How to convert from complex number to polar coordinates (solve for r and theta).












1












$begingroup$


How can I convert $ze^z$ to polar coordinates and what are the answers for ($r$ and $theta$)?

I've been trying to solve the question for so long, but I unfortunately didn't succeed.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Is $z$ real or complex?
    $endgroup$
    – Henry
    Jan 23 at 16:03








  • 2




    $begingroup$
    Please read the tag descriptions before assigning them. This question has nothing to do with algebraic geometry, which is a very advanced subject.
    $endgroup$
    – saulspatz
    Jan 23 at 16:04
















1












$begingroup$


How can I convert $ze^z$ to polar coordinates and what are the answers for ($r$ and $theta$)?

I've been trying to solve the question for so long, but I unfortunately didn't succeed.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Is $z$ real or complex?
    $endgroup$
    – Henry
    Jan 23 at 16:03








  • 2




    $begingroup$
    Please read the tag descriptions before assigning them. This question has nothing to do with algebraic geometry, which is a very advanced subject.
    $endgroup$
    – saulspatz
    Jan 23 at 16:04














1












1








1





$begingroup$


How can I convert $ze^z$ to polar coordinates and what are the answers for ($r$ and $theta$)?

I've been trying to solve the question for so long, but I unfortunately didn't succeed.










share|cite|improve this question











$endgroup$




How can I convert $ze^z$ to polar coordinates and what are the answers for ($r$ and $theta$)?

I've been trying to solve the question for so long, but I unfortunately didn't succeed.







complex-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 23 at 16:02









saulspatz

17.3k31435




17.3k31435










asked Jan 23 at 15:57









shadishadi

61




61












  • $begingroup$
    Is $z$ real or complex?
    $endgroup$
    – Henry
    Jan 23 at 16:03








  • 2




    $begingroup$
    Please read the tag descriptions before assigning them. This question has nothing to do with algebraic geometry, which is a very advanced subject.
    $endgroup$
    – saulspatz
    Jan 23 at 16:04


















  • $begingroup$
    Is $z$ real or complex?
    $endgroup$
    – Henry
    Jan 23 at 16:03








  • 2




    $begingroup$
    Please read the tag descriptions before assigning them. This question has nothing to do with algebraic geometry, which is a very advanced subject.
    $endgroup$
    – saulspatz
    Jan 23 at 16:04
















$begingroup$
Is $z$ real or complex?
$endgroup$
– Henry
Jan 23 at 16:03






$begingroup$
Is $z$ real or complex?
$endgroup$
– Henry
Jan 23 at 16:03






2




2




$begingroup$
Please read the tag descriptions before assigning them. This question has nothing to do with algebraic geometry, which is a very advanced subject.
$endgroup$
– saulspatz
Jan 23 at 16:04




$begingroup$
Please read the tag descriptions before assigning them. This question has nothing to do with algebraic geometry, which is a very advanced subject.
$endgroup$
– saulspatz
Jan 23 at 16:04










2 Answers
2






active

oldest

votes


















1












$begingroup$

Let $z = p e^{ipsi}$, where $|z| = p$ and $arg(z) = psi$. This implies that,$$
begin{align} z e^z &= p e^{i psi} e^{p e^{i psi}} \ &= p e^{i psi}e^{pcos psi + i p sin psi} \ &= p e^{i psi}e^{pcos psi} e^{ i p sin psi} \&= p e^{pcos psi} e^{i (psi + p sin psi)}
end{align}$$

Thus, we have written $z e^z$ in the polar form where $r = p e^{pcos psi}$ and $theta = psi + p sin psi$.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Let $x=ze^z$, $z=re^{(itheta)}=r(costheta+isintheta)$.

    So, $x=re^{itheta}e^{r(costheta+isintheta)}=re^{itheta}e^{rcostheta+irsintheta}$

    Therefore, $x=re^{rcostheta}e^{i(theta+sintheta)}$

    On solving, $$x=re^{rcostheta}(cos(theta+sintheta)+isin(theta+sintheta))$$

    Or, $$x=|z|e^{Re(z)}(cos(theta+sintheta)+isin(theta+sintheta))$$

    Or, $$x=|z|e^{Re(z)}Bigg(cosbigg(theta+frac{Im(z)}{r}bigg)+isinbigg(theta+frac{Im(z)}{r}bigg)Bigg)$$
    The previous three equations are same, consider whichever suffices your usage.






    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084662%2fhow-to-convert-from-complex-number-to-polar-coordinates-solve-for-r-and-theta%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      Let $z = p e^{ipsi}$, where $|z| = p$ and $arg(z) = psi$. This implies that,$$
      begin{align} z e^z &= p e^{i psi} e^{p e^{i psi}} \ &= p e^{i psi}e^{pcos psi + i p sin psi} \ &= p e^{i psi}e^{pcos psi} e^{ i p sin psi} \&= p e^{pcos psi} e^{i (psi + p sin psi)}
      end{align}$$

      Thus, we have written $z e^z$ in the polar form where $r = p e^{pcos psi}$ and $theta = psi + p sin psi$.






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        Let $z = p e^{ipsi}$, where $|z| = p$ and $arg(z) = psi$. This implies that,$$
        begin{align} z e^z &= p e^{i psi} e^{p e^{i psi}} \ &= p e^{i psi}e^{pcos psi + i p sin psi} \ &= p e^{i psi}e^{pcos psi} e^{ i p sin psi} \&= p e^{pcos psi} e^{i (psi + p sin psi)}
        end{align}$$

        Thus, we have written $z e^z$ in the polar form where $r = p e^{pcos psi}$ and $theta = psi + p sin psi$.






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          Let $z = p e^{ipsi}$, where $|z| = p$ and $arg(z) = psi$. This implies that,$$
          begin{align} z e^z &= p e^{i psi} e^{p e^{i psi}} \ &= p e^{i psi}e^{pcos psi + i p sin psi} \ &= p e^{i psi}e^{pcos psi} e^{ i p sin psi} \&= p e^{pcos psi} e^{i (psi + p sin psi)}
          end{align}$$

          Thus, we have written $z e^z$ in the polar form where $r = p e^{pcos psi}$ and $theta = psi + p sin psi$.






          share|cite|improve this answer









          $endgroup$



          Let $z = p e^{ipsi}$, where $|z| = p$ and $arg(z) = psi$. This implies that,$$
          begin{align} z e^z &= p e^{i psi} e^{p e^{i psi}} \ &= p e^{i psi}e^{pcos psi + i p sin psi} \ &= p e^{i psi}e^{pcos psi} e^{ i p sin psi} \&= p e^{pcos psi} e^{i (psi + p sin psi)}
          end{align}$$

          Thus, we have written $z e^z$ in the polar form where $r = p e^{pcos psi}$ and $theta = psi + p sin psi$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 23 at 16:20









          Ajay Kumar NairAjay Kumar Nair

          1109




          1109























              1












              $begingroup$

              Let $x=ze^z$, $z=re^{(itheta)}=r(costheta+isintheta)$.

              So, $x=re^{itheta}e^{r(costheta+isintheta)}=re^{itheta}e^{rcostheta+irsintheta}$

              Therefore, $x=re^{rcostheta}e^{i(theta+sintheta)}$

              On solving, $$x=re^{rcostheta}(cos(theta+sintheta)+isin(theta+sintheta))$$

              Or, $$x=|z|e^{Re(z)}(cos(theta+sintheta)+isin(theta+sintheta))$$

              Or, $$x=|z|e^{Re(z)}Bigg(cosbigg(theta+frac{Im(z)}{r}bigg)+isinbigg(theta+frac{Im(z)}{r}bigg)Bigg)$$
              The previous three equations are same, consider whichever suffices your usage.






              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                Let $x=ze^z$, $z=re^{(itheta)}=r(costheta+isintheta)$.

                So, $x=re^{itheta}e^{r(costheta+isintheta)}=re^{itheta}e^{rcostheta+irsintheta}$

                Therefore, $x=re^{rcostheta}e^{i(theta+sintheta)}$

                On solving, $$x=re^{rcostheta}(cos(theta+sintheta)+isin(theta+sintheta))$$

                Or, $$x=|z|e^{Re(z)}(cos(theta+sintheta)+isin(theta+sintheta))$$

                Or, $$x=|z|e^{Re(z)}Bigg(cosbigg(theta+frac{Im(z)}{r}bigg)+isinbigg(theta+frac{Im(z)}{r}bigg)Bigg)$$
                The previous three equations are same, consider whichever suffices your usage.






                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Let $x=ze^z$, $z=re^{(itheta)}=r(costheta+isintheta)$.

                  So, $x=re^{itheta}e^{r(costheta+isintheta)}=re^{itheta}e^{rcostheta+irsintheta}$

                  Therefore, $x=re^{rcostheta}e^{i(theta+sintheta)}$

                  On solving, $$x=re^{rcostheta}(cos(theta+sintheta)+isin(theta+sintheta))$$

                  Or, $$x=|z|e^{Re(z)}(cos(theta+sintheta)+isin(theta+sintheta))$$

                  Or, $$x=|z|e^{Re(z)}Bigg(cosbigg(theta+frac{Im(z)}{r}bigg)+isinbigg(theta+frac{Im(z)}{r}bigg)Bigg)$$
                  The previous three equations are same, consider whichever suffices your usage.






                  share|cite|improve this answer











                  $endgroup$



                  Let $x=ze^z$, $z=re^{(itheta)}=r(costheta+isintheta)$.

                  So, $x=re^{itheta}e^{r(costheta+isintheta)}=re^{itheta}e^{rcostheta+irsintheta}$

                  Therefore, $x=re^{rcostheta}e^{i(theta+sintheta)}$

                  On solving, $$x=re^{rcostheta}(cos(theta+sintheta)+isin(theta+sintheta))$$

                  Or, $$x=|z|e^{Re(z)}(cos(theta+sintheta)+isin(theta+sintheta))$$

                  Or, $$x=|z|e^{Re(z)}Bigg(cosbigg(theta+frac{Im(z)}{r}bigg)+isinbigg(theta+frac{Im(z)}{r}bigg)Bigg)$$
                  The previous three equations are same, consider whichever suffices your usage.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 23 at 16:38

























                  answered Jan 23 at 16:19









                  Mayank M.Mayank M.

                  493413




                  493413






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084662%2fhow-to-convert-from-complex-number-to-polar-coordinates-solve-for-r-and-theta%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      How to fix TextFormField cause rebuild widget in Flutter

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith