How can you solve and equation with inverse functions?












2












$begingroup$


$$arctan(x) - arctan(2/x) = arctan(7/9)$$ where $x$ is positive .



The answer should be 3. Thanks










share|cite|improve this question











$endgroup$












  • $begingroup$
    Welcome to MSE! Please show your working, including where you are stuck. In addition, it is always better to format your questions with MathJax.
    $endgroup$
    – KM101
    Jan 28 at 17:28
















2












$begingroup$


$$arctan(x) - arctan(2/x) = arctan(7/9)$$ where $x$ is positive .



The answer should be 3. Thanks










share|cite|improve this question











$endgroup$












  • $begingroup$
    Welcome to MSE! Please show your working, including where you are stuck. In addition, it is always better to format your questions with MathJax.
    $endgroup$
    – KM101
    Jan 28 at 17:28














2












2








2





$begingroup$


$$arctan(x) - arctan(2/x) = arctan(7/9)$$ where $x$ is positive .



The answer should be 3. Thanks










share|cite|improve this question











$endgroup$




$$arctan(x) - arctan(2/x) = arctan(7/9)$$ where $x$ is positive .



The answer should be 3. Thanks







trigonometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 28 at 17:27









Adrian Keister

5,28171933




5,28171933










asked Jan 28 at 17:25









Doris VellaDoris Vella

133




133












  • $begingroup$
    Welcome to MSE! Please show your working, including where you are stuck. In addition, it is always better to format your questions with MathJax.
    $endgroup$
    – KM101
    Jan 28 at 17:28


















  • $begingroup$
    Welcome to MSE! Please show your working, including where you are stuck. In addition, it is always better to format your questions with MathJax.
    $endgroup$
    – KM101
    Jan 28 at 17:28
















$begingroup$
Welcome to MSE! Please show your working, including where you are stuck. In addition, it is always better to format your questions with MathJax.
$endgroup$
– KM101
Jan 28 at 17:28




$begingroup$
Welcome to MSE! Please show your working, including where you are stuck. In addition, it is always better to format your questions with MathJax.
$endgroup$
– KM101
Jan 28 at 17:28










2 Answers
2






active

oldest

votes


















2












$begingroup$

Using
$$tan(A-B)=frac{tan A-tan B}{1+tan Atan B}$$
we get the equation
$$frac{x-2/x}{1+2}=frac79$$
which looks like a nice quadratic equation.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    I apologise for my lack of knowledge but could you elaborate on how you got that $tan (A-B)=frac 79, tan A=x$ and $tan B=frac 2x$?
    $endgroup$
    – Mohammad Zuhair Khan
    Jan 28 at 17:33










  • $begingroup$
    Take the tangent of both sides.
    $endgroup$
    – KM101
    Jan 28 at 17:35










  • $begingroup$
    @KM101 thank you for the reply.
    $endgroup$
    – Mohammad Zuhair Khan
    Jan 28 at 17:38










  • $begingroup$
    Thank you sooo much!
    $endgroup$
    – Doris Vella
    Jan 28 at 17:41



















0












$begingroup$

Using Inverse trigonometric function identity doubt: $tan^{-1}x+tan^{-1}y =-pi+tan^{-1}left(frac{x+y}{1-xy}right)$, when $x<0$, $y<0$, and $xy>1$,



$$arctandfrac2x+arctandfrac79=arctandfrac{18+7x}{9x-14}$$ for $dfrac{2cdot7}{xcdot9}<1$ which happens if $x<0$ or if $x>dfrac{14}9$



What if $dfrac{14}{9x}ge1?$






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091152%2fhow-can-you-solve-and-equation-with-inverse-functions%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Using
    $$tan(A-B)=frac{tan A-tan B}{1+tan Atan B}$$
    we get the equation
    $$frac{x-2/x}{1+2}=frac79$$
    which looks like a nice quadratic equation.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      I apologise for my lack of knowledge but could you elaborate on how you got that $tan (A-B)=frac 79, tan A=x$ and $tan B=frac 2x$?
      $endgroup$
      – Mohammad Zuhair Khan
      Jan 28 at 17:33










    • $begingroup$
      Take the tangent of both sides.
      $endgroup$
      – KM101
      Jan 28 at 17:35










    • $begingroup$
      @KM101 thank you for the reply.
      $endgroup$
      – Mohammad Zuhair Khan
      Jan 28 at 17:38










    • $begingroup$
      Thank you sooo much!
      $endgroup$
      – Doris Vella
      Jan 28 at 17:41
















    2












    $begingroup$

    Using
    $$tan(A-B)=frac{tan A-tan B}{1+tan Atan B}$$
    we get the equation
    $$frac{x-2/x}{1+2}=frac79$$
    which looks like a nice quadratic equation.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      I apologise for my lack of knowledge but could you elaborate on how you got that $tan (A-B)=frac 79, tan A=x$ and $tan B=frac 2x$?
      $endgroup$
      – Mohammad Zuhair Khan
      Jan 28 at 17:33










    • $begingroup$
      Take the tangent of both sides.
      $endgroup$
      – KM101
      Jan 28 at 17:35










    • $begingroup$
      @KM101 thank you for the reply.
      $endgroup$
      – Mohammad Zuhair Khan
      Jan 28 at 17:38










    • $begingroup$
      Thank you sooo much!
      $endgroup$
      – Doris Vella
      Jan 28 at 17:41














    2












    2








    2





    $begingroup$

    Using
    $$tan(A-B)=frac{tan A-tan B}{1+tan Atan B}$$
    we get the equation
    $$frac{x-2/x}{1+2}=frac79$$
    which looks like a nice quadratic equation.






    share|cite|improve this answer









    $endgroup$



    Using
    $$tan(A-B)=frac{tan A-tan B}{1+tan Atan B}$$
    we get the equation
    $$frac{x-2/x}{1+2}=frac79$$
    which looks like a nice quadratic equation.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jan 28 at 17:29









    Lord Shark the UnknownLord Shark the Unknown

    107k1162135




    107k1162135












    • $begingroup$
      I apologise for my lack of knowledge but could you elaborate on how you got that $tan (A-B)=frac 79, tan A=x$ and $tan B=frac 2x$?
      $endgroup$
      – Mohammad Zuhair Khan
      Jan 28 at 17:33










    • $begingroup$
      Take the tangent of both sides.
      $endgroup$
      – KM101
      Jan 28 at 17:35










    • $begingroup$
      @KM101 thank you for the reply.
      $endgroup$
      – Mohammad Zuhair Khan
      Jan 28 at 17:38










    • $begingroup$
      Thank you sooo much!
      $endgroup$
      – Doris Vella
      Jan 28 at 17:41


















    • $begingroup$
      I apologise for my lack of knowledge but could you elaborate on how you got that $tan (A-B)=frac 79, tan A=x$ and $tan B=frac 2x$?
      $endgroup$
      – Mohammad Zuhair Khan
      Jan 28 at 17:33










    • $begingroup$
      Take the tangent of both sides.
      $endgroup$
      – KM101
      Jan 28 at 17:35










    • $begingroup$
      @KM101 thank you for the reply.
      $endgroup$
      – Mohammad Zuhair Khan
      Jan 28 at 17:38










    • $begingroup$
      Thank you sooo much!
      $endgroup$
      – Doris Vella
      Jan 28 at 17:41
















    $begingroup$
    I apologise for my lack of knowledge but could you elaborate on how you got that $tan (A-B)=frac 79, tan A=x$ and $tan B=frac 2x$?
    $endgroup$
    – Mohammad Zuhair Khan
    Jan 28 at 17:33




    $begingroup$
    I apologise for my lack of knowledge but could you elaborate on how you got that $tan (A-B)=frac 79, tan A=x$ and $tan B=frac 2x$?
    $endgroup$
    – Mohammad Zuhair Khan
    Jan 28 at 17:33












    $begingroup$
    Take the tangent of both sides.
    $endgroup$
    – KM101
    Jan 28 at 17:35




    $begingroup$
    Take the tangent of both sides.
    $endgroup$
    – KM101
    Jan 28 at 17:35












    $begingroup$
    @KM101 thank you for the reply.
    $endgroup$
    – Mohammad Zuhair Khan
    Jan 28 at 17:38




    $begingroup$
    @KM101 thank you for the reply.
    $endgroup$
    – Mohammad Zuhair Khan
    Jan 28 at 17:38












    $begingroup$
    Thank you sooo much!
    $endgroup$
    – Doris Vella
    Jan 28 at 17:41




    $begingroup$
    Thank you sooo much!
    $endgroup$
    – Doris Vella
    Jan 28 at 17:41











    0












    $begingroup$

    Using Inverse trigonometric function identity doubt: $tan^{-1}x+tan^{-1}y =-pi+tan^{-1}left(frac{x+y}{1-xy}right)$, when $x<0$, $y<0$, and $xy>1$,



    $$arctandfrac2x+arctandfrac79=arctandfrac{18+7x}{9x-14}$$ for $dfrac{2cdot7}{xcdot9}<1$ which happens if $x<0$ or if $x>dfrac{14}9$



    What if $dfrac{14}{9x}ge1?$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Using Inverse trigonometric function identity doubt: $tan^{-1}x+tan^{-1}y =-pi+tan^{-1}left(frac{x+y}{1-xy}right)$, when $x<0$, $y<0$, and $xy>1$,



      $$arctandfrac2x+arctandfrac79=arctandfrac{18+7x}{9x-14}$$ for $dfrac{2cdot7}{xcdot9}<1$ which happens if $x<0$ or if $x>dfrac{14}9$



      What if $dfrac{14}{9x}ge1?$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Using Inverse trigonometric function identity doubt: $tan^{-1}x+tan^{-1}y =-pi+tan^{-1}left(frac{x+y}{1-xy}right)$, when $x<0$, $y<0$, and $xy>1$,



        $$arctandfrac2x+arctandfrac79=arctandfrac{18+7x}{9x-14}$$ for $dfrac{2cdot7}{xcdot9}<1$ which happens if $x<0$ or if $x>dfrac{14}9$



        What if $dfrac{14}{9x}ge1?$






        share|cite|improve this answer









        $endgroup$



        Using Inverse trigonometric function identity doubt: $tan^{-1}x+tan^{-1}y =-pi+tan^{-1}left(frac{x+y}{1-xy}right)$, when $x<0$, $y<0$, and $xy>1$,



        $$arctandfrac2x+arctandfrac79=arctandfrac{18+7x}{9x-14}$$ for $dfrac{2cdot7}{xcdot9}<1$ which happens if $x<0$ or if $x>dfrac{14}9$



        What if $dfrac{14}{9x}ge1?$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 28 at 17:59









        lab bhattacharjeelab bhattacharjee

        228k15158278




        228k15158278






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091152%2fhow-can-you-solve-and-equation-with-inverse-functions%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith