How to convert from complex number to polar coordinates (solve for r and theta).
$begingroup$
How can I convert $ze^z$ to polar coordinates and what are the answers for ($r$ and $theta$)?
I've been trying to solve the question for so long, but I unfortunately didn't succeed.
complex-numbers
$endgroup$
add a comment |
$begingroup$
How can I convert $ze^z$ to polar coordinates and what are the answers for ($r$ and $theta$)?
I've been trying to solve the question for so long, but I unfortunately didn't succeed.
complex-numbers
$endgroup$
$begingroup$
Is $z$ real or complex?
$endgroup$
– Henry
Jan 23 at 16:03
2
$begingroup$
Please read the tag descriptions before assigning them. This question has nothing to do with algebraic geometry, which is a very advanced subject.
$endgroup$
– saulspatz
Jan 23 at 16:04
add a comment |
$begingroup$
How can I convert $ze^z$ to polar coordinates and what are the answers for ($r$ and $theta$)?
I've been trying to solve the question for so long, but I unfortunately didn't succeed.
complex-numbers
$endgroup$
How can I convert $ze^z$ to polar coordinates and what are the answers for ($r$ and $theta$)?
I've been trying to solve the question for so long, but I unfortunately didn't succeed.
complex-numbers
complex-numbers
edited Jan 23 at 16:02


saulspatz
17.3k31435
17.3k31435
asked Jan 23 at 15:57
shadishadi
61
61
$begingroup$
Is $z$ real or complex?
$endgroup$
– Henry
Jan 23 at 16:03
2
$begingroup$
Please read the tag descriptions before assigning them. This question has nothing to do with algebraic geometry, which is a very advanced subject.
$endgroup$
– saulspatz
Jan 23 at 16:04
add a comment |
$begingroup$
Is $z$ real or complex?
$endgroup$
– Henry
Jan 23 at 16:03
2
$begingroup$
Please read the tag descriptions before assigning them. This question has nothing to do with algebraic geometry, which is a very advanced subject.
$endgroup$
– saulspatz
Jan 23 at 16:04
$begingroup$
Is $z$ real or complex?
$endgroup$
– Henry
Jan 23 at 16:03
$begingroup$
Is $z$ real or complex?
$endgroup$
– Henry
Jan 23 at 16:03
2
2
$begingroup$
Please read the tag descriptions before assigning them. This question has nothing to do with algebraic geometry, which is a very advanced subject.
$endgroup$
– saulspatz
Jan 23 at 16:04
$begingroup$
Please read the tag descriptions before assigning them. This question has nothing to do with algebraic geometry, which is a very advanced subject.
$endgroup$
– saulspatz
Jan 23 at 16:04
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let $z = p e^{ipsi}$, where $|z| = p$ and $arg(z) = psi$. This implies that,$$
begin{align} z e^z &= p e^{i psi} e^{p e^{i psi}} \ &= p e^{i psi}e^{pcos psi + i p sin psi} \ &= p e^{i psi}e^{pcos psi} e^{ i p sin psi} \&= p e^{pcos psi} e^{i (psi + p sin psi)}
end{align}$$
Thus, we have written $z e^z$ in the polar form where $r = p e^{pcos psi}$ and $theta = psi + p sin psi$.
$endgroup$
add a comment |
$begingroup$
Let $x=ze^z$, $z=re^{(itheta)}=r(costheta+isintheta)$.
So, $x=re^{itheta}e^{r(costheta+isintheta)}=re^{itheta}e^{rcostheta+irsintheta}$
Therefore, $x=re^{rcostheta}e^{i(theta+sintheta)}$
On solving, $$x=re^{rcostheta}(cos(theta+sintheta)+isin(theta+sintheta))$$
Or, $$x=|z|e^{Re(z)}(cos(theta+sintheta)+isin(theta+sintheta))$$
Or, $$x=|z|e^{Re(z)}Bigg(cosbigg(theta+frac{Im(z)}{r}bigg)+isinbigg(theta+frac{Im(z)}{r}bigg)Bigg)$$
The previous three equations are same, consider whichever suffices your usage.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084662%2fhow-to-convert-from-complex-number-to-polar-coordinates-solve-for-r-and-theta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $z = p e^{ipsi}$, where $|z| = p$ and $arg(z) = psi$. This implies that,$$
begin{align} z e^z &= p e^{i psi} e^{p e^{i psi}} \ &= p e^{i psi}e^{pcos psi + i p sin psi} \ &= p e^{i psi}e^{pcos psi} e^{ i p sin psi} \&= p e^{pcos psi} e^{i (psi + p sin psi)}
end{align}$$
Thus, we have written $z e^z$ in the polar form where $r = p e^{pcos psi}$ and $theta = psi + p sin psi$.
$endgroup$
add a comment |
$begingroup$
Let $z = p e^{ipsi}$, where $|z| = p$ and $arg(z) = psi$. This implies that,$$
begin{align} z e^z &= p e^{i psi} e^{p e^{i psi}} \ &= p e^{i psi}e^{pcos psi + i p sin psi} \ &= p e^{i psi}e^{pcos psi} e^{ i p sin psi} \&= p e^{pcos psi} e^{i (psi + p sin psi)}
end{align}$$
Thus, we have written $z e^z$ in the polar form where $r = p e^{pcos psi}$ and $theta = psi + p sin psi$.
$endgroup$
add a comment |
$begingroup$
Let $z = p e^{ipsi}$, where $|z| = p$ and $arg(z) = psi$. This implies that,$$
begin{align} z e^z &= p e^{i psi} e^{p e^{i psi}} \ &= p e^{i psi}e^{pcos psi + i p sin psi} \ &= p e^{i psi}e^{pcos psi} e^{ i p sin psi} \&= p e^{pcos psi} e^{i (psi + p sin psi)}
end{align}$$
Thus, we have written $z e^z$ in the polar form where $r = p e^{pcos psi}$ and $theta = psi + p sin psi$.
$endgroup$
Let $z = p e^{ipsi}$, where $|z| = p$ and $arg(z) = psi$. This implies that,$$
begin{align} z e^z &= p e^{i psi} e^{p e^{i psi}} \ &= p e^{i psi}e^{pcos psi + i p sin psi} \ &= p e^{i psi}e^{pcos psi} e^{ i p sin psi} \&= p e^{pcos psi} e^{i (psi + p sin psi)}
end{align}$$
Thus, we have written $z e^z$ in the polar form where $r = p e^{pcos psi}$ and $theta = psi + p sin psi$.
answered Jan 23 at 16:20
Ajay Kumar NairAjay Kumar Nair
1109
1109
add a comment |
add a comment |
$begingroup$
Let $x=ze^z$, $z=re^{(itheta)}=r(costheta+isintheta)$.
So, $x=re^{itheta}e^{r(costheta+isintheta)}=re^{itheta}e^{rcostheta+irsintheta}$
Therefore, $x=re^{rcostheta}e^{i(theta+sintheta)}$
On solving, $$x=re^{rcostheta}(cos(theta+sintheta)+isin(theta+sintheta))$$
Or, $$x=|z|e^{Re(z)}(cos(theta+sintheta)+isin(theta+sintheta))$$
Or, $$x=|z|e^{Re(z)}Bigg(cosbigg(theta+frac{Im(z)}{r}bigg)+isinbigg(theta+frac{Im(z)}{r}bigg)Bigg)$$
The previous three equations are same, consider whichever suffices your usage.
$endgroup$
add a comment |
$begingroup$
Let $x=ze^z$, $z=re^{(itheta)}=r(costheta+isintheta)$.
So, $x=re^{itheta}e^{r(costheta+isintheta)}=re^{itheta}e^{rcostheta+irsintheta}$
Therefore, $x=re^{rcostheta}e^{i(theta+sintheta)}$
On solving, $$x=re^{rcostheta}(cos(theta+sintheta)+isin(theta+sintheta))$$
Or, $$x=|z|e^{Re(z)}(cos(theta+sintheta)+isin(theta+sintheta))$$
Or, $$x=|z|e^{Re(z)}Bigg(cosbigg(theta+frac{Im(z)}{r}bigg)+isinbigg(theta+frac{Im(z)}{r}bigg)Bigg)$$
The previous three equations are same, consider whichever suffices your usage.
$endgroup$
add a comment |
$begingroup$
Let $x=ze^z$, $z=re^{(itheta)}=r(costheta+isintheta)$.
So, $x=re^{itheta}e^{r(costheta+isintheta)}=re^{itheta}e^{rcostheta+irsintheta}$
Therefore, $x=re^{rcostheta}e^{i(theta+sintheta)}$
On solving, $$x=re^{rcostheta}(cos(theta+sintheta)+isin(theta+sintheta))$$
Or, $$x=|z|e^{Re(z)}(cos(theta+sintheta)+isin(theta+sintheta))$$
Or, $$x=|z|e^{Re(z)}Bigg(cosbigg(theta+frac{Im(z)}{r}bigg)+isinbigg(theta+frac{Im(z)}{r}bigg)Bigg)$$
The previous three equations are same, consider whichever suffices your usage.
$endgroup$
Let $x=ze^z$, $z=re^{(itheta)}=r(costheta+isintheta)$.
So, $x=re^{itheta}e^{r(costheta+isintheta)}=re^{itheta}e^{rcostheta+irsintheta}$
Therefore, $x=re^{rcostheta}e^{i(theta+sintheta)}$
On solving, $$x=re^{rcostheta}(cos(theta+sintheta)+isin(theta+sintheta))$$
Or, $$x=|z|e^{Re(z)}(cos(theta+sintheta)+isin(theta+sintheta))$$
Or, $$x=|z|e^{Re(z)}Bigg(cosbigg(theta+frac{Im(z)}{r}bigg)+isinbigg(theta+frac{Im(z)}{r}bigg)Bigg)$$
The previous three equations are same, consider whichever suffices your usage.
edited Jan 23 at 16:38
answered Jan 23 at 16:19


Mayank M.Mayank M.
493413
493413
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084662%2fhow-to-convert-from-complex-number-to-polar-coordinates-solve-for-r-and-theta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Is $z$ real or complex?
$endgroup$
– Henry
Jan 23 at 16:03
2
$begingroup$
Please read the tag descriptions before assigning them. This question has nothing to do with algebraic geometry, which is a very advanced subject.
$endgroup$
– saulspatz
Jan 23 at 16:04