%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Would it help to rotate in the $(x,y)$-plane to get rid of the $xy$-term, namely $cxy$? Then couldn’t you complete the square (shift the origin) to get your integrand to be something like $(a'xi^2+b'eta^2)^{1/2}$ ?
$endgroup$
– Lubin
Jan 23 at 16:22
$begingroup$
@Lubin thank you very much for your comment! But this only transforms the complexity from the polynomial to the domain and therefore does not simplify the final work.
$endgroup$
– Feng
Jan 25 at 17:09